Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.060
Filtrar
1.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630337

RESUMEN

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Asunto(s)
Muerte Celular , Etanol , Neuronas , Fármacos Neuroprotectores , Extractos Vegetales , Hojas de la Planta , Sterculia , Animales , Ratas , Caspasa 3/metabolismo , Etanol/administración & dosificación , Etanol/química , Etanol/toxicidad , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ratas Wistar , Sterculia/química , Hojas de la Planta/química , Plantas Medicinales/química , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Lactato Deshidrogenasas/metabolismo , Proteína GAP-43/análisis , Apoptosis/genética , Estrés Oxidativo/genética , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/fisiología , Masculino , Femenino , Células Cultivadas , Muerte Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida con Espectrometría de Masas , Metabolismo Secundario
2.
Brain Res ; 1832: 148863, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492841

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons and neuroinflammation. Previous research has identified the involvement of Poly (rC)-binding protein 1 (PCBP1) in certain degenerative diseases; however, its specific mechanisms in PD remain incompletely understood. METHODS: In this study, 6-OHDA-induced neurotoxicity in the cell lines SH-SY5Y, BV-2 and HA, was used to evaluate the protective effects of PCBP1. We assessed alterations in BDNF levels in SY5Y cells, changes in GDNF expression in glial cells, as well as variations in HSP70 and NF-κB activation. Additionally, glial cells were used as the in vitro model for neuroinflammation mechanisms. RESULTS: The results indicate that the overexpression of PCBP1 significantly enhances cell growth compared to the control plasmid pEGFP/N1 group. Overexpression of PCBP1 leads to a substantial reduction in early apoptosis rates in SH-SY5Y, HA, and BV-2 cells, with statistically significant differences (p < 0.05). Furthermore, the overexpression of PCBP1 in cells results in a marked increase in the expression of HSP70, GDNF, and BDNF, while reducing NF-κB expression. Additionally, in SH-SY5Y, HA, and BV-2 cells overexpressing PCBP1, there is a decrease in the inflammatory factor IL-6 compared to the control plasmid pEGFP/N1 group, while BV-2 cells exhibit a significant increase in the anti-inflammatory factor IL-10. CONCLUSION: Our findings suggest that PCBP1 plays a substantial role in promoting cell growth and modulating the balance of neuroprotective and inflammatory factors. These results offer valuable insights into the potential therapeutic utility of PCBP1 in mitigating neuroinflammation and enhancing neuronal survival in PD.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , FN-kappa B/metabolismo , Proteínas Portadoras , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Enfermedades Neuroinflamatorias , Línea Celular Tumoral , Apoptosis , Neuroglía/metabolismo , Fármacos Neuroprotectores/farmacología
3.
Neurochem Int ; 175: 105720, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458538

RESUMEN

The anteroventral bed nucleus of stria terminalis (avBNST) is a key brain region which involves negative emotional states, such as anxiety. The most neurons in the avBNST are GABAergic, and it sends GABAergic projections to the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN), respectively. The VTA and DRN contain dopaminergic and serotonergic cell groups in the midbrain which regulate anxiety-like behaviors. However, it is unclear the role of GABAergic projections from the avBNST to the VTA and the DRN in the regulation of anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and decreased level of dopamine (DA) in the basolateral amygdala (BLA). Chemogenetic activation of avBNSTGABA-VTA or avBNSTGABA-DRN pathway induced anxiety-like behaviors and decreased DA or 5-HT release in the BLA in sham and 6-OHDA rats, while inhibition of avBNSTGABA-VTA or avBNSTGABA-DRN pathway produced anxiolytic-like effects and increased level of DA or 5-HT in the BLA. These findings suggest that avBNST inhibitory projections directly regulate dopaminergic neurons in the VTA and serotonergic neurons in the DRN, and the avBNSTGABA-VTA and avBNSTGABA-DRN pathways respectively exert impacts on PD-related anxiety-like behaviors.


