Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.126
Filtrar
1.
Diabetes ; 73(4): 533-541, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215069

RESUMEN

For many years, it has been taught in medical textbooks that the endocrine and exocrine parts of the pancreas have separate blood supplies that do not mix. Therefore, they have been studied by different scientific communities, and patients with pancreatic disorders are treated by physicians in different medical disciplines, where endocrine and exocrine function are the focus of endocrinologists and gastroenterologists, respectively. The conventional model that every islet in each pancreatic lobule receives a dedicated arterial blood supply was first proposed in 1932, and it has been inherited to date. Recently, in vivo intravital recording of red blood cell flow in mouse islets as well as in situ structural analysis of 3D pancreatic vasculature from hundreds of islets provided evidence for preferentially integrated pancreatic blood flow in six mammalian species. The majority of islets have no association with the arteriole, and there is bidirectional blood exchange between the two segments. Such vascularization may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to a topologically and temporally specific plasma content, which could underlie an adaptive sensory function as well as common pathogeneses of both portions of the organ in pancreatic diseases, including diabetes.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Páncreas Exocrino , Ratones , Animales , Humanos , Islotes Pancreáticos/irrigación sanguínea , Páncreas/fisiología , Células Acinares , Mamíferos
2.
Adv Biol (Weinh) ; 7(12): e2300194, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537358

RESUMEN

Cilia are best known and most studied for their manifold functions enabling proper embryonic development. Loss of cilia or dysfunction thereof results in a great variety of congenital malformations and syndromes. However, there are also cilia-driven conditions, which manifest only later in life, such as polycystic kidney disease. Even degenerative diseases in the central nervous system have recently been linked to alterations in cilia biology. Surprisingly though, there is very little knowledge regarding cilia in normally aged organisms absent any disease. Here, it is provided evidence that cilia in naturally aged mice are considerably elongated in the kidney and pancreas, respectively. Moreover, such altered cilia appear to have become dysfunctional as indicated by changes in cellular signaling.


Asunto(s)
Cilios , Enfermedades Renales Poliquísticas , Animales , Ratones , Cilios/fisiología , Riñón , Páncreas/fisiología , Envejecimiento
3.
Mol Metab ; 74: 101754, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321370

RESUMEN

BACKGROUND: Over the last decades, various approaches have been explored to restore sufficient ß-cell mass in diabetic patients. Stem cells are certainly an attractive source of new ß-cells, but an alternative option is to induce the endogenous regeneration of these cells. SCOPE OF REVIEW: Since the exocrine and endocrine pancreatic glands have a common origin and a continuous crosstalk unites the two, we believe that analyzing the mechanisms that induce pancreatic regeneration in different conditions could further advance our knowledge in the field. In this review, we summarize the latest evidence on physiological and pathological conditions associated with the regulation of pancreas regeneration and proliferation, as well as the complex and coordinated signaling cascade mediating cell growth. MAJOR CONCLUSIONS: Unraveling the mechanisms involved in intracellular signaling and regulation of pancreatic cell proliferation and regeneration may inspire future investigations to discover potential strategies to cure diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Islotes Pancreáticos/fisiología , Páncreas/fisiología , Células Secretoras de Insulina/fisiología , Regeneración/fisiología
5.
Cell Stem Cell ; 30(4): 488-497.e3, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028408

RESUMEN

Understanding the origin of pancreatic ß cells has profound implications for regenerative therapies in diabetes. For over a century, it was widely held that adult pancreatic duct cells act as endocrine progenitors, but lineage-tracing experiments challenged this dogma. Gribben et al. recently used two existing lineage-tracing models and single-cell RNA sequencing to conclude that adult pancreatic ducts contain endocrine progenitors that differentiate to insulin-expressing ß cells at a physiologically important rate. We now offer an alternative interpretation of these experiments. Our data indicate that the two Cre lines that were used directly label adult islet somatostatin-producing ∂ cells, which precludes their use to assess whether ß cells originate from duct cells. Furthermore, many labeled ∂ cells, which have an elongated neuron-like shape, were likely misclassified as ß cells because insulin-somatostatin coimmunolocalizations were not used. We conclude that most evidence so far indicates that endocrine and exocrine lineage borders are rarely crossed in the adult pancreas.


Asunto(s)
Células Secretoras de Insulina , Lagunas en las Evidencias , Diferenciación Celular , Páncreas/fisiología , Conductos Pancreáticos , Insulina , Somatostatina
6.
Crit Rev Clin Lab Sci ; 60(5): 366-381, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36876586

RESUMEN

Pediatric patients with exocrine pancreatic insufficiency (EPI) have symptoms that include abdominal pain, weight loss or poor weight gain, malnutrition, and steatorrhea. This condition can be present at birth or develop during childhood for certain genetic disorders. Cystic fibrosis (CF) is the most prevalent disorder in which patients are screened for EPI; other disorders also are associated with pancreatic dysfunction, such as hereditary pancreatitis, Pearson syndrome, and Shwachman-Diamond syndrome. Understanding the clinical presentation and proposed pathophysiology of the pancreatic dysfunction of these disorders aids in diagnosis and treatment. Testing pancreatic function is challenging. Directly testing aspirates produced from the pancreas after stimulation is considered the gold standard, but the procedures are not standardized or widely available. Instead, indirect tests are often used in diagnosis and monitoring. Although indirect tests are more widely available and easier to perform, they have inherent limitations due to a lack of sensitivity and/or specificity for EPI.


Asunto(s)
Fibrosis Quística , Insuficiencia Pancreática Exocrina , Recién Nacido , Humanos , Niño , Heces , Elastasa Pancreática , Insuficiencia Pancreática Exocrina/diagnóstico , Insuficiencia Pancreática Exocrina/genética , Páncreas/fisiología , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Fibrosis Quística/complicaciones
7.
Adv Exp Med Biol ; 1398: 225-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717498

RESUMEN

Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.


Asunto(s)
Acuaporinas , Glándulas Exocrinas , Humanos , Acuaporinas/metabolismo , Acuaporinas/fisiología , Glándulas Duodenales/fisiología , Glándulas Mamarias Humanas/fisiología , Páncreas/fisiología , Glándulas Salivales/fisiología , Glándulas Exocrinas/metabolismo , Glándulas Exocrinas/fisiología
8.
Front Endocrinol (Lausanne) ; 13: 922983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813631

RESUMEN

Primary cilia as a signaling organelle have garnered recent attention as a regulator of pancreatic islet function. These rod-like sensors exist on all major islet endocrine cell types and transduce a variety of external cues, while dysregulation of cilia function contributes to the development of diabetes. The complex role of islet primary cilia has been examined using genetic deletion targeting various components of cilia. In this review, we summarize experimental models for the study of islet cilia and current understanding of mechanisms of cilia regulation of islet hormone secretion. Consensus from these studies shows that pancreatic cilia perturbation can cause both endocrine and exocrine defects that are relevant to human disease. We discuss future research directions that would further elucidate cilia action in distinct groups of islet cells, including paracrine and juxtacrine regulation, GPCR signaling, and endocrine-exocrine crosstalk.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Cilios/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Páncreas/fisiología
9.
Sci Rep ; 12(1): 4681, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304495

RESUMEN

A bioartificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes therapy. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Páncreas Artificial , Diabetes Mellitus Tipo 1/terapia , Humanos , Hipoxia , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos/métodos , Páncreas/fisiología
10.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216219

RESUMEN

Pancreatic steatosis associates with ß-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo Blanco/fisiología , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Páncreas/fisiología , Adipocitos/fisiología , Adipogénesis/genética , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Células del Estroma/fisiología , Transcriptoma/genética
11.
Nutrients ; 14(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35057558

RESUMEN

The disturbance of intestinal microorganisms and the exacerbation of type 2 diabetes (T2D) are mutually influenced. In this study, the effect of exopolysaccharides (EPS) from Lactobacillus plantarum JY039 on the adhesion of Lactobacillus paracasei JY062 was investigated, as well as their preventive efficacy against T2D. The results showed that the EPS isolated from L. plantarum JY039 effectively improved the adhesion rate of L. paracasei JY062 to Caco-2 cells (1.8 times) and promoted the proliferation of L. paracasei JY062. In the mice experiment, EPS, L. paracasei JY062 and their complex altered the structure of the intestinal microbiota, which elevated the proportion of Bifidobacterium, Faecalibaculum, while inversely decreasing the proportion of Firmicutes, Muribaculaceae, Lachnospiraceae and other bacteria involved in energy metabolism (p < 0.01; p < 0.05); enhanced the intestinal barrier function; promoted secretion of the gut hormone peptide YY (PYY) and glucagon-like peptide-1 (GLP-1); and reduced inflammation by balancing pro-inflammatory factors IL-6, TNF-α and anti-inflammatory factor IL-10 (p < 0.01; p < 0.05). These results illustrate that EPS and L. paracasei JY062 have the synbiotic potential to prevent and alleviate T2D.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Diabetes Mellitus Tipo 2/prevención & control , Lacticaseibacillus paracasei/fisiología , Lactobacillus plantarum/química , Polisacáridos Bacterianos/farmacología , Simbióticos , Animales , Adhesión Bacteriana/fisiología , Glucemia/metabolismo , Células CACO-2 , Metabolismo Energético , Microbioma Gastrointestinal/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Inflamación/prevención & control , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Intestinos/microbiología , Intestinos/fisiología , Lacticaseibacillus paracasei/crecimiento & desarrollo , Hígado/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/fisiología , Péptido YY/metabolismo , Distribución Aleatoria , Factor de Necrosis Tumoral alfa/metabolismo
12.
Nutrients ; 14(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35057580

RESUMEN

The objective of the present research was to review the state of the art on the consequences of drinking coffee at the different levels of the gastrointestinal tract. At some steps of the digestive process, the effects of coffee consumption seem rather clear. This is the case for the stimulation of gastric acid secretion, the stimulation of biliary and pancreatic secretion, the reduction of gallstone risk, the stimulation of colic motility, and changes in the composition of gut microbiota. Other aspects are still controversial, such as the possibility for coffee to affect gastro-esophageal reflux, peptic ulcers, and intestinal inflammatory diseases. This review also includes a brief summary on the lack of association between coffee consumption and cancer of the different digestive organs, and points to the powerful protective effect of coffee against the risk of hepatocellular carcinoma. This review reports the available evidence on different topics and identifies the areas that would most benefit from additional studies.


Asunto(s)
Café , Tracto Gastrointestinal , Bilis/fisiología , Cafeína/administración & dosificación , Café/efectos adversos , Femenino , Cálculos Biliares/prevención & control , Ácido Gástrico/fisiología , Reflujo Gastroesofágico , Microbioma Gastrointestinal , Motilidad Gastrointestinal , Neoplasias Gastrointestinales , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Enfermedades Inflamatorias del Intestino , Masculino , Páncreas/fisiología , Úlcera Péptica , Saliva/enzimología
13.
Acta Physiol (Oxf) ; 234(1): e13729, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525257

RESUMEN

AIM: Slc26a9 is a member of the Slc26 multifunctional anion transporter family. Polymorphisms in Slc26a9 are associated with an increased incidence of meconium ileus and diabetes in cystic fibrosis patients. We investigated the expression of Slc26a9 in the murine pancreatic ducts, islets and parenchyma, and elucidated its role in pancreatic ductal electrolyte and fluid secretion and endocrine function. METHODS: Pancreatic Slc26a9 and CFTR mRNA expression, fluid and bicarbonate secretion were assessed in slc26a9-/- mice and their age- and sex-matched wild-type (wt) littermates. Glucose and insulin tolerance tests were performed. RESULTS: Compared with stomach, the mRNA expression of Slc26a9 was low in pancreatic parenchyma, 20-fold higher in microdissected pancreatic ducts than parenchyma, and very low in islets. CFTR mRNA was ~10 fold higher than Slc26a9 mRNA expression in each pancreatic cell type. Significantly reduced pancreatic fluid secretory rates and impaired glucose tolerance were observed in female slc26a9-/- mice, whereas alterations in male mice did not reach statistical significance. No significant difference was observed in peripheral insulin resistance in slc26a9-/- compared to sex- and aged-matched wt controls. In contrast, isolated slc26a9-/- islets in short term culture displayed no difference in insulin content, but a significantly reduced glucose-stimulated insulin secretion compared to age- and sex-matched wt islets, suggesting that the impaired glucose tolerance in the absence of Slc26a9 expression these is a pancreatic defect. CONCLUSIONS: Deletion of Slc26a9 is associated with a reduction in pancreatic fluid secretion and impaired glucose tolerance in female mice. The results underline the importance of Slc26a9 in pancreatic physiology.


Asunto(s)
Antiportadores , Secreción de Insulina , Páncreas/fisiología , Transportadores de Sulfato , Anciano , Animales , Antiportadores/genética , Antiportadores/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Insulina , Masculino , Ratones , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
14.
Commun Biol ; 4(1): 1298, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789845

RESUMEN

Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.


Asunto(s)
Factor Nuclear 6 del Hepatocito/genética , Páncreas/fisiología , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 6 del Hepatocito/metabolismo , Células Madre Embrionarias Humanas , Humanos , Transcripción Genética
15.
Mol Cell Endocrinol ; 538: 111459, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543699

RESUMEN

Though embryonic pancreas progenitors are well characterised, the existence of stem/progenitor cells in the postnatal mammalian pancreas has been long debated, mainly due to contradicting results on regeneration after injury or disease in mice. Despite these controversies, sequencing advancements combined with lineage tracing and organoid technologies indicate that homeostatic and trigger-induced regenerative responses in mice could occur. The presence of putative progenitor cells in the adult pancreas has been proposed during homeostasis and upon different stress challenges such as inflammation, tissue damage and oncogenic stress. More recently, single cell transcriptomics has revealed a remarkable heterogeneity in all pancreas cell types, with some cells showing the signature of potential progenitors. In this review we provide an overview on embryonic and putative adult pancreas progenitors in homeostasis and disease, with special emphasis on in vitro culture systems and scRNA-seq technology as tools to address the progenitor nature of different pancreatic cells.


Asunto(s)
Redes Reguladoras de Genes , Páncreas/fisiología , Enfermedades Pancreáticas/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , Homeostasis , Humanos , Páncreas/citología , RNA-Seq , Medicina Regenerativa , Análisis de la Célula Individual , Células Madre/metabolismo
16.
Dev Cell ; 56(19): 2703-2711.e5, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34499867

RESUMEN

Glucose homeostasis depends on regulated insulin secretion from pancreatic ß cells, which acquire their mature phenotype postnatally. The functional maturation of ß cells is regulated by a combination of cell-autonomous and exogenous factors; the identity of the latter is mostly unknown. Here, we identify BMP4 as a critical component through which the pancreatic microenvironment regulates ß cell function. By combining transgenic mouse models and human iPSCs, we show that BMP4 promotes the expression of core ß cell genes and is required for proper insulin production and secretion. We identified pericytes as the primary pancreatic source of BMP4, which start producing this ligand midway through the postnatal period, at the age ß cells mature. Overall, our findings show that the islet niche directly promotes ß cell functional maturation through the timely production of BMP4. Our study highlights the need to recapitulate the physiological postnatal islet niche for generating fully functional stem-cell-derived ß cells for cell replacement therapy for diabetes.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas/metabolismo , Animales , Animales Recién Nacidos , Proteína Morfogenética Ósea 4/fisiología , Diferenciación Celular/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Proteínas de Homeodominio/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Organogénesis , Páncreas/fisiología , Pericitos/metabolismo , Transactivadores/metabolismo
17.
Nature ; 597(7878): 715-719, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526722

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths worldwide1. Studies in human tissues and in mouse models have suggested that for many cancers, stem cells sustain early mutations driving tumour development2,3. For the pancreas, however, mechanisms underlying cellular renewal and initiation of PDAC remain unresolved. Here, using lineage tracing from the endogenous telomerase reverse transcriptase (Tert) locus, we identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment. During homeostasis, these TERThigh acinar cells renew the pancreas by forming expanding clones of acinar cells, whereas randomly marked acinar cells do not form these clones. Specific expression of mutant Kras in TERThigh acinar cells accelerates acinar clone formation and causes transdifferentiation to ductal pre-invasive pancreatic intraepithelial neoplasms by upregulating Ras-MAPK signalling and activating the downstream kinase ERK (phospho-ERK). In resected human pancreatic neoplasms, we find that foci of phospho-ERK-positive acinar cells are common and frequently contain activating KRAS mutations, suggesting that these acinar regions represent an early cancer precursor lesion. These data support a model in which rare TERThigh acinar cells may sustain KRAS mutations, driving acinar cell expansion and creating a field of aberrant cells initiating pancreatic tumorigenesis.


Asunto(s)
Células Acinares/citología , Carcinogénesis , Páncreas/citología , Animales , Carcinoma Ductal Pancreático/patología , Transdiferenciación Celular , Transformación Celular Neoplásica/genética , Homeostasis , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Mutación , Páncreas/patología , Páncreas/fisiología , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Telomerasa/genética
18.
Front Endocrinol (Lausanne) ; 12: 722250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421829

RESUMEN

In all forms of diabetes, ß cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new ß cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for ß cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new ß cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.


Asunto(s)
Células Secretoras de Insulina/fisiología , Páncreas/fisiología , Regeneración/fisiología , Adulto , Animales , Recuento de Células , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Transdiferenciación Celular/fisiología , Humanos , Células Secretoras de Insulina/citología , Ratones , Tamaño de los Órganos , Páncreas/citología , Células Madre/fisiología
19.
Sci Rep ; 11(1): 14519, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267243

RESUMEN

Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.


Asunto(s)
Proteínas con Dominio MARVEL/genética , Páncreas/embriología , Páncreas/fisiología , Proteínas de Uniones Estrechas/genética , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Proteínas con Dominio MARVEL/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/citología , Glándulas Salivales/fisiología , Análisis Espacio-Temporal , Proteínas de Uniones Estrechas/metabolismo
20.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068301

RESUMEN

Maintaining organ viability between donation and transplantation is of critical importance for optimal graft function and survival. To date in pancreas transplantation, static cold storage (SCS) is the most widely practiced method of organ preservation. The first experiments in ex vivo perfusion of the pancreas were performed at the beginning of the 20th century. These perfusions led to organ oedema, hemorrhage, and venous congestion after revascularization. Despite these early hurdles, a number of factors now favor the use of perfusion during preservation: the encouraging results of HMP in kidney transplantation, the development of new perfusion solutions, and the development of organ perfusion machines for the lung, heart, kidneys and liver. This has led to a resurgence of research in machine perfusion for whole organ pancreas preservation. This review highlights the ischemia-reperfusion injuries assessment during ex vivo pancreas perfusion, both for assessment in pre-clinical experimental models as well for future use in the clinic. We evaluated perfusion dynamics, oedema assessment, especially by impedance analysis and MRI, whole organ oxygen consumption, tissue oxygen tension, metabolite concentrations in tissue and perfusate, mitochondrial respiration, cell death, especially by histology, total cell free DNA, caspase activation, and exocrine and endocrine assessment.


Asunto(s)
Preservación de Órganos/métodos , Trasplante de Páncreas , Páncreas/fisiología , Daño por Reperfusión/prevención & control , Supervivencia Tisular , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA