Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.445
Filtrar
1.
J Neurosci ; 43(6): 902-917, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36604171

RESUMEN

Efferent modulation of vestibular afferent excitability is linked to muscarinic signaling cascades that close low-voltage-gated potassium channels (i.e., KCNQ). Here, we show that muscarinic signaling cascades also depolarize the activation range of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We compared the voltage activation range and kinetics of HCN channels and induced firing patterns before and after administering the muscarinic acetylcholine receptor (mAChR) agonist oxotremorine-M (Oxo-M) in dissociated vestibular ganglion neurons (VGNs) from rats of either sex using perforated whole-cell patch-clamp methods. Oxo-M depolarized HCN channels' half-activation voltage (V 1/2) and sped up the rate of activation near resting potential twofold. HCN channels in large-diameter and/or transient firing VGN (putative cell bodies of irregular firing neuron from central epithelial zones) had relatively depolarized V 1/2 in control solution and were less sensitive to mAChR activation than those found in small-diameter VGN with sustained firing patterns (putatively belonging to regular firing afferents). The impact of mAChR on HCN channels is not a direct consequence of closing KCNQ channels since pretreating the cells with Linopirdine, a KCNQ channel blocker, did not prevent HCN channel depolarization by Oxo-M. Efferent signaling promoted ion channel configurations that were favorable to highly regular spiking in some VGN, but not others. This is consistent with previous observations that low-voltage gated potassium currents in VGN are conducted by mAChR agonist-sensitive and -insensitive channels. Connecting efferent signaling to HCN channels is significant because of the channel's impact on spike-timing regularity and nonchemical transmission between Type I hair cells and vestibular afferents.SIGNIFICANCE STATEMENT Vestibular afferents express a diverse complement of ion channels. In vitro studies identified low-voltage activated potassium channels and hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as crucial for shaping the timing and sensitivity of afferent responses. Moreover, a network of acetylcholine-releasing efferent neurons controls afferent excitability by closing a subgroup of low-voltage activated potassium channels on the afferent neuron. This work shows that these efferent signaling cascades also enhance the activation of HCN channels by depolarizing their voltage activation range. The size of this effect varies depending on the endogenous properties of the HCN channel and on cell type (as determined by discharge patterns and cell size). Simultaneously controlling two ion-channel groups gives the vestibular efferent system exquisite control over afferent neuron activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas , Receptores Muscarínicos , Nervio Vestibular , Animales , Ratas , Colinérgicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Agonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Nucleótidos/metabolismo , Canales de Potasio , Receptores Muscarínicos/metabolismo , Oxotremorina/farmacología , Nervio Vestibular/efectos de los fármacos , Nervio Vestibular/metabolismo , Nervio Vestibular/fisiología
2.
Cell Mol Neurobiol ; 43(5): 1941-1956, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36056992

RESUMEN

Alzheimer disease (AD) is a multifactorial and age-dependent neurodegenerative disorder, whose pathogenesis, classically associated with the formation of senile plaques and neurofibrillary tangles, is also dependent on oxidative stress and neuroinflammation chronicization. Currently, the standard symptomatic therapy, based on acetylcholinesterase inhibitors, showed a limited therapeutic potential, whereas disease-modifying treatment strategies are still under extensive research. Previous studies have demonstrated that Oxotremorine-M (Oxo), a non-selective muscarinic acetylcholine receptors agonist, exerts neurotrophic functions in primary neurons, and modulates oxidative stress and neuroinflammation phenomena in rat brain. In the light of these findings, in this study, we aimed to investigate the neuroprotective effects of Oxo treatment in an in vitro model of AD, represented by differentiated SH-SY5Y neuroblastoma cells exposed to Aß1-42 peptide. The results demonstrated that Oxo treatment enhances cell survival, increases neurite length, and counteracts DNA fragmentation induced by Aß1-42 peptide. The same treatment was also able to block oxidative stress and mitochondria morphological/functional impairment associated with Aß1-42 cell exposure. Overall, these results suggest that Oxo, by modulating cholinergic neurotransmission, survival, oxidative stress response, and mitochondria functionality, may represent a novel multi-target drug able to achieve a therapeutic synergy in AD. Illustration of the main pathological hallmarks and mechanisms underlying AD pathogenesis, including neurodegeneration and oxidative stress, efficiently counteracted by treatment with Oxo, which may represent a promising therapeutic molecule. Created with BioRender.com under academic license.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Ratas , Animales , Humanos , Antioxidantes/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Oxotremorina/farmacología , Enfermedades Neuroinflamatorias , Acetilcolinesterasa , Péptidos beta-Amiloides , Neuroblastoma/patología , Receptores Muscarínicos
3.
J Neurophysiol ; 127(4): 1098-1116, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294308

RESUMEN

Mechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR)-modulated rhythm-generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations, using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signaling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated bilaterally asymmetric activity in anterior thoracic regions and promoted bursting in posterior abdominal regions. Application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions and blocked the effects of oxotremorine. Oxotremorine triggered fictive forward crawling in preparations without brain lobes. Oxotremorine also potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but it did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. Overall, these results suggest that mAChR signaling plays a role in enabling rhythm generation at multiple sites in the larval CNS. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm-generating networks in an emerging genetically tractable locomotor system.NEW & NOTEWORTHY Using a combination of pharmacology, electrophysiology, and Ca2+ imaging, we find that signaling through mACh receptors plays a critical role in rhythmogenesis in different regions of the Drosophila larval CNS. mAChR-dependent rhythm generators reside in distal regions of the larval CNS and provide functional substrates for central pattern-generating networks (CPGs) underlying headsweep behavior and forward locomotion. This provides new insights into locomotor CPG operation in soft-bodied animals that navigate over terrain.


Asunto(s)
Proteínas de Drosophila , Drosophila , Locomoción , Receptores Muscarínicos , Acetilcolina/farmacología , Animales , Proteínas de Drosophila/fisiología , Larva/fisiología , Locomoción/fisiología , Oxotremorina/farmacología , Receptores Muscarínicos/fisiología , Escopolamina/farmacología
4.
Toxicol Appl Pharmacol ; 434: 115821, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896435

RESUMEN

We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 µM) and/or Diclofenac (50-140 µM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 µM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 µM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 µM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 µM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.


Asunto(s)
Carbamatos/farmacología , Dolor Crónico/tratamiento farmacológico , Canales de Potasio KCNQ/metabolismo , Síndrome del Golfo Pérsico/tratamiento farmacológico , Fenilendiaminas/farmacología , Potenciales de Acción/efectos de los fármacos , Analgésicos , Animales , Antiinflamatorios no Esteroideos/farmacología , Diclofenaco/farmacología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Canales de Potasio KCNQ/genética , Masculino , Neuronas/efectos de los fármacos , Oxotremorina/farmacología , Ratas , Ratas Sprague-Dawley
5.
Neurobiol Learn Mem ; 185: 107534, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619364

RESUMEN

The ability to make predictions based on stored information is a general coding strategy. A prediction error (PE) is a mismatch between expected and current events. Our memories, like ourselves, are subject to change. Thus, an acquired memory can become active and update its content or strength by a labilization-reconsolidation process. Within the reconsolidation framework, PE drives the updating of consolidated memories. In the past our lab has made key progresses showing that a blockade in the central cholinergic system during reconsolidation can cause memory impairment, while reinforcement of cholinergic activity enhances it. In the present work we determined that PE is a necessary condition for memory to reconsolidate in an inhibitory avoidance task using both male and female mice. Depending on the intensity of the unconditioned stimulus (US) used during training, a negative (higher US intensity) or positive (lower US intensity/no US) PE on a retrieval session modified the behavioral response on a subsequent testing session. Furthermore, we demonstrated that the cholinergic system modulates memory reconsolidation only when PE is detected. In this scenario administration of oxotremorine, scopolamine or nicotine after memory reactivation either enhanced or impaired memory reconsolidation in a sex-specific manner.


Asunto(s)
Neuronas Colinérgicas/fisiología , Consolidación de la Memoria , Animales , Reacción de Prevención/fisiología , Neuronas Colinérgicas/efectos de los fármacos , Condicionamiento Clásico/fisiología , Femenino , Masculino , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Ratones , Nicotina/farmacología , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Receptores Colinérgicos/efectos de los fármacos , Receptores Colinérgicos/fisiología , Escopolamina/farmacología
6.
Insect Biochem Mol Biol ; 139: 103657, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34582990

RESUMEN

Muscarinic acetylcholine receptors (mAChRs) play important roles in the insect nervous system. These receptors are G protein-coupled receptors, which are potential targets for insecticide development. While the investigation of pharmacological properties of insect mAChRs is growing, the physiological roles of the receptor subtype remain largely indeterminate. Here, we identified three mAChR genes in an important agricultural pest Bactrocera dorsalis. Phylogenetic analysis defined these genes as mAChR-A, -B, and -C. Transcripts of the three mAChRs are most prevalent in 1-d-old larvae and are more abundant in the brain than other body parts in adults. Functional assay of Bdor-mAChR-B transiently expressed in Chinese hamster ovary cells showed that it was activated by acetylcholine (EC50, 205.11 nM) and the mAChR agonist oxotremorine M (EC50, 2.39 µM) in a dose-dependent manner. Using the CRISPR/Cas9 technique, we successfully obtained a Bdor-mAChR-B knockout strain based on wild-type (WT) strain. When compared with WT, the hatching and eclosion rate of Bdor-mAChR-B mutants are significantly lower. Moreover, the crawl speed of Bdor-mAChR-B knockout larvae was lower than that of WT, while climbing performance was enhanced in the mutant adults. Adults with loss of function of Bdor-mAChR-B showed declined copulation rates and egg numbers (by mated females). Our results indicate that Bdor-mAChR-B plays a key role in the development, locomotion, and mating behavior of B. dorsalis.


Asunto(s)
Acetilcolina/farmacología , Proteínas de Insectos/genética , Agonistas Muscarínicos/farmacología , Oxotremorina/análogos & derivados , Receptores Muscarínicos/genética , Tephritidae/genética , Animales , Secuencia de Bases , Proteínas de Insectos/metabolismo , Masculino , Oxotremorina/farmacología , Filogenia , Receptores Muscarínicos/metabolismo , Alineación de Secuencia , Tephritidae/metabolismo
7.
Neurobiol Learn Mem ; 177: 107360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307182

RESUMEN

Over the years, experimental and clinical evidence has given support to the idea that acetylcholine (Ach) plays an essential role in mnemonic phenomena. On the other hand, the Hippocampus is already known to have a key role in learning and memory. What is yet unclear is how the Ach receptors may contribute to this brain region role during memory retrieval. The Ach receptors are divided into two broad subtypes: the ionotropic nicotinic acetylcholine receptors and the metabotropic muscarinic acetylcholine receptors. Back in 2010, we demonstrated for the first time the critical role of hippocampal α7 nicotinic acetylcholine receptors in memory reconsolidation process of an inhibitory avoidance response in mice. In the present work, we further investigate the possible implication of hippocampal muscarinic Ach receptors (mAchRs) in this process using a pharmacological approach. By specifically administrating agonists and antagonists of the different mAchRs subtypes in the hippocampus, we found that M1 and M2 but not M3 subtype may be involved in memory reconsolidation processes in mice.


Asunto(s)
Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Receptores Muscarínicos/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Hipocampo/efectos de los fármacos , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratones , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Pirenzepina/farmacología , Receptores Muscarínicos/efectos de los fármacos , Escopolamina/farmacología , Succinato de Solifenacina/farmacología
8.
Mol Cell Neurosci ; 109: 103566, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049367

RESUMEN

Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/ß-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/ß hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 µm) and long (>30 µm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gßγ inhibitor gallein, and ß-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gßγ, and ß-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.


Asunto(s)
Endocannabinoides/fisiología , Neuritas/ultraestructura , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Citoesqueleto de Actina/ultraestructura , Amidas/farmacología , Apoptosis/efectos de los fármacos , Ácidos Araquidónicos/biosíntesis , Línea Celular Tumoral , Endocannabinoides/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/biosíntesis , Humanos , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroblastoma , Orlistat/farmacología , Oxotremorina/farmacología , Toxina del Pertussis/farmacología , Alcamidas Poliinsaturadas , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Transducción de Señal , Xantenos/farmacología
9.
Sci Rep ; 10(1): 17581, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067534

RESUMEN

SPARC-deficient mice have been shown to exhibit impaired glucose tolerance and insulin secretion, but the underlying mechanism remains unknown. Here, we showed that SPARC enhanced the promoting effect of Muscarinic receptor agonist oxotremorine-M on insulin secretion in cultured mouse islets. Overexpression of SPARC down-regulated RGS4, a negative regulator of ß-cell M3 muscarinic receptors. Conversely, knockdown of SPARC up-regulated RGS4 in Min6 cells. RGS4 was up-regulated in islets from sparc -/- mice, which correlated with decreased glucose-stimulated insulin secretion (GSIS). Furthermore, inhibition of RGS4 restored GSIS in the islets from sparc -/- mice, and knockdown of RGS4 partially decreased the promoting effect of SPARC on oxotremorine-M-stimulated insulin secretion. Phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 abolished SPARC-induced down-regulation of RGS4. Taken together, our data revealed that SPARC promoted GSIS by inhibiting RGS4 in pancreatic ß cells.


Asunto(s)
Secreción de Insulina/efectos de los fármacos , Osteonectina/metabolismo , Proteínas RGS/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteonectina/genética , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas RGS/fisiología , Receptor Muscarínico M3/efectos de los fármacos , Receptor Muscarínico M3/metabolismo
10.
Sci Rep ; 9(1): 14233, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578381

RESUMEN

Recently we found that acute treatment with Oxotremorine (Oxo), a non-selective mAChRs agonist, up-regulates heat shock proteins and activates their transcription factor heat shock factor 1 in the rat hippocampus. Here we aimed to investigate: a) if acute treatment with Oxo may regulate pro-inflammatory or anti-inflammatory cytokines and oxidative stress in the rat hippocampus; b) if chronic restraint stress (CRS) induces inflammatory or oxidative alterations in the hippocampus and whether such alterations may be affected by chronic treatment with Oxo. In the acute experiment, rats were injected with single dose of Oxo (0.4 mg/kg) and sacrificed at 24 h, 48 h and 72 h. In the CRS experiment, the rats were exposed for 21 days to the CRS and then were treated with Oxo (0.2 mg/kg) for further 10 days. The acute Oxo treatment showed an ability to significantly reduce reactive oxygen species (ROS), singlet oxygen (1O2), pro-inflammatory cytokines levels (IL-1ß and IL-6) and phosphorylated NF-κB-p65. Acute Oxo treatment also increased superoxide dismutase (SOD)-2 protein levels and stimulated SOD activity. No differences were detected in the anti-inflammatory cytokine levels, including IL-10 and TGF-ß1. In the group of rats exposed to the CRS were found increased hippocampal IL-1ß and IL-6 levels, together with a reduction of SOD activity level. These changes produced by CRS were counteracted by chronic Oxo treatment. In contrast, the upregulation of ROS and 1O2 levels in the CRS group was not counteracted by chronic Oxo treatment. The results revealed a hippocampal anti-inflammatory and antioxidant effect of Oxo treatment in both basal conditions and anti-inflammatory in the CRS rat model.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Fármacos Neuroprotectores/farmacología , Oxotremorina/farmacología , Receptores Muscarínicos/efectos de los fármacos , Animales , Hipocampo/metabolismo , Hidrocortisona/sangre , Inflamación , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Interleucina-6/biosíntesis , Interleucina-6/genética , Masculino , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores Muscarínicos/metabolismo , Restricción Física/efectos adversos , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/biosíntesis , Superóxido Dismutasa-1/genética , Factor de Transcripción ReIA/metabolismo
11.
Neuropharmacology ; 146: 74-83, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468798

RESUMEN

The opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs. We observed that the muscarinic agonist oxotremorine decreases cAMP selectively in the MSN subpopulation that also expresses D1 dopamine receptors, an action mediated by the M4 muscarinic receptor. This receptor has a high efficacy on cAMP signaling and can shut down the positive cAMP response induced by dopamine, at acetylcholine concentrations which are consistent with physiological levels. This supports our prediction based on theoretical modeling that acetylcholine could exert a tonic inhibition on striatal cAMP signaling, thus supporting the possibility that a pause in acetylcholine release is required for phasic dopamine to transduce a cAMP signal in D1 MSNs. In vivo experiments with acetylcholinesterase inhibitors donepezil and tacrine, as well as with the positive allosteric modulators of M4 receptor VU0152100 and VU0010010 show that this effect is sufficient to reverse the increased locomotor activity of DAT-knockout mice. This suggests that M4 receptors could be a novel therapeutic target to treat hyperactivity disorders.


Asunto(s)
Acetilcolina/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , AMP Cíclico/metabolismo , Dopamina/farmacología , Receptor Muscarínico M4/agonistas , Receptores de Dopamina D1/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Oxotremorina/farmacología
12.
Eur J Pharmacol ; 843: 104-112, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30452911

RESUMEN

Muscarinic receptor stimulation induces depolarizing inward currents and catecholamine secretion in adrenal medullary (AM) cells from various mammals. In guinea-pig AM cells muscarine and oxotremorine at concentrations ≤ 1 µM produce activation of nonselective cation channels with a similar potency and efficacy, whereas muscarine at higher concentrations produces not only nonselective cation channel activation, but also TASK1 channel inhibition. In rat AM cells, the muscarinic M1 receptor is involved in TASK1 channel inhibition in response to muscarinic agonists, and the efficacy of oxotremorine is half that of muscarine. These pharmacological findings might indicate that different muscarinic receptor subtypes are responsible for the regulation of nonselective cation and TASK1 channel activities. The present study aimed to determine the muscarinic receptor subtypes involved in nonselective cation channel activation in guinea-pig and mouse AM cells. The inward current evoked by 1 µM muscarine was completely suppressed by 100 µM quinine, whereas 30 µM muscarine-induced inward currents were comprised of quinine-sensitive and -insensitive components. The electrophysiological and pharmacological properties of the muscarine-induced currents indicated that the quinine-sensitive and insensitive components are due to nonselective cation channel activation and TASK1 channel inhibition, respectively. Muscarine at 30 µM failed to induce any current in AM cells treated with muscarinic toxin 7 or genetically deleted of the M1 receptor. The KD value of VU0255035 against the muscarinic receptor mediating nonselective cation channel activation was 17.5 nM. These results indicate that the M1 receptor mediates nonselective cation channel activation as well as TASK1 channel inhibition.


Asunto(s)
Médula Suprarrenal/citología , Canales Iónicos/fisiología , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M1/fisiología , Animales , Cobayas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Muscarina/farmacología , Oxotremorina/farmacología , Quinina/farmacología
13.
PLoS One ; 13(12): e0201322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30557348

RESUMEN

Group IVa cytosolic phospholipase A2 (cPLA2α) mediates GPCR-stimulated arachidonic acid (AA) release from phosphatidylinositol 4,5-bisphosphate (PIP2) located in plasma membranes. We previously found in superior cervical ganglion (SCG) neurons that PLA2 activity is required for voltage-independent N-type Ca2+ (N-) current inhibition by M1 muscarinic receptors (M1Rs). These findings are at odds with an alternative model, previously observed for M-current inhibition, where PIP2 dissociation from channels and subsequent metabolism by phospholipase C suffices for current inhibition. To resolve cPLA2α's importance, we have investigated its role in mediating voltage-independent N-current inhibition (~40%) that follows application of the muscarinic agonist oxotremorine-M (Oxo-M). Preincubation with different cPLA2α antagonists or dialyzing cPLA2α antibodies into cells minimized N-current inhibition by Oxo-M, whereas antibodies to Ca2+-independent PLA2 had no effect. Taking a genetic approach, we found that SCG neurons from cPLA2α-/- mice exhibited little N-current inhibition by Oxo-M, confirming a role for cPLA2α. In contrast, cPLA2α antibodies or the absence of cPLA2α had no effect on voltage-dependent N-current inhibition by M2/M4Rs or on M-current inhibition by M1Rs. These findings document divergent M1R signaling mediating M-current and voltage-independent N-current inhibition. Moreover, these differences suggest that cPLA2α acts locally to metabolize PIP2 intimately associated with N- but not M-channels. To determine cPLA2α's functional importance more globally, we examined action potential firing of cPLA2α+/+ and cPLA2α-/- SCG neurons, and found decreased latency to first firing and interspike interval resulting in a doubling of firing frequency in cPLA2α-/- neurons. These unanticipated findings identify cPLA2α as a tonic regulator of neuronal membrane excitability.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Señalización del Calcio , Calcio/metabolismo , Fosfolipasas A2 Grupo IV , Potenciales de la Membrana , Neuronas/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Receptor Muscarínico M1/metabolismo
14.
PLoS Biol ; 16(7): e2005460, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29985914

RESUMEN

Here, we investigated intrinsic spinal cord mechanisms underlying the physiological requirement for autonomic and somatic motor system coupling. Using an in vitro spinal cord preparation from newborn rat, we demonstrate that the specific activation of muscarinic cholinergic receptors (mAchRs) (with oxotremorine) triggers a slow burst rhythm in thoracic spinal segments, thereby revealing a rhythmogenic capability in this cord region. Whereas axial motoneurons (MNs) were rhythmically activated during both locomotor activity and oxotremorine-induced bursting, intermediolateral sympathetic preganglionic neurons (IML SPNs) exhibited rhythmicity solely in the presence of oxotremorine. This somato-sympathetic synaptic drive shared by MNs and IML SPNs could both merge with and modulate the locomotor synaptic drive produced by the lumbar motor networks. This study thus sheds new light on the coupling between somatic and sympathetic systems and suggests that an intraspinal network that may be conditionally activated under propriospinal cholinergic control constitutes at least part of the synchronizing mechanism.


Asunto(s)
Acetilcolina/farmacología , Actividad Motora/efectos de los fármacos , Periodicidad , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Animales Recién Nacidos , Inhibidores de la Colinesterasa/farmacología , Glutamatos/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Antagonistas Muscarínicos/farmacología , N-Metilaspartato/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Oxotremorina/farmacología , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Serotonina/farmacología , Médula Espinal/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Vértebras Torácicas/efectos de los fármacos , Vértebras Torácicas/fisiología
15.
J Neurophysiol ; 120(3): 1090-1106, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847235

RESUMEN

The mammalian olfactory bulb (OB) generates gamma (40-100 Hz) and beta (15-30 Hz) local field potential (LFP) oscillations. Gamma oscillations arise at the peak of inhalation supported by dendrodendritic interactions between glutamatergic mitral cells (MCs) and GABAergic granule cells (GCs). Beta oscillations are induced by odorants in learning or odor sensitization paradigms, but their mechanism and function are still poorly understood. When centrifugal OB inputs are blocked, beta oscillations disappear, but gamma oscillations persist. Centrifugal inputs target primarily GABAergic interneurons in the GC layer (GCL) and regulate GC excitability, suggesting a causal link between beta oscillations and GC excitability. Our previous modeling work predicted that convergence of excitatory/inhibitory inputs onto MCs and centrifugal inputs onto GCs increase GC excitability sufficiently to produce beta oscillations primarily through voltage dependent calcium channel-mediated GABA release, independently of NMDA channels. We test some of the predictions of this model by examining the influence of NMDA and muscarinic acetylcholine (ACh) receptors, which affect GC excitability in different ways, on beta oscillations. A few minutes after intrabulbar infusion, scopolamine (muscarinic antagonist) suppressed odor-evoked beta in response to a strong stimulus but increased beta power in response to a weak stimulus, as predicted by our model. Pyriform cortex (PC) beta power was unchanged. Oxotremorine (muscarinic agonist) suppressed all oscillations, likely from overinhibition. APV, an NMDA receptor antagonist, suppressed gamma oscillations selectively (in OB and PC), lending support to the model's prediction that beta oscillations can be supported independently of NMDA receptors. NEW & NOTEWORTHY Olfactory bulb local field potential beta oscillations appear to be gated by GABAergic granule cell excitability. Reducing excitability with scopolamine reduces beta induced by strong odors but increases beta induced by weak odors. Beta oscillations rely on the same synapse as gamma oscillations but, unlike gamma, can persist in the absence of NMDA receptor activation. Pyriform cortex beta oscillations maintain power when olfactory bulb beta power is low, and the system maintains beta band coherence.


Asunto(s)
Ritmo beta/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Bulbo Olfatorio/efectos de los fármacos , Oxotremorina/farmacología , Escopolamina/farmacología , Análisis de Varianza , Animales , Canales de Calcio/metabolismo , Dendritas/fisiología , Electrodos Implantados , Neuronas GABAérgicas/fisiología , Masculino , Agonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/administración & dosificación , Odorantes , Oxotremorina/administración & dosificación , Corteza Piriforme/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Escopolamina/administración & dosificación , Ácido gamma-Aminobutírico/metabolismo
16.
J Cell Physiol ; 233(8): 6107-6116, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29323700

RESUMEN

The cholinergic system plays a crucial role in modulating in the central nervous system physiological responses such as neurogenesis, neuronal differentiation, synaptic plasticity, and neuroprotection. In a recent study, we showed that Oxotremorine-M, a non-selective muscarinic acetylcholine receptor agonist, is able to transactivate the fibroblast growth factor receptor and to produce a significant increase in the hippocampal primary neurite outgrowth. In the present study we aimed to explore in the rat hippocampus the possible effect of acute or chronic treatment with Oxotremorine-M on some heat shock proteins (Hsp60, Hsp70, Hsp90) and on activation of related transcription factor heat shock factor 1 (HSF1). Following single injection of Oxotremorine-M (0.4 mg/kg) all Hsps examined were significantly increased in at least one of the time points studied (24, 48, and 72 hr). Treatment with Oxotremorine-M significantly increased the level of phosphorylated HSF1 in all time points studied, without change of protein levels. Similar pattern of Hsps changes was obtained following chronic Oxotremorine-M treatment (0.2 mg/kg) for 5 days. Surprisingly, following chronic treatment for 10 days no changes were observed in Hsps. The muscarinic acetylcholine receptor antagonist scopolamine (1 mg/kg) was able to completely block Oxotremorine-M effects on Hsps. In conclusion, considering the function of Hsps in protecting neuronal cells from deleterious proteotoxic stress, for example, protein mis-folding and aggregation, the results obtained indicate that muscarinic acetylcholine receptor activation may have implications in potential treatment of neurodegenerative disorders linked to protein aggregation, such as Alzheimer disease.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Factores de Transcripción del Choque Térmico/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Enfermedades Neurodegenerativas/metabolismo , Proyección Neuronal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos
17.
Biochem Biophys Res Commun ; 495(1): 481-486, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127015

RESUMEN

Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.


Asunto(s)
Agonistas Muscarínicos/farmacología , Oxotremorina/análogos & derivados , Receptores de N-Metil-D-Aspartato/agonistas , Animales , Humanos , Agonistas Muscarínicos/química , Oxotremorina/química , Oxotremorina/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus
18.
J Physiol ; 595(24): 7495-7508, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29023733

RESUMEN

KEY POINTS: A tonically active, muscarinic cholinergic inhibition of rostral raphe pallidus (rRPa) neurons influences thermogenesis of brown adipose tissue (BAT) independent of ambient temperature conditions. The tonically active cholinergic input to rRPa originates caudal to the hypothalamus. Muscarinic acetylcholine receptor (mAChR) activation in rRPa contributes to the inhibition of BAT sympathetic nerve activity (SNA) evoked by activation of neurons in the rostral ventrolateral medulla (RVLM). The RVLM is not the sole source of the muscarinic cholinergic input to rRPa. Activation of GABA receptors in rRPa does not mediate the cholinergic inhibition of BAT SNA. ABSTRACT: We sought to determine if body temperature and energy expenditure are influenced by a cholinergic input to neurons in the rostral raphe pallidus (rRPa), the site of sympathetic premotor neurons controlling thermogenesis of brown adipose tissue (BAT). Nanoinjections of the muscarinic acetylcholine receptor (mAChR) agonist, oxotremorine, or the cholinesterase inhibitor, neostigmine (NEOS), in the rRPa of anaesthetized rats decreased cold-evoked BAT sympathetic nerve activity (SNA, nadirs: -72 and -95%), BAT temperature (Tbat, -0.5 and -0.6°C), expired CO2 (Exp. CO2 , -0.3 and -0.5%) and heart rate (HR, -22 and -41 bpm). NEOS into rRPa reversed the increase in BAT SNA evoked by blockade of GABA receptors in rRPa. Nanoinjections of the mAChR antagonist, scopolamine (SCOP), in the rRPa of warm rats increased BAT SNA (peak: +1087%), Tbat (+1.8°C), Exp. CO2 (+0.7%), core temperature (Tcore, +0.5°C) and HR (+54 bpm). SCOP nanoinjections in rRPa produced similar activations of BAT during cold exposure, following a brain transection caudal to the hypothalamus, and during the blockade of glutamate receptors in rRPa. We conclude that a tonically active cholinergic input to the rRPa inhibits BAT SNA via activation of local mAChR. The inhibition of BAT SNA mediated by mAChR in rRPa does not depend on activation of GABA receptors in rRPa. The increase in BAT SNA following mAChR blockade in rRPa does not depend on the activity of neurons in the hypothalamus or on glutamate receptor activation in rRPa.


Asunto(s)
Tejido Adiposo Pardo/inervación , Inhibición Neural , Núcleo Pálido del Rafe/fisiología , Receptores Muscarínicos/metabolismo , Sistema Nervioso Simpático/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Masculino , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Neostigmina/farmacología , Oxotremorina/farmacología , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
19.
Eur J Pharmacol ; 815: 351-363, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28939292

RESUMEN

It has been found recently that monoterpenoid (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol (Diol) demonstrates high antiparkinsonian activity in some animal models. We carried out an extended study of the antiparkinsonian activity of Diol in a set of relevant animal models. Diol (20mg/kg) exhibited an anticataleptogenic effect in the haloperidol-induced catalepsy model and restored motor activity in animals in the reserpine-induced model of oligokinesia. The ability of Diol singly administered before MPTP injection to reduce rigidity comparable to that of activity of L-DOPA (100mg/kg) was found using the model of Parkinsonian syndrome (PS) induced by single injection of MPTP (30mg/kg) to C57BL/6 mice. In the model of PS induced by subchronic administration of MPTP (4 × 20mg/kg), Diol at a dose of 20mg/kg reduced rigidity with effectiveness comparable to that of L-DOPA, while being superior to L-DOPA in terms of its effect on motor activity. It was found using the model of PS induced by systemic administration of rotenone that subchronic daily oral administration of Diol prior to rotenone injection reduced severity of PS in rats. Assessment of the effects of chronic administration of Diol (20mg/kg) and L-DOPA to animals with 6-OHDA-induced PS showed that administration of Diol alleviated the symptoms of sensorimotor deficit in right limbs in rats. Thus, the potent antiparkinsonian activity of Diol was demonstrated in all the used rodent models experiments. Diol (20mg/kg) is as effective as the comparator agent L-DOPA administered at doses of 50-100mg/kg.


Asunto(s)
Antiparkinsonianos/farmacología , Ciclohexanoles/farmacología , Animales , Antiparkinsonianos/uso terapéutico , Catalepsia/tratamiento farmacológico , Ciclohexanoles/uso terapéutico , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Oxotremorina/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Reserpina/farmacología
20.
J Physiol ; 595(17): 5875-5893, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28714121

RESUMEN

KEY POINTS: The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT: The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein ßγ subunit (Gßγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cß as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.


Asunto(s)
Acetilcolina/fisiología , Interneuronas/fisiología , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Tálamo/fisiología , Familia-src Quinasas/fisiología , Animales , Proteína Tirosina Quinasa CSK , Femenino , Subunidades beta de la Proteína de Unión al GTP/fisiología , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Masculino , Ratones Transgénicos , Agonistas Muscarínicos/farmacología , Proteínas del Tejido Nervioso/genética , Oxotremorina/análogos & derivados , Oxotremorina/farmacología , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Receptores Muscarínicos/fisiología , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...