Asunto(s)
Ansiolíticos , Enfermedad de Parkinson , Núcleos Septales , Ratas , Animales , Núcleo Dorsal del Rafe/metabolismo , Área Tegmental Ventral/metabolismo , Serotonina/metabolismo , Núcleos Septales/metabolismo , Oxidopamina/toxicidad , Ansiedad , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Ansiolíticos/farmacología , Neuronas Dopaminérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Neurol Res ; 46(5): 406-415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498979

RESUMEN

OBJECTIVES: Current treatments for Parkinson's disease using pharmacological approaches alleviate motor symptoms but do not prevent neuronal loss or dysregulation of dopamine neurotransmission. In this article, we have explored the molecular mechanisms underlying the neuroprotective effect of the antioxidant N-acetylcysteine (NAC) on the damaged dopamine system. METHODS: SH-SY5Y cells were differentiated towards a dopaminergic phenotype and exposed to 6-hydroxydopamine (6-OHDA) to establish an in vitro model of Parkinson's disease. We examined the potential of NAC to restore the pathological effects of 6-OHDA on cell survival, dopamine synthesis as well as on key proteins regulating dopamine metabolism. Specifically, we evaluated gene- and protein expression of tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and α-synuclein, by using qPCR and Western blot techniques. Moreover, we quantified the effect of NAC on total dopamine levels using a dopamine ELISA assay. RESULTS: Our results indicate that NAC has a neuroprotective role in SH-SY5Y cells exposed to 6-OHDA by maintaining cell proliferation and decreasing apoptosis. Additionally, we demonstrated that NAC treatment increases dopamine release and protects SH-SY5Y cells against 6-OHDA dysregulations on the proteins TH, VMAT2, and α-synuclein. CONCLUSIONS: Our findings contribute to the validation of compounds capable to restore dopamine homeostasis and shed light on the metabolic pathways that could be targeted to normalize dopamine turnover. Furthermore, our results highlight the effectiveness of the antioxidant NAC in the prevention of dopaminergic neurodegeneration in the present model. ABBREVIATIONS: DAT, dopamine transporter; 6-OHDA, 6-hydroxydopamine; NAC, N-acetylcysteine; PARP, poly (ADP-ribose) polymerase; RA; retinoic acid; ROS, reactive oxygen species; TH, tyrosine hydroxylase; TPA, 12-O-tetradecanoyl-phorbol-13-acetate; VMAT2, vesicle monoamine transporter 2.


Asunto(s)
Acetilcisteína , Dopamina , Oxidopamina , Tirosina 3-Monooxigenasa , Proteínas de Transporte Vesicular de Monoaminas , alfa-Sinucleína , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Humanos , Oxidopamina/toxicidad , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Acetilcisteína/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología , Supervivencia Celular/efectos de los fármacos
5.
Exp Neurol ; 375: 114740, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395215

RESUMEN

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratas , Animales , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/psicología , Oxidopamina/toxicidad , Ratas Wistar , Respiración , Sueño , Modelos Animales de Enfermedad
6.
Neurobiol Dis ; 193: 106452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401650

