Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.132
Filtrar
1.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731625

RESUMEN

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Asunto(s)
Antineoplásicos , Sorafenib , Gránulos de Estrés , Humanos , Sorafenib/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Gránulos de Estrés/metabolismo , Células HeLa , Resistencia a Antineoplásicos/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Supervivencia Celular/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química
2.
Nano Lett ; 24(20): 6102-6111, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739578

RESUMEN

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.


Asunto(s)
Lesión Pulmonar Aguda , ADN , Nanoestructuras , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Ratones , ADN/química , Administración por Inhalación , Nanoestructuras/química , Especies Reactivas de Oxígeno/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Citocinas/metabolismo , Péptidos/química , Nebulizadores y Vaporizadores , Péptidos de Penetración Celular/química , Modelos Animales de Enfermedad , Lipopolisacáridos , Sistemas de Liberación de Medicamentos , Células RAW 264.7
3.
ACS Appl Mater Interfaces ; 16(15): 18422-18433, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573069

RESUMEN

DNA nanopores have emerged as powerful tools for molecular sensing, but the efficient insertion of large DNA nanopores into lipid membranes remains challenging. In this study, we investigate the potential of cell-penetrating peptides (CPPs), specifically SynB1 and GALA, to enhance the insertion efficiency of large DNA nanopores. We constructed SynB1- or GALA-functionalized DNA nanopores with an 11 nm inner diameter and visualized and quantified their membrane insertion using a TIRF microscopy-based single-liposome assay. The results demonstrated that incorporating an increasing number of SynB1 or GALA peptides into the DNA nanopore significantly enhanced the membrane perforation. Kinetic analysis revealed that the DNA nanopore scaffold played a role in prearranging the CPPs, which facilitated membrane interaction and pore formation. Notably, the use of pH-responsive GALA peptides allowed highly efficient and pH-controlled insertion of large DNA pores. Furthermore, single-channel recording elucidated that the insertion process of single GALA-modified nanopores into planar lipid bilayers was dynamic, likely forming transient large toroidal pores. Overall, our study highlights the potential of CPPs as insertion enhancers for DNA nanopores, which opens avenues for improved molecule sensing and the controlled release of cargo molecules.


Asunto(s)
Péptidos de Penetración Celular , Nanoporos , Cinética , ADN/química , Membrana Dobles de Lípidos/química
4.
Int J Pharm ; 656: 124092, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583820

RESUMEN

Corneal collagen crosslinking (CXL) is an effective method to halt the disease progression of keratoconus, a progressive corneal dystrophy leading to cone shaped cornea. Despite the efficacy of standard protocol, the concerning step of this procedure is epithelial debridement performed to facilitate the entry of riboflavin drug. Riboflavin, a key molecule in CXL protocol, is a sparsely permeable hydrophilic drug in corneal tissues. The present study has employed cell penetrating peptide (CPP), Tat2, to enhance the penetration of riboflavin molecule, and thereby improve currently followed CXL protocol. This study demonstrates approximately two-fold enhanced uptake of CPP riboflavin conjugate, Tat2riboflavin-5'Phosphate (RiTe conjugate), both in vitro and in vivo. Two different CXL protocols (Epi ON and Epi OFF) have been introduced and implemented in rabbit corneas using RiTe conjugate in the present study. The standard and RiTe conjugate mediated CXL procedures exhibited an equivalent extent of crosslinking in both the methods. Reduced keratocyte loss and no endothelial damage in RiTe conjugate mediated CXL further ascertains the safety of the proposed CXL protocols. Therefore, RiTe conjugate mediated CXL protocols present as potential alternatives to the standard keratoconus treatment in providing equally effective, less invasive and patient compliant treatment modality.


Asunto(s)
Colágeno , Córnea , Reactivos de Enlaces Cruzados , Queratocono , Riboflavina , Queratocono/tratamiento farmacológico , Queratocono/metabolismo , Animales , Conejos , Colágeno/metabolismo , Riboflavina/farmacología , Reactivos de Enlaces Cruzados/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Péptidos de Penetración Celular , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
5.
Chem Commun (Camb) ; 60(36): 4810-4813, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602391

RESUMEN

The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.


Asunto(s)
Péptidos de Penetración Celular , Glicina , Compuestos Heterocíclicos con 2 Anillos , Imidazolidinas , Compuestos Macrocíclicos , Glicina/química , Glicina/análogos & derivados , Glicina/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Imidazoles/química , Humanos , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/metabolismo , Adamantano/química , Adamantano/análogos & derivados , Membrana Celular/metabolismo , Membrana Celular/química , Transporte Biológico
6.
Int J Biol Macromol ; 267(Pt 2): 130915, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561118

RESUMEN

BACKGROUND: Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS: In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS: FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION: Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.


Asunto(s)
Péptidos de Penetración Celular , Quitosano , Doxorrubicina , Terapia Genética , Hidrogeles , Nanopartículas , Osteosarcoma , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/genética , Quitosano/química , Hidrogeles/química , Doxorrubicina/farmacología , Doxorrubicina/química , Animales , Humanos , Ratones , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Nanopartículas/química , Línea Celular Tumoral , Terapia Genética/métodos , Permeabilidad , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/terapia , Temperatura
7.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637801

RESUMEN

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Asunto(s)
Péptidos de Penetración Celular , Enfermedades del Sistema Nervioso Central , Humanos , Barrera Hematoencefálica/química , Células Endoteliales , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Encéfalo , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
8.
ACS Appl Mater Interfaces ; 16(14): 17069-17079, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563247

RESUMEN

Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 µm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.


Asunto(s)
Micropartículas Derivadas de Células , Péptidos de Penetración Celular , Vesículas Extracelulares , Arginina , Pinocitosis , Vesículas Extracelulares/metabolismo , Péptidos de Penetración Celular/química
9.
Biomed Pharmacother ; 174: 116610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642503

RESUMEN

Depression ranks as the fourth most prevalent global disease, with suicide incidents occurring at a younger age. Sulpiride (SUL), an atypical antidepressant drug acting as a dopamine D2 receptor antagonist and possessing anti-inflammatory properties, exhibits limited ability to penetrate the blood brain barrier (BBB). This weak penetration hampers its inhibitory effect on prolactin release in the pituitary gland, consequently leading to hyperprolactinemia. In order to enhance the central nervous system efficacy of sulpiride and reduce serum prolactin levels, we covalently linked sulpiride to VPALR derived from the nuclear DNA repair protein ku70. In vivo study on depressive mice using intraperitoneal injection of VPALR-SUL demonstrated a significant increase in struggle time and total distance compared to those treated with only sulpiride while also reducing serum prolactin concentration. The pharmacokinetic study results showed that VPALR-SUL prolonged half-life and increased bioavailability. In conclusion, VPALR-SUL exhibited potential for enhancing sulpiride transport across the BBB, augmenting its antidepressant effects, and reducing serum prolactin levels. This study laid a foundation for improving sulpiride delivery and developing novel antidepressants.


Asunto(s)
Antidepresivos , Péptidos de Penetración Celular , Prolactina , Sulpirida , Animales , Prolactina/sangre , Sulpirida/farmacología , Antidepresivos/farmacología , Ratones , Masculino , Péptidos de Penetración Celular/farmacología , Depresión/tratamiento farmacológico , Depresión/sangre , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Disponibilidad Biológica
10.
BMC Biotechnol ; 24(1): 24, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685061

RESUMEN

BACKGROUND: Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins. In this work, a molecular adapter that consists of a cell penetrating peptide and two cleavable peptides was inserted into a targeted toxin between the ribosome-inactivating protein dianthin and the epidermal growth factor. Applying cell viability assays, this study examined whether the addition of the adapter further augments the endosomal escape enhancement of the glycosylated triterpenoid SO1861, which has shown up to more than 1000-fold enhancement in the past. RESULTS: Introducing the peptide adapter into the targeted toxin led to an about 12-fold enhancement in the cytotoxicity on target cells while SO1861 caused a 430-fold increase. However, the combination of adapter and glycosylated triterpenoid resulted in a more than 4300-fold enhancement and in addition to a 51-fold gain in specificity. CONCLUSIONS: