RESUMEN
This study explores a non-kinase effect of extracellular regulated kinases 1/2 (ERK1/2) on the interaction between deoxyhypusine synthase (DHPS) and its substrate, eukaryotic translation initiation factor 5A (eIF5A). We report that Raf/MEK/ERK activation decreases the DHPS-ERK1/2 interaction while increasing DHPS-eIF5A association in cells. We determined the cryoelectron microscopy (cryo-EM) structure of the DHPS-ERK2 complex at 3.5 Å to show that ERK2 hinders substrate entrance to the DHPS active site, subsequently inhibiting deoxyhypusination in vitro. In cells, impairing the ERK2 activation loop, but not the catalytic site, prolongs the DHPS-ERK2 interaction irrespective of Raf/MEK signaling. The ERK2 Ser-Pro-Ser motif, but not the common docking or F-site recognition sites, also regulates this complex. These data suggest that ERK1/2 dynamically regulate the DHPS-eIF5A interaction in response to Raf/MEK activity, regardless of its kinase function. In contrast, ERK1/2 kinase activity is necessary to regulate the expression of DHPS and eIF5A. These findings highlight an ERK1/2-mediated dual kinase-dependent and -independent regulation of deoxyhypusination.
Asunto(s)
Factor 5A Eucariótico de Iniciación de Traducción , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Factores de Iniciación de Péptidos/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Unión Proteica , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Células HEK293 , Microscopía por CrioelectrónRESUMEN
The most common mutation in southern Chinese individuals with late-onset multiple acyl-coenzyme A dehydrogenase deficiency (MADD; a fatty acid metabolism disorder) is c.250G > A (p.Ala84Thr) in the electron transfer flavoprotein dehydrogenase gene (ETFDH). Various phenotypes, including episodic weakness or rhabdomyolysis, exercise intolerance, and peripheral neuropathy, have been reported in both muscular and neuronal contexts. Our cellular models of MADD exhibit neurite growth defects and excessive apoptosis. Given that axonal degeneration and neuronal apoptosis may be regulated by B-cell lymphoma (BCL)-2 family proteins and mitochondrial outer membrane permeabilization through the activation of proapoptotic molecules, we measured the expression levels of proapoptotic BCL-2 family proteins (e.g., BCL-2-associated X protein and p53-upregulated modulator of apoptosis), cytochrome c, caspase-3, and caspase-9 in NSC-34 cells carrying the most common ETFDH mutation. The levels of these proteins were higher in the mutant cells than in the wide-type cells. Subsequent treatment of the mutant cells with coenzyme Q10 downregulated activated protein expression and mitigated neurite growth defects. These results suggest that the activation of the BCL-2/mitochondrial outer membrane permeabilization/apoptosis pathway promotes apoptosis in cellular models of MADD and that coenzyme Q10 can reverse this effect. Our findings aid the development of novel therapeutic strategies for reducing axonal degeneration and neuronal apoptosis in MADD.
Asunto(s)
Apoptosis , Flavoproteínas Transportadoras de Electrones , Proteínas Hierro-Azufre , Mutación , Proyección Neuronal , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Apoptosis/genética , Línea Celular , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal , Ubiquinona/análogos & derivados , Ubiquinona/farmacologíaRESUMEN
DHPS deficiency syndrome is an ultra-rare neurodevelopmental disorder (NDD) which results from biallelic mutations in the gene encoding the enzyme deoxyhypusine synthase (DHPS). DHPS is essential to synthesize hypusine, a rare amino acid formed by post-translational modification of a conserved lysine in eukaryotic initiation factor 5 A (eIF5A). DHPS deficiency syndrome causes epilepsy, cognitive and motor impairments, and mild facial dysmorphology. In mice, a brain-specific genetic deletion of Dhps at birth impairs eIF5AHYP-dependent mRNA translation. This alters expression of proteins required for neuronal development and function, and phenotypically models features of human DHPS deficiency. We studied the role of DHPS in early brain development using a zebrafish loss-of-function model generated by knockdown of dhps expression with an antisense morpholino oligomer (MO) targeting the exon 2/intron 2 (E2I2) splice site of the dhps pre-mRNA. dhps knockdown embryos exhibited dose-dependent developmental delay and dysmorphology, including microcephaly, axis truncation, and body curvature. In dhps knockdown larvae, electrophysiological analysis showed increased epileptiform activity, and confocal microscopy analysis revealed reduced arborisation of GABAergic neurons. Our findings confirm that hypusination of eIF5A by DHPS is needed for early brain development, and zebrafish with an antisense knockdown of dhps model features of DHPS deficiency syndrome.
Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Interneuronas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Pez Cebra , Animales , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Epilepsia/genética , Epilepsia/patología , Epilepsia/fisiopatología , Interneuronas/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Técnicas de Silenciamiento del Gen , Fenotipo , Encéfalo/patología , Encéfalo/metabolismoRESUMEN
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid and amino acid oxidation with an incidence of 1 in 200,000 live births. MADD has three clinical phenotypes: severe neonatal-onset with or without congenital anomalies, and a milder late-onset form. Clinical diagnosis is supported by urinary organic acid and blood acylcarnitine analysis using tandem mass spectrometry in newborn screening programs. MADD is an autosomal recessive trait caused by biallelic mutations in the ETFA, ETFB, and ETFDH genes encoding the alpha and beta subunits of the electron transfer flavoprotein (ETF) and ETF-coenzyme Q oxidoreductase enzymes. Despite significant advancements in sequencing techniques, many patients remain undiagnosed, impacting their access to clinical care and genetic counseling. In this report, we achieved a definitive molecular diagnosis in a newborn by combining whole-genome sequencing (WGS) with RNA sequencing (RNA-seq). Whole-exome sequencing and next-generation gene panels fail to detect variants, possibly affecting splicing, in deep intronic regions. Here, we report a unique deep intronic mutation in intron 1 of the ETFDH gene, c.35-959A>G, in a patient with early-onset lethal MADD, resulting in pseudo-exon inclusion. The identified variant is the third mutation reported in this region, highlighting ETFDH intron 1 vulnerability. It cannot be excluded that these intronic sequence features may be more common in other genes than is currently believed. This study highlights the importance of incorporating RNA analysis into genome-wide testing to reveal the functional consequences of intronic mutations.
Asunto(s)
Flavoproteínas Transportadoras de Electrones , Intrones , Proteínas Hierro-Azufre , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Humanos , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Flavoproteínas Transportadoras de Electrones/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Proteínas Hierro-Azufre/genética , Intrones/genética , Recién Nacido , Mutación , Masculino , Femenino , Secuenciación Completa del GenomaRESUMEN
Cerebrospinal fluid (CSF) is a fluid critical to brain development, function, and health. It is actively secreted by the choroid plexus, and it emanates from brain tissue due to osmolar exchange and the constant contribution of brain metabolism and astroglial fluid output to interstitial fluid into the ventricles of the brain. CSF acts as a growth medium for the developing cerebral cortex and a source of nutrients and signalling throughout life. Together with perivascular glymphatic and interstitial fluid movement through the brain and into CSF, it also acts to remove toxins and maintain metabolic balance. In this study, we focused on cerebral folate status, measuring CSF concentrations of folate receptor alpha (FOLR1); aldehyde dehydrogenase 1L1, also known as 10-formyl tetrahydrofolate dehydrogenase (ALDH1L1 and FDH); and total folate. These demonstrate the transport of folate from blood across the blood-CSF barrier and into CSF (FOLR1 + folate), and the transport of folate through the primary FDH pathway from CSF into brain FDH + ve astrocytes. Based on our hypothesis that CSF flow, drainage issues, or osmotic forces, resulting in fluid accumulation, would have an associated cerebral folate imbalance, we investigated folate status in CSF from neurological conditions that have a severity association with enlarged ventricles. We found that all the conditions we examined had a folate imbalance, but these folate imbalances were not all the same. Given that folate is essential for key cellular processes, including DNA/RNA synthesis, methylation, nitric oxide, and neurotransmitter synthesis, we conclude that ageing or some form of trauma in life can lead to CSF accumulation and ventricular enlargement and result in a specific folate imbalance/deficiency associated with the specific neurological condition. We believe that addressing cerebral folate imbalance may therefore alleviate many of the underlying deficits and symptoms in these conditions.
Asunto(s)
Ácido Fólico , Ácido Fólico/líquido cefalorraquídeo , Ácido Fólico/metabolismo , Humanos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Neocórtex/metabolismo , Ventrículos Cerebrales/metabolismo , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/genética , Anciano , Líquido Cefalorraquídeo/metabolismo , Astrocitos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NHRESUMEN
Patients with high ALDH1A3-expressing glioblastoma (ALDH1A3hi GBM) show limited benefit from postoperative chemoradiotherapy. Understanding the mechanisms underlying such resistance in these patients is crucial for the development of new treatments. Here, we show that the interaction between ALDH1A3 and PKM2 enhances the latter's tetramerization and promotes lactate accumulation in glioblastoma stem cells (GSCs). By scanning the lactylated proteome in lactate-accumulating GSCs, we show that XRCC1 undergoes lactylation at lysine 247 (K247). Lactylated XRCC1 shows a stronger affinity for importin α, allowing for greater nuclear transposition of XRCC1 and enhanced DNA repair. Through high-throughput screening of a small-molecule library, we show that D34-919 potently disrupts the ALDH1A3-PKM2 interaction, preventing the ALDH1A3-mediated enhancement of PKM2 tetramerization. In vitro and in vivo treatment with D34-919 enhanced chemoradiotherapy-induced apoptosis of GBM cells. Together, our findings show that ALDH1A3-mediated PKM2 tetramerization is a potential therapeutic target to improve the response to chemoradiotherapy in ALDH1A3hi GBM.
Asunto(s)
Glioblastoma , Proteínas de Unión a Hormona Tiroide , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Animales , Línea Celular Tumoral , Ratones , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteínas de la Membrana/metabolismo , Proteínas Portadoras/metabolismo , Hormonas Tiroideas/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Aldehído Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NHRESUMEN
We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.
Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Ratas , Oxidación-Reducción/efectos de los fármacos , Desaminación , Amina Oxidasa (conteniendo Cobre)/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliamino Oxidasa , Putrescina/metabolismo , Putrescina/farmacología , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/química , Sistema Libre de Células , Hígado/metabolismo , Hígado/efectos de los fármacos , Poliaminas/metabolismo , Espermina/metabolismo , Espermina/farmacología , Espermidina/metabolismo , Masculino , Nitrógeno/metabolismo , Ratas WistarRESUMEN
The unique amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is exclusively formed on the translational regulator eukaryotic initiation factor 5A (eIF5A) via a process coined hypusination. Hypusination is mediated by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH), and hypusinated eIF5A (eIF5AHyp) promotes translation elongation by alleviating ribosome pauses at amino acid motifs that cause structural constraints, and it also facilitates translation initiation and termination. Accordingly, eIF5AHyp has diverse biological functions that rely on translational control of its targets. Homozygous deletion of Eif5a, Dhps, or Dohh in mice leads to embryonic lethality, and heterozygous germline variants in EIF5A and biallelic variants in DHPS and DOHH are associated with rare inherited neurodevelopmental disorders, underscoring the importance of the hypusine circuit for embryonic and neuronal development. Given the pleiotropic effects of eIF5AHyp, a detailed understanding of the cell context-specific intrinsic roles of eIF5AHyp and of the chronic versus acute effects of eIF5AHyp inhibition is necessary to develop future strategies for eIF5AHyp-targeted therapy to treat various human health problems. Here, we review the most recent studies documenting the intrinsic roles of eIF5AHyp in different tissues/cell types under normal or pathophysiological conditions and discuss these unique aspects of eIF5AHyp-dependent translational control.
Asunto(s)
Factor 5A Eucariótico de Iniciación de Traducción , Lisina , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Lisina/metabolismo , Lisina/análogos & derivados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Biosíntesis de Proteínas , RatonesRESUMEN
BACKGROUND: Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS: Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS: Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION: Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.
Asunto(s)
Flavoproteínas Transportadoras de Electrones , Heterocigoto , Proteínas Hierro-Azufre , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Humanos , Femenino , Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Adulto Joven , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/patología , Encefalopatías Metabólicas/diagnóstico , Mutación , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/patologíaRESUMEN
OBJECTIVE: To explore the clinical characteristics and genetic variants in three children with late-onset Multiple acyl-Coenzyme A dehydrogenase deficiency (MADD type â ¢). METHODS: Clinical data of three children diagnosed with late-onset MADD at the Children's Hospital Affiliated to Zhengzhou University between March 2020 and March 2022 were retrospectively analyzed. All children were subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. All children had received improved metabolic therapy and followed up for 1 ~ 3 years. RESULTS: The children had included 2 males and 1 female, and aged from 2 months to 11 years and 7 months. Child 1 had intermittent vomiting, child 2 had weakness in lower limbs, while child 3 had no symptom except abnormal neonatal screening. Tandem mass spectrometry of the three children showed elevation of multiple acylcarnitines with short, medium and long chains. Children 1 and 2 showed increased glutaric acid and multiple dicarboxylic acids by urine Gas chromatography-mass spectrometry (GC-MS) analysis. All children were found to harbor compound heterozygous variants of the ETFDH gene, including a paternal c.1211T>C (p.M404T) and a maternal c.488-22T>G variant in child 1, a paternal c.1717C>T (p.Q573X) and a maternal c.250G>A (p.A84T) variant in child 2, and a paternal c.1285+1G>A and maternal c.629A>G (p.S210N) variant in child 3. As for the treatment, high-dose vitamin B2, levocarnitine and coenzyme Q10 were given to improve the metabolism, in addition with a low fat, hypoproteinic and high carbohydrate diet. All children showed a stable condition with normal growth and development during the follow-up. CONCLUSION: The compound heterozygous variants of the ETFDH gene probably underlay the muscle weakness, remittent vomiting, elevated short, medium, and long chain acylcarnitine, as well as elevated glutaric acid and various dicarboxylic acids in the three children with type â ¢ MADD.
Asunto(s)
Flavoproteínas Transportadoras de Electrones , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Humanos , Masculino , Femenino , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Lactante , Niño , Preescolar , Flavoproteínas Transportadoras de Electrones/genética , Mutación , Estudios Retrospectivos , Carnitina/análogos & derivados , Carnitina/sangre , Proteínas Hierro-Azufre/genética , Secuenciación del Exoma , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Variación GenéticaRESUMEN
Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.
Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliaminas , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Poliaminas/metabolismo , Línea Celular Tumoral , Espermina/metabolismo , Espermina/análogos & derivados , Acetilación , Células A549RESUMEN
Discovering new treatments for melanoma will benefit human health. The mechanism by which deoxyhypusine synthase (DHPS) promotes melanoma development remains elucidated. Multi-omics studies have revealed that DHPS regulates m6A modification and maintains mRNA stability in melanoma cells. Mechanistically, DHPS activates the hypusination of eukaryotic translation initiation factor 5A (eIF5A) to assist METTL3 localizing on its mRNA for m6A modification, then promoting METTL3 expression. Structure-based design, synthesis, and activity screening yielded the hit compound GL-1 as a DHPS inhibitor. Notably, GL-1 directly inhibits DHPS binding to eIF5A, whereas GC-7 cannot. Based on the clarification of the mode of action of GL-1 on DHPS, it is found that GL-1 can promote the accumulation of intracellular Cu2+ to induce apoptosis, and antibody microarray analysis shows that GL-1 inhibits the expression of several cytokines. GL-1 shows promising antitumor activity with good bioavailability in a xenograft tumor model. These findings clarify the molecular mechanisms by which DHPS regulates melanoma proliferation and demonstrate the potential of GL-1 for clinical melanoma therapy.
Asunto(s)
Proliferación Celular , Melanoma , Metiltransferasas , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/genética , Humanos , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/antagonistas & inhibidores , Metilación/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Factor 5A Eucariótico de Iniciación de Traducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NHRESUMEN
BACKGROUND: Spermine oxidase (SMOX), an inducible enzyme involved in the catabolic pathway of polyamine, was found to be upregulated in hepatocellular carcinoma and might be an important oncogene of it in our previous studies. This study attempted to further investigate its relationship with liver inflammation and fibrosis both in vitro and in vivo. METHODS: The effect of SMOX inhibition on LPS-induced inflammatory response in mouse liver cell line AML12 was validated by using small interfering RNA or SMOX inhibitor MDL72527. Western blotting and immunofluorescence were utilized to verify whether LPS could induce ß-catenin to transfer into the nucleus and whether it could be reversed by interfering with the expression of SMOX or using SMOX inhibitor. Then, the SMOX inhibitor MDL72527 and SMOX knockout mice were used to verify the hypothesis above in vivo. RESULTS: The expression of SMOX could be induced by LPS in AML12 cells. The inhibition of SMOX could inhibit LPS-induced inflammatory response in AML12 cells. LPS could induce ß-catenin transfer from cytoplasm to nucleus, while SMOX downregulation or inhibition could partially reverse this process. In vivo intervention with SMOX inhibitor MDL72527 or SMOX knockout mice could significantly improve the damage of liver function, reduce intrahepatic inflammation, inhibit the nuclear transfer of ß-catenin in liver tissue, and alleviate carbon tetrachloride-induced liver fibrosis in mice. CONCLUSION: SMOX can promote the inflammatory response and fibrosis of hepatocytes. It provides a new therapeutic strategy for hepatitis and liver fibrosis, inhibiting early liver cancer.
Asunto(s)
Cirrosis Hepática , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Poliamino Oxidasa , beta Catenina , Animales , Masculino , Ratones , beta Catenina/metabolismo , Hepatitis/etiología , Hepatitis/metabolismo , Lipopolisacáridos , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Putrescina/análogos & derivados , Transducción de SeñalRESUMEN
Trichomonas vaginalis, the causative agent of trichomoniasis, is a prevalent anaerobic protozoan parasite responsible for the most common nonviral sexually transmitted infection globally. While metronidazole and its derivatives are approved drugs for this infection, rising resistance necessitates the exploration of new antiparasitic therapies. Protein posttranslational modifications (PTMs) play crucial roles in cellular processes, and among them, hypusination, involving eukaryotic translation factor 5A (eIF5A), has profound implications. Despite extensive studies in various organisms, the role of hypusination in T. vaginalis and its potential impact on parasite biology and pathogenicity remain poorly understood. This study aims to unravel the structural basis of the hypusination pathway in T. vaginalis using X-ray crystallography and cryo-electron microscopy. The results reveal high structural homology between T. vaginalis and human orthologs, providing insights into the molecular architecture of eIF5A and deoxyhypusine synthase (DHS) and their interaction. Contrary to previous suggestions of bifunctionality, our analyses indicate that the putative hydroxylation site in tvDHS is nonfunctional, and biochemical assays demonstrate exclusive deoxyhypusination capability. These findings challenge the notion of tvDHS functioning as both deoxyhypusine synthase and hydroxylase. The study enhances understanding of the hypusination pathway in T. vaginalis, shedding light on its functional relevance and potential as a drug target, and contributing to the development of novel therapeutic strategies against trichomoniasis.
Asunto(s)
Factor 5A Eucariótico de Iniciación de Traducción , Factores de Iniciación de Péptidos , Proteínas Protozoarias , Proteínas de Unión al ARN , Trichomonas vaginalis , Trichomonas vaginalis/enzimología , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Humanos , Cristalografía por Rayos X , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Microscopía por Crioelectrón , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Lisina/metabolismo , Lisina/química , Lisina/análogos & derivados , Procesamiento Proteico-Postraduccional , Secuencia de AminoácidosRESUMEN
The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.
Asunto(s)
Gosipol , Humanos , Gosipol/química , Gosipol/farmacología , Gosipol/metabolismo , NADP/metabolismo , NADP/química , Modelos Moleculares , Microscopía por Crioelectrón , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/química , Unión Proteica , Sitios de Unión , Sitio Alostérico , Conformación Proteica , Línea Celular Tumoral , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NHRESUMEN
Native amine dehydrogenases offer sustainable access to chiral amines, so the search for scaffolds capable of converting more diverse carbonyl compounds is required to reach the full potential of this alternative to conventional synthetic reductive aminations. Here we report a multidisciplinary strategy combining bioinformatics, chemoinformatics and biocatalysis to extensively screen billions of sequences in silico and to efficiently find native amine dehydrogenases features using computational approaches. In this way, we achieve a comprehensive overview of the initial native amine dehydrogenase family, extending it from 2,011 to 17,959 sequences, and identify native amine dehydrogenases with non-reported substrate spectra, including hindered carbonyls and ethyl ketones, and accepting methylamine and cyclopropylamine as amine donor. We also present preliminary model-based structural information to inform the design of potential (R)-selective amine dehydrogenases, as native amine dehydrogenases are mostly (S)-selective. This integrated strategy paves the way for expanding the resource of other enzyme families and in highlighting enzymes with original features.
Asunto(s)
Aminas , Aminas/metabolismo , Aminas/química , Especificidad por Sustrato , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Biología Computacional/métodos , Biocatálisis , Biodiversidad , Modelos MolecularesRESUMEN
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Asunto(s)
Flavoproteínas Transportadoras de Electrones , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Humanos , Femenino , Masculino , Niño , Adulto , Preescolar , Flavoproteínas Transportadoras de Electrones/genética , Adolescente , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Queensland , Riboflavina/uso terapéutico , Adulto Joven , Lactante , Proteínas Hierro-Azufre/genética , Estudios de Cohortes , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Recién Nacido , Mutación , Secuenciación Completa del GenomaRESUMEN
Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.
Asunto(s)
Beauveria , Flavoproteínas Transportadoras de Electrones , Beauveria/patogenicidad , Beauveria/genética , Beauveria/enzimología , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NHRESUMEN
Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.
Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Poliamino Oxidasa , Solanum lycopersicum , Xilema , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/fisiología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas Modificadas Genéticamente , Desarrollo de la Planta/genética , Poliaminas/metabolismo , Espermina/análogos & derivadosRESUMEN
Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.