Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 858
Filtrar
1.
Plant Physiol Biochem ; 214: 108935, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029308

RESUMEN

Light-dependent protochlorophyllide oxidoreductase (LPOR) has captivated the interest of the research community for decades. One reason is the photocatalytic nature of the reaction catalyzed by the enzyme, and the other is the involvement of LPOR in the formation of a paracrystalline lattice called a prolamellar body (PLB) that disintegrates upon illumination, initiating a process of photosynthetic membrane formation. In this paper, we have integrated three traditional methods previously employed to study the properties of the enzyme: molecular biology, spectroscopy, and electron microscopy. We found that for cyanobacterial LPOR, substrates binding appears to be independent of lipids, with membrane interaction primarily affecting the enzyme post-reaction, with MGDG and PG having opposite effects on SynPOR. In contrast, plant isoforms exhibit sequence alterations, rendering the enzyme effective in substrate binding mainly in the presence of anionic lipids, depending on residues at positions 122, 312, and 318. Moreover, we demonstrated that the interaction with MGDG could initially serve as enhancement of the substrate specificity towards monovinyl-protochlorophyllide (Pchlide). We have shown that the second LPOR isoforms of eudicots and monocots accumulated mutations that made these variants less and more dependent on anionic lipids, respectively. Finally, we have shown that in the presence of Pchlide, NADP+, and the lipids, plant but not cyanobacterial LPOR homolog remodel membranes into the cubic phase. The cubic phase is preserved if samples supplemented with NADP + are enriched with NADPH. The results are discussed in the evolutionary context, and the model of PLB formation is presented.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Cianobacterias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Especificidad por Sustrato
2.
J Biosci Bioeng ; 138(3): 212-217, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969547

RESUMEN

We constructed a new Aspergillus expression vector (pSENSU2512nid) under the control of the enolase promoter with 12 tandem repeats of cis-acting elements (region III) and the heat shock protein 12 (Hsp12) 5' untranslated region (UTR). Bilirubin oxidase (EC: 1.3.3.5) from Myrothecium verrucaria, which catalyzes the oxidation of bilirubin to biliverdin, was overexpressed in Aspergillus oryzae and A. niger. The productivity was estimated to be approximately 1.2 g/L in the culture broth, which was approximately 6-fold higher than that of recombinant bilirubin oxidase (BOD) expressed in Pichia pastoris (Komagataella phaffii). BOD was purified using hydrophobic interaction chromatography, followed by ion exchange chromatography. The specific activity of the purified BOD against 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) substrate was 57.6 U/mg and 66.4 U/mg for A. oryzae and A. niger, respectively. l-Ascorbic acid (4 mM) addition and storage under deoxygenated conditions for 3-7 d increased the specific activity of these Aspergillus-expressed BODs approximately 2.3-fold (154.1 U/mg). The BOD specific activity was enhanced by incubation at higher temperature (30-50 °C). Further characterization of the enzyme catalytic efficiency revealed that the Km value remained unchanged, whereas the kcat value improved 3-fold. In conclusion, this high-level of BOD expression meets the requirements for industrial-level production. Additionally, we identified an effective method to enhance the low specific activity during expression, making it advantageous for industrial applications.


Asunto(s)
Hypocreales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas Recombinantes , Hypocreales/enzimología , Hypocreales/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Aspergillus/enzimología , Aspergillus/genética , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Aspergillus niger/enzimología , Aspergillus niger/genética , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Vectores Genéticos/metabolismo , Regiones Promotoras Genéticas
3.
Biotechnol J ; 19(7): e2400286, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39014927

RESUMEN

22(R)-hydroxycholesterol (22(R)-HCHO) is a crucial precursor of steroids biosynthesis with various biological functions. However, the production of 22(R)-HCHO is expensive and unsustainable due to chemical synthesis and extraction from plants or animals. This study aimed to construct a microbial cell factory to efficiently produce 22(R)-HCHO through systems metabolic engineering. First, we tested 7-dehydrocholesterol reductase (Dhcr7s) and cholesterol C22-hydroxylases from different sources in Saccharomyces cerevisiae, and the titer of 22(R)-HCHO reached 128.30 mg L-1 in the engineered strain expressing Dhcr7 from Columba livia (ClDhcr7) and cholesterol 22-hydroxylase from Veratrum californicum (VcCyp90b27). Subsequently, the 22(R)-HCHO titer was significantly increased to 427.78 mg L-1 by optimizing the critical genes involved in 22(R)-HCHO biosynthesis. Furthermore, hybrid diploids were constructed to balance cell growth and 22(R)-HCHO production and to improve stress tolerance. Finally, the engineered strain produced 2.03 g L-1 of 22(R)-HCHO in a 5-L fermenter, representing the highest 22(R)-HCHO titer reported to date in engineered microbial cell factories. The results of this study provide a foundation for further applications of 22(R)-HCHO in various industrially valuable steroids.


Asunto(s)
Hidroxicolesteroles , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Hidroxicolesteroles/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fermentación
4.
BMC Cancer ; 24(1): 761, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918775

RESUMEN

High-grade B-cell lymphoma (HGBCL), the subtype of non-Hodgkin lymphoma, to be relapsed or refractory in patients after initial therapy or salvage chemotherapy. Dual dysregulation of MYC and BCL2 is one of the important pathogenic mechanisms. Thus, combined targeting of MYC and BCL2 appears to be a promising strategy. Dihydroorotate dehydrogenase (DHODH) is the fourth rate-limiting enzyme for the de novo biosynthesis of pyrimidine. It has been shown to be a potential therapeutic target for multiple diseases. In this study, the DHODH inhibitor brequinar exhibited growth inhibition, cell cycle blockade, and apoptosis promotion in HGBCL cell lines with MYC and BCL2 rearrangements. The combination of brequinar and BCL2 inhibitors venetoclax had a synergistic inhibitory effect on the survival of DHL cells through different pathways. Venetoclax could upregulate MCL-1 and MYC expression, which has been reported as a resistance mechanism of BCL2 inhibitors. Brequinar downregulated MCL-1 and MYC, which could potentially overcome drug resistance to venetoclax in HGBCL cells. Furthermore, brequinar could downregulate a broad range of genes, including ribosome biosynthesis genes, which might contribute to its anti-tumor effects. In vivo studies demonstrated synergetic tumor growth inhibition in xenograft models with brequinar and venetoclax combination treatment. These results provide preliminary evidence for the rational combination of DHODH and BCL2 blockade in HGBCL with abnormal MYC and BCL2.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Dihidroorotato Deshidrogenasa , Sinergismo Farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratones , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Línea Celular Tumoral , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Apoptosis/efectos de los fármacos , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfoma de Células B/metabolismo , Reordenamiento Génico , Proliferación Celular/efectos de los fármacos , Compuestos de Bifenilo , Quinaldinas
5.
Redox Biol ; 73: 103207, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805974

RESUMEN

Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.


Asunto(s)
Neoplasias Colorrectales , Dihidroorotato Deshidrogenasa , Resistencia a Antineoplásicos , Fluorouracilo , Mitocondrias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Dihidroorotato Deshidrogenasa/metabolismo , Fluorouracilo/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Ratones , Animales , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Peroxidación de Lípido/efectos de los fármacos
6.
Sci Rep ; 14(1): 11985, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796629

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor of the urinary system. To explore the potential mechanisms of DHODH in ccRCC, we analyzed its molecular characteristics using public databases. TCGA pan-cancer dataset was used to analyze DHODH expression in different cancer types and TCGA ccRCC dataset was used to assess differential expression, prognosis correlation, immune infiltration, single-gene, and functional enrichment due to DHODH. The GSCALite and CellMiner databases were employed to explore drugs and perform molecular docking analysis with DHODH. Protein-protein interaction networks and ceRNA regulatory networks of DHODH were constructed using multiple databases. The effect of DHODH on ccRCC was confirmed in vitro. DHODH was highly expressed in ccRCC. Immune infiltration analysis revealed that DHODH may be involved in regulating the infiltration of immunosuppressive cells such as Tregs. Notably, DHODH influenced ccRCC progression by forming regulatory networks with molecules, such as hsa-miR-26b-5p and UMPS and significantly enhanced the malignant characteristics of ccRCC cells. Several drugs, such as lapatinib, silmitasertib, itraconazole, and dasatinib, were sensitive to DHODH expression and exhibited strong molecular binding with it. Thus, DHODH may promote ccRCC progression and is a candidate effective therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Biología Computacional , Dihidroorotato Deshidrogenasa , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Biología Computacional/métodos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Línea Celular Tumoral , Mapas de Interacción de Proteínas , Simulación del Acoplamiento Molecular , Pronóstico , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo
7.
J Biol Chem ; 300(5): 107282, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604564

RESUMEN

The major human pathogen Streptococcus pneumoniae encounters the immune-derived oxidant hypothiocyanous acid (HOSCN) at sites of colonization and infection. We recently identified the pneumococcal hypothiocyanous acid reductase (Har), a member of the flavoprotein disulfide reductase enzyme family, and showed that it contributes to the HOSCN tolerance of S. pneumoniae in vitro. Here, we demonstrate in mouse models of pneumococcal infection that Har is critical for colonization and invasion. In a colonization model, bacterial load was attenuated dramatically in the nasopharynx when har was deleted in S. pneumoniae. The Δhar strain was also less virulent compared to wild type in an invasion model as reflected by a significant reduction in bacteria in the lungs and no dissemination to the blood and brain. Kinetic measurements with recombinant Har demonstrated that this enzyme reduced HOSCN with near diffusion-limited catalytic efficiency, using either NADH (kcat/KM = 1.2 × 108 M-1s-1) or NADPH (kcat/KM = 2.5 × 107 M-1s-1) as electron donors. We determined the X-ray crystal structure of Har in complex with the FAD cofactor to 1.50 Å resolution, highlighting the active site architecture characteristic for this class of enzymes. Collectively, our results demonstrate that pneumococcal Har is a highly efficient HOSCN reductase, enabling survival against oxidative host immune defenses. In addition, we provide structural insights that may aid the design of Har inhibitors.


Asunto(s)
Proteínas Bacterianas , Infecciones Neumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/enzimología , Animales , Ratones , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/enzimología , Infecciones Neumocócicas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Humanos , Femenino , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Tiocianatos
9.
Biochem Biophys Res Commun ; 712-713: 149932, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38626530

RESUMEN

The DHCR7 enzyme converts 7-DHC into cholesterol. Mutations in DHCR7 can block cholesterol production, leading to abnormal accumulation of 7-DHC and causing Smith-Lemli-Opitz syndrome (SLOS). SLOS is an autosomal recessive disorder characterized by multiple malformations, including microcephaly, intellectual disability, behavior reminiscent of autism, sleep disturbances, and attention-deficit/hyperactivity disorder (ADHD)-like hyperactivity. Although 7-DHC affects neuronal differentiation in ex vivo experiments, the precise mechanism of SLOS remains unclear. We generated Dhcr7 deficient (dhcr7-/-) zebrafish that exhibited key features of SLOS, including microcephaly, decreased neural stem cell pools, and behavioral phenotypes similar to those of ADHD-like hyperactivity. These zebrafish demonstrated compromised myelination, synaptic anomalies, and neurotransmitter imbalances. The axons of the dhcr7-/- zebrafish showed increased lysosomes and attenuated autophagy, suggesting that autophagy-related neuronal homeostasis is disrupted.


Asunto(s)
Axones , Colesterol , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Pez Cebra , Animales , Autofagia , Axones/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Neurogénesis , Neuronas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patología , Pez Cebra/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Aging (Albany NY) ; 16(7): 5967-5986, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38526324

RESUMEN

BACKGROUND: Energy metabolism has a complex intersection with pathogenesis and development of breast cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the proliferation and mitochondrial function of BC. METHODS: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to analyze DHCR7 expression and its biological effects on BC cells. RESULTS: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. CONCLUSIONS: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for BC patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Mitocondrias , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Femenino , Proliferación Celular/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Línea Celular Tumoral , Metabolismo Energético/genética , Pronóstico , Células MCF-7
11.
Artículo en Inglés | MEDLINE | ID: mdl-38407305

RESUMEN

Endothelial cells (ECs) senescence is critical for vascular dysfunction, which leads to age-related disease. DHCR24, a 3ß-hydroxysterol δ 24 reductase with multiple functions other than enzymatic activity, has been involved in age-related disease. However, little is known about the relationship between DHCR24 and vascular ECs senescence. We revealed that DHCR24 expression is chronologically decreased in senescent human umbilical vein endothelial cells (HUVECs) and the aortas of aged mice. ECs senescence in endothelium-specific DHCR24 knockout mice was characterized by increased P16 and senescence-associated secretory phenotype, decreased SIRT1 and cell proliferation, impaired endothelium-dependent relaxation, and elevated blood pressure. In vitro, DHCR24 knockdown in young HUVECs resulted in a similar senescence phenotype. DHCR24 deficiency impaired endothelial migration and tube formation and reduced nitric oxide (NO) levels. DHCR24 suppression also inhibited the caveolin-1/ERK signaling, probably responsible for increased reactive oxygen species production and decreased eNOS/NO. Conversely, DHCR24 overexpression enhanced this signaling pathway, blunted the senescence phenotype, and improved cellular function in senescent cells, effectively blocked by the ERK inhibitor U0126. Moreover, desmosterol accumulation induced by DHCR24 deficiency promoted HUVECs senescence and inhibited caveolin-1/ERK signaling. Our findings demonstrate that DHCR24 is essential in ECs senescence.


Asunto(s)
Caveolina 1 , Senescencia Celular , Células Endoteliales de la Vena Umbilical Humana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Animales , Humanos , Ratones , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Transducción de Señal
12.
FEBS J ; 291(7): 1400-1403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38297957

RESUMEN

Reduction of the 17,18-double bond in the D-ring during chlorophyll biosynthesis is catalyzed by the rare, naturally occurring photoenzyme protochlorophyllide oxidoreductase (POR). A conserved tyrosine residue has been suggested to donate a proton to C18 of the substrate in the past decades. Taylor and colleagues scrutinized the model with a powerful tool that utilized a modified genetic code to introduce fluorinated tyrosine analogues into POR. The presented results show that the suggested catalytically critical tyrosine is unlikely to participate in the reaction chemistry but is required for substrate binding, and instead, a cysteine residue preceding the lid helix is proposed to have the role of proton donor.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Protoclorofilida , Halogenación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Protoclorofilida/química , Protones , Clorofila/biosíntesis , Clorofila/metabolismo
13.
J Exp Bot ; 75(9): 2754-2771, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38224521

RESUMEN

l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.


Asunto(s)
Ácido Ascórbico , Frutas , Myrtaceae , Proteínas de Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Myrtaceae/metabolismo , Myrtaceae/genética , Galactosa Deshidrogenasas/metabolismo , Galactosa Deshidrogenasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética
14.
Hum Mol Genet ; 33(3): 270-283, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930192

RESUMEN

While genome-wide association studies (GWAS) and positive selection scans identify genomic loci driving human phenotypic diversity, functional validation is required to discover the variant(s) responsible. We dissected the IVD gene locus-which encodes the isovaleryl-CoA dehydrogenase enzyme-implicated by selection statistics, multiple GWAS, and clinical genetics as important to function and fitness. We combined luciferase assays, CRISPR/Cas9 genome-editing, massively parallel reporter assays (MPRA), and a deletion tiling MPRA strategy across regulatory loci. We identified three regulatory variants, including an indel, that may underpin GWAS signals for pulmonary fibrosis and testosterone, and that are linked on a positively selected haplotype in the Japanese population. These regulatory variants exhibit synergistic and opposing effects on IVD expression experimentally. Alleles at these variants lie on a haplotype tagged by the variant most strongly associated with IVD expression and metabolites, but with no functional evidence itself. This work demonstrates how comprehensive functional investigation and multiple technologies are needed to discover the true genetic drivers of phenotypic diversity.


Asunto(s)
Isovaleril-CoA Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Humanos , Isovaleril-CoA Deshidrogenasa/genética , Oxidorreductasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Estudio de Asociación del Genoma Completo , Expresión Génica
16.
J Virol ; 97(12): e0151323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032198

RESUMEN

IMPORTANCE: The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Proteínas de la Membrana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hidroxiesteroides , Proteínas de la Membrana/metabolismo , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ubiquitinación , Línea Celular
17.
Elife ; 122023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737220

RESUMEN

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.


Malaria affects around 240 million people around the world every year. The microscopic parasite responsible for the disease are carried by certain mosquitoes and gets transmitted to humans through bites. These parasites are increasingly acquiring genetic mutations that make anti-malaria medication less effective, creating an urgent need for alternative treatment approaches. Several new malaria drugs being explored in preclinical research work by binding to an enzyme known as DHODH and preventing it from performing its usual role in the parasite. Previous work found that, in some cases, malaria parasites that evolved resistance to one type of DHODH inhibitor (by acquiring mutations in their DHODH enzyme) then became more vulnerable to another kind. It may be possible to leverage this 'collateral sensitivity' by designing treatments which combine two DHODH inhibitors and therefore make it harder for the parasites to evolve resistance. To investigate this possibility, Mandt et al. first tested several DHODH inhibitors to find the one that was most potent against drug-resistant parasites. In subsequent experiments, they combined TCMDC-125334, the best candidate that emerged from these tests, with a DHODH inhibitor that works well against vulnerable parasites. However, the parasites still rapidly evolved resistance. Further work identified a new DHODH mutation that allowed the parasites to evade both drugs simultaneously. Together, these findings suggest that the DHODH enzyme may not be the best target for new malaria drugs because many it can acquire many possible mutations that confer resistance. Such results may inform other studies that aim to harness collateral sensitivity to fight against a range of harmful agents.


Asunto(s)
Antimaláricos , Malaria Falciparum , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Parásitos , Animales , Humanos , Dihidroorotato Deshidrogenasa , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Variaciones en el Número de Copia de ADN , Sensibilidad Colateral al uso de Fármacos , Parásitos/metabolismo
18.
PLoS One ; 18(8): e0289441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37531380

RESUMEN

Olorofim is a new antifungal in clinical development which has a novel mechanism of action against dihydroorotate dehydrogenase (DHODH). DHODH form a ubiquitous family of enzymes in the de novo pyrimidine biosynthetic pathway and are split into class 1A, class 1B and class 2. Olorofim specifically targets the fungal class 2 DHODH present in a range of pathogenic moulds. The nature and number of DHODH present in many fungal species have not been addressed for large clades of this kingdom. Mucorales species do not respond to olorofim; previous work suggests they have only class 1A DHODH and so lack the class 2 target that olorofim inhibits. The dematiaceous moulds have mixed susceptibility to olorofim, yet previous analyses imply that they have class 2 DHODH. As this is at odds with their intermediate susceptibility to olorofim, we hypothesised that these pathogens may maintain a second class of DHODH, facilitating pyrimidine biosynthesis in the presence of olorofim. The aim of this study was to investigate the DHODH repertoire of clinically relevant species of Mucorales and dematiaceous moulds to further characterise these pathogens and understand variations in olorofim susceptibility. Using bioinformatic analysis, S. cerevisiae complementation and biochemical assays of recombinant protein, we provide the first evidence that two representative members of the Mucorales have only class 1A DHODH, substantiating a lack of olorofim susceptibility. In contrast, bioinformatic analyses initially suggested that seven dematiaceous species appeared to harbour both class 1A-like and class 2-like DHODH genes. However, further experimental investigation of the putative class 1A-like genes through yeast complementation and biochemical assays characterised them as dihydrouracil oxidases rather than DHODHs. These data demonstrate variation in dematiaceous mould olorofim susceptibility is not due to a secondary DHODH and builds on the growing picture of fungal dihydrouracil oxidases as an example of horizontal gene transfer.


Asunto(s)
Mucorales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Dihidroorotato Deshidrogenasa , Saccharomyces cerevisiae/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/farmacología
19.
Blood Adv ; 7(21): 6685-6701, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37648673

RESUMEN

Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animales , Ratones , Dihidroorotato Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Linfocitos T/metabolismo , Nucleótidos/uso terapéutico
20.
J Agric Food Chem ; 71(30): 11654-11666, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467369

RESUMEN

Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 µM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.


Asunto(s)
Herbicidas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Protoclorofilida/metabolismo , Luz , Herbicidas/farmacología , NADP/metabolismo , Plantas/metabolismo , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...