RESUMEN

A common adverse effect of Parkinson's disease (PD) treatment is L-dopa-induced dyskinesia (LID). This condition results from both dopamine (DA)-dependent and DA-independent mechanisms, as glutamate inputs from corticostriatal projection neurons impact DA-responsive medium spiny neurons in the striatum to cause the dyskinetic behaviors. In this study, we explored whether suppression of presynaptic corticostriatal glutamate inputs might affect the behavioral and biochemical outcomes associated with LID. We first established an animal model in which 6-hydroxydopamine (6-OHDA)-lesioned mice were treated daily with L-dopa (10 mg/kg, i.p.) for 2 weeks; these mice developed stereotypical abnormal involuntary movements (AIMs). When the mice were pretreated with the NMDA antagonist, amantadine, we observed suppression of AIMs and reductions of phosphorylated ERK1/2 and NR2B in the striatum. We then took an optogenetic approach to manipulate glutamatergic activity. Slc17a6 (vGluT2)-Cre mice were injected with pAAV5-Ef1a-DIO-eNpHR3.0-mCherry and received optic fiber implants in either the M1 motor cortex or dorsolateral striatum. Optogenetic inactivation at either optic fiber implant location could successfully reduce the intensity of AIMs after 6-OHDA lesioning and L-dopa treatment. Both optical manipulation strategies also suppressed phospho-ERK1/2 and phospho-NR2B signals in the striatum. Finally, we performed intrastriatal injections of LDN 212320 in the dyskenesic mice to enhance expression of glutamate uptake transporter GLT-1. Sixteen hours after the LDN 212320 treatment, L-dopa-induced AIMs were reduced along with the levels of striatal phospho-ERK1/2 and phospho-NR2B. Together, our results affirm a critical role of corticostriatal glutamate neurons in LID and strongly suggest that diminishing synaptic glutamate, either by suppression of neuronal activity or by upregulation of GLT-1, could be an effective approach for managing LID.


Asunto(s)
Discinesias , Enfermedad de Parkinson , Ratas , Ratones , Animales , Levodopa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Oxidopamina/toxicidad , Ácido Glutámico/metabolismo , Ratas Sprague-Dawley , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Antiparkinsonianos/efectos adversos
7.
Respir Physiol Neurobiol ; 323: 104239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395210

RESUMEN

This study aimed to evaluate the timing and frequency of spontaneous apneas during breathing and swallowing by using cineradiography on mouse models of early/initial or late/advanced Parkinson's disease (PD). C57BL/6 J mice received either 6-OHDA or vehicle injections into their right striatum, followed by respiratory movement recordings during spontaneous breathing and swallowing, and a stress challenge, two weeks later. Experimental group animals showed a significantly lower respiratory rate (158.66 ± 32.88 breaths/minute in late PD, 173.16 ± 25.19 in early PD versus 185.27 ± 25.36 in controls; p<0.001) and a significantly higher frequency of apneas (median 1 apnea/minute in both groups versus 0 in controls; p<0.001). Other changes included reduced food intake and the absence of swallow apneas in experimental mice. 6-OHDA-induced nigrostriatal degeneration in mice disrupted respiratory control, swallowing, stress responsiveness, and feeding behaviors, potentially hindering airway protection and elevating the risk of aspiration.


Asunto(s)
Apnea , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/diagnóstico por imagen , Deglución , Cinerradiografía , Oxidopamina/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
CNS Neurosci Ther ; 30(2): e14630, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38348765

RESUMEN

OBJECTIVE: Induced pluripotent stem cells (iPSCs) hold a promising potential for rescuing dopaminergic neurons in therapy for Parkinson's disease (PD). This study clarifies a TREM2-dependent mechanism explaining the function of iPSC differentiation in neuronal repair of PD. METHODS: PD-related differentially expressed genes were screened by bioinformatics analyses and their expression was verified using RT-qPCR in nigral tissues of 6-OHDA-lesioned mice. Following ectopic expression and depletion experiments in iPSCs, cell differentiation into dopaminergic neurons as well as the expression of dopaminergic neuronal markers TH and DAT was measured. Stereotaxic injection of 6-OHDA was used to develop a mouse model of PD, which was injected with iPSC suspension overexpressing TREM2 to verify the effect of TREM2 on neuronal repair. RESULTS: TREM2 was poorly expressed in the nigral tissues of 6-OHDA-lesioned mice. In the presence of TREM2 overexpression, the iPSCs showed increased expression of dopaminergic neuronal markers TH and DAT, which facilitated the differentiation of iPSCs into dopaminergic neurons. Mechanistic investigations indicated that TREM2 activated the TGF-ß pathway and induced iPSC differentiation into dopaminergic neurons. In vivo data showed that iPSCs overexpressing TREM2 enhanced neuronal repair in 6-OHDA-lesioned mice. CONCLUSION: This work identifies a mechanistic insight for TREM2-mediated TGF-ß activation in the regulation of neuronal repair in PD and suggests novel strategies for neurodegenerative disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Ratones , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
9.
Eur J Med Chem ; 267: 116174, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38306884

RESUMEN

Neurodegenerative disorders of the central nervous system (CNS) such as Alzheimer's and Parkinson's diseases, afflict millions globally, posing a significant public health challenge. Despite extensive research, a critical hurdle in effectively treating neurodegenerative diseases is the lack of neuroprotective drugs that can halt or reverse the underlying disease processes. In this work, we took advantage of the neuroprotective properties of the neuropeptide glycyl-l-prolyl-l-glutamic acid (Glypromate) for the development of new peptidomimetics using l-pipecolic acid as a proline surrogate and exploring their chemical conjugation with relevant active pharmaceutical ingredients (API) via a peptide bond. Together with prolyl-based Glypromate conjugates, a total of 36 conjugates were toxicologically and biologically evaluated. In this series, the results obtained showed that a constrained ring (l-proline) at the central position of the peptide motif accounts for enhanced toxicological profiles and biological effects using undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Additionally, it was shown that biased biological responses are API-dependent. Conjugation with (R)-1-aminoindane led to a 38-43% reduction of protein aggregation induced by Aß25-35 (10 µM), denoting a 3.2-3.6-fold improvement in comparison with the parent neuropeptide, with no significative difference between functionalization at α and γ-carboxyl ends. On the other hand, the best-performing neuroprotective conjugate against the toxicity elicited by 6-hydroxydopamine (6-OHDA, 125 µM) was obtained by conjugation with memantine at the α-carboxyl end, resulting in a 2.3-fold improvement of the neuroprotection capacity in comparison with Glypromate neuropeptide. Altogether, the chemical strategy explored in this work shows that the neuroprotective capacity of Glypromate can be modified and fine-tuned, opening a new avenue for the development of biased neurotherapeutics for CNS-related disorders.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Neuropéptidos , Fármacos Neuroprotectores , Humanos , Neuroprotección , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxidopamina/toxicidad , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Neuropéptidos/farmacología , Apoptosis
10.
Neuropharmacology ; 247: 109862, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325770

RESUMEN

Adenosine A2A-receptors (A2AR) and dopamine D2-receptors (D2R) are known to work together in a synergistic manner. Inhibiting A2ARs by genetic or pharmacological means can relief symptoms and have neuroprotective effects in certain conditions. We applied PET imaging to evaluate the impact of the A2AR antagonist KW6002 on D2R availability and neuroinflammation in an animal model of Parkinson's disease. Male Wistar rats with 6-hydroxydopamine-induced damage to the right striatum were given 3 mg/kg of KW6002 daily for 20 days. Motor function was assessed using the rotarod and cylinder tests, and neuroinflammation and dopamine receptor availability were measured using PET scans with the tracers [11C]PBR28 and [11C]raclopride, respectively. On day 7 and 22 following 6-OHDA injection, rats were sacrificed for postmortem analysis. PET scans revealed a peak in neuroinflammation on day 7. Chronic treatment with KW6002 significantly reduced [11C]PBR28 uptake in the ipsilateral striatum [normalized to contralateral striatum] and [11C]raclopride binding in both striata when compared to the vehicle group. These imaging findings were accompanied by an improvement in motor function. Postmortem analysis showed an 84% decrease in the number of Iba-1+ cells in the ipsilateral striatum [normalized to contralateral striatum] of KW6002-treated rats compared to vehicle rats on day 22 (p = 0.007), corroborating the PET findings. Analysis of tyrosine hydroxylase levels showed less dopaminergic neuron loss in the ipsilateral striatum of KW6002-treated rats compared to controls on day 7. These findings suggest that KW6002 reduces inflammation and dopaminergic neuron loss, leading to less motor symptoms in this animal model of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Purinas , Ratas , Masculino , Animales , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina , Receptor de Adenosina A2A/metabolismo , Enfermedades Neuroinflamatorias , Adenosina/metabolismo , Racloprida , Ratas Wistar , Oxidopamina/toxicidad
11.
Eur J Neurosci ; 59(7): 1604-1620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359910

RESUMEN

Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.


Asunto(s)
Discinesias , Enfermedad de Parkinson , Ratas , Animales , Levodopa/efectos adversos , Nitroprusiato/farmacología , Oxidopamina/toxicidad , Neuronas Espinosas Medianas , Óxido Nítrico/metabolismo , Discinesias/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Antiparkinsonianos/efectos adversos
12.
Behav Brain Res ; 462: 114873, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38266776

RESUMEN

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.


Asunto(s)
Enfermedad de Parkinson , Animales , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Roedores , Locus Coeruleus/metabolismo , Neuronas Dopaminérgicas , Sustancia Negra/metabolismo , Modelos Animales de Enfermedad
13.
Neuroscience ; 539: 35-50, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38176609

RESUMEN

Virgin and pups-naïve female and male adult mice display two opposite responses when they are exposed to pups for the first time. While females generally take care of the pups, males attack them. Since the nucleus accumbens (NA), and its dopaminergic modulation, is critical in integrating information and processing reward and aversion, we investigated if NMDA- and 6-OHDA-induced lesions, damaging mostly NA output and dopaminergic inputs respectively, affected female maternal behavior (MB) or male infanticidal behavior (IB) in mice. Our results revealed minor or no effects of both smaller and larger NMDA-induced lesions in MB and IB. On the other hand, while 6-OHDA-induced lesions in females reduced the incidence of full MB (12.5% 6-OHDA vs. 85.7% SHAM) increasing the latency to retrieve the pups, those lesions did not affect IB in males. There were no differences in locomotor and exploratory activity between the lesioned- and SHAM- females. Despite those lesions did not induce any major effect on IB, NMDA-lesioned males spent less time in the central area of an open field, while dopaminergic-lesioned males showed reduced number of rearing and peripheral crosses. The current study shows that an intact NA is not necessary for the expression of MB and IB. However, dopaminergic inputs to NA play different role in MB and IB. While damaging dopaminergic terminals into the NA did not affect IB, it clearly delayed the more flexible and rewarding expression of parental behavior.


Asunto(s)
N-Metilaspartato , Núcleo Accumbens , Ratones , Animales , Femenino , Masculino , Humanos , Oxidopamina/toxicidad , N-Metilaspartato/farmacología , Dopamina/fisiología , Conducta Materna/fisiología
14.
CNS Neurol Disord Drug Targets ; 23(3): 402-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36797610

RESUMEN

BACKGROUND: Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS: In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS: We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION: In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.


Asunto(s)
Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , Apoptosis , Proteínas , ARN Interferente Pequeño/metabolismo , Peroxiredoxina III
15.
Neuromodulation ; 27(3): 489-499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37002052

RESUMEN

OBJECTIVES: Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson's disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls. MATERIALS AND METHODS: Male Sprague-Dawley rats (250-350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS. RESULTS: In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12-30 Hz) along with two different subbeta bands, that is, low (12-30 Hz) and high (20-30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx. CONCLUSION: Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Corteza Sensoriomotora , Núcleo Subtalámico , Ratas , Masculino , Animales , Núcleo Subtalámico/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Ratas Sprague-Dawley
16.
CNS Neurosci Ther ; 30(2): e14383, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528534

RESUMEN

AIM: Tyrosine decarboxylase (TDC) presented in the gut-associated strain Enterococcus faecalis can convert levodopa (L-dopa) into dopamine (DA), and its increased abundance would potentially minimize the availability and efficacy of L-dopa. However, the known human decarboxylase inhibitors are ineffective in this bacteria-mediated conversion. This study aims to investigate the inhibition of piperine (PIP) on L-dopa bacterial metabolism and evaluates the synergistic effect of PIP combined with L-dopa on Parkinson's disease (PD). METHODS: Metagenomics sequencing was adopted to determine the regulation of PIP on rat intestinal microbiota structure, especially on the relative abundance of E. faecalis. Then, the inhibitory effects of PIP on L-dopa conversion and TDC expression of E. faecalis were tested in vitro. We examined the synergetic effect of the combination of L-dopa and PIP on 6-hydroxydopamine (6-OHDA)-lesioned rats and tested the regulations of L-dopa bioavailability and brain DA level by pharmacokinetics study and MALDI-MS imaging. Finally, we evaluated the microbiota-dependent improvement effect of PIP on L-dopa availability using pseudo-germ-free and E. faecalis-transplanted rats. RESULTS: We found that PIP combined with L-dopa could better ameliorate the move disorders of 6-OHDA-lesioned rats by remarkably improving L-dopa availability and brain DA level than L-dopa alone, which was associated with the effect of PIP on suppressing the bacterial decarboxylation of L-dopa via effectively downregulating the abnormal high abundances of E. faecalis and TDC in 6-OHDA-lesioned rats. CONCLUSION: Oral administration of L-dopa combined with PIP can improve L-dopa availability and brain DA level in 6-OHDA-lesioned rats by suppressing intestinal bacterial TDC.


Asunto(s)
Alcaloides , Benzodioxoles , Microbioma Gastrointestinal , Enfermedad de Parkinson , Piperidinas , Alcamidas Poliinsaturadas , Humanos , Ratas , Animales , Levodopa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Oxidopamina/toxicidad , Tirosina Descarboxilasa , Dopamina/metabolismo , Bacterias/metabolismo , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Modelos Animales de Enfermedad
17.
Neurochem Res ; 49(1): 117-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37632637

RESUMEN

Parkinson's Disease (PD) is caused by many factors and endoplasmic reticulum (ER) stress is considered as one of the responsible factors for it. ER stress induces the activation of the ubiquitin-proteasome system to degrade unfolded proteins and suppress cell death. The ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation 1 (HRD1) and its stabilizing molecule, the suppressor/enhancer lin-12-like (SEL1L), can suppress the ER stress via the ubiquitin-proteasome system, and that HRD1 can also suppress cell death in familial and nonfamilial PD models. These findings indicate that HRD1 and SEL1L might be key proteins for the treatment of PD. Our study aimed to identify the compounds with the effects of upregulating the HRD1 expression and suppressing neuronal cell death in a 6-hydroxydopamine (6-OHDA)-induced cellular PD model. Our screening by the Drug Gene Budger, a drug repositioning tool, identified luteolin as a candidate compound for the desired modulation of the HRD1 expression. Subsequently, we confirmed that low concentrations of luteolin did not show cytotoxicity in SH-SY5Y cells, and used these low concentrations in the subsequent experiments. Next, we demonsrated that luteolin increased HRD1 and SEL1L mRNA levels and protein expressions. Furthermore, luteolin inhibited 6-OHDA-induced cell death and suppressed ER stress response caused by exposure to 6-OHDA. Finally, luteolin did not reppress 6-OHDA-induced cell death when expression of HRD1 or SEL1L was suppressed by RNA interference. These findings suggest that luteolin might be a novel therapeutic agent for PD due to its ability to suppress ER stress through the activation of HRD1 and SEL1L.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Luteolina/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Arriba , Oxidopamina/toxicidad , Muerte Celular , Proteínas/metabolismo , Ubiquitina/metabolismo
18.
CNS Neurosci Ther ; 30(3): e14446, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37721421

RESUMEN

BACKGROUND: The mechanism of pain symptoms in Parkinson's disease (PD) is unclear. Norepinephrine (NE) regulates neuropathic pain through ascending and descending pathways. However, the loss of NE neurons in the brain of patients with PD is obvious, it is speculated that NE is involved in the occurrence of PD pain symptoms. AIMS: To investigate the effect of NE on the activation of brain cells through adrenergic α2 receptor, so as to regulate the nociception threshold in a 6-OHDA-induced animal model of PD. METHODS: PD rat model was established by 6-OHDA injection (6-OHDA group). DSP-4 (or anti-DBH-saporin) was used to reduce the NE level of the PD rat brain. The heat sensitivity threshold (HST) and pressure withdrawal threshold (PWT) were measured. Tyrosine hydroxylase and NE in rat brains were detected by Elisa. The percentage of GFAP-positive cells in the prefrontal cortex, cingulate gyrus and striatum of rats was detected by immunohistochemistry and immunofluorescence. GFAP protein was semiquantified by method of western blot. Then yohimbine and guanfacine were used to increase the NE level in PD rats, and the above experimental changes were observed after drug application. RESULTS: The contents of NE in the brain of 6-OHDA-induced PD rats were lower than that of control group. After DSP-4 (or anti-DBH-saporin) injection, PD rats showed the lowest NE level (compared with 6-OHDA group, p ≤ 0.05), and after yohimbine and guanfacine were applied to 6-OHDA group, the contents of NE increased in the prefrontal cortex of rats. The HST and PWT of 6-OHDA group were significantly lower than those of control group, and after DSP-4 (or anti-DBH-saporin) injection, the HST and PWT of rats were lower than those of 6-OHDA group, and after the administration of yohimbine and guanfacine, both HST and PWT were significantly increased. GFAP-positive cells increased in prefrontal cortex and anterior cingulate gyrus of 6-OHDA group rats, and more significantly increased after DSP-4 (or anti-DBH-saporin) injection, and significantly reduced after yohimbine and guanfacine were used. CONCLUSIONS: The change of norepinephrine content can affect the activation of prefrontal and cingulate gyrus glial cells and participate in the regulation of nociception threshold in PD rats. Adrenergic α2 receptor agonist and central presynaptic membrane α2 receptor blocker both affect cell activation and improve hyperalgesia.


Asunto(s)
Bencilaminas , Norepinefrina , Enfermedad de Parkinson , Humanos , Ratas , Animales , Norepinefrina/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Oxidopamina/toxicidad , Saporinas , Guanfacina , Nocicepción , Yohimbina/farmacología , Agonistas de Receptores Adrenérgicos alfa 2 , Dolor , Modelos Animales de Enfermedad
19.
Neurochem Res ; 49(1): 234-244, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37725292

RESUMEN

Parkinson's disease is characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway and oxidative stress is one of the main mechanisms that lead to neuronal death in this disease. Previous studies have shown antioxidant activity from the leaves of Byrsonima sericea, a plant of the Malpighiaceae family. This study aimed to evaluate the cytoprotective activity of the B. sericea ethanolic extract (BSEE) against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) in PC12 cells, an in vitro model of parkinsonism. The identification of phenolic compounds in the extract by HPLC-DAD revealed the presence of geraniin, rutin, isoquercetin, kaempferol 3-O-ß-rutinoside, and quercetin. The BSEE (75-300 µg/mL) protected PC12 cells from toxicity induced by 6-OHDA (25 µg/mL), protected cell membrane integrity and showed antioxidant activity. BSEE was able to decrease nitrite levels, glutathione depletion, and protect cells from 6-OHDA-induced apoptosis. Thus, we suggest that the BSEE can be explored as a possible cytoprotective agent for Parkinson's disease due to its high antioxidant capacity and anti-apoptotic action.


Asunto(s)
Malpighiaceae , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Oxidopamina/toxicidad , Antioxidantes/farmacología , Células PC12 , Etanol/toxicidad , Estrés Oxidativo , Apoptosis , Fármacos Neuroprotectores/farmacología
20.
CNS Neurosci Ther ; 30(4): e14515, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37905594

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS: The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS: In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION: Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidopamina/toxicidad , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Neuronas Dopaminérgicas/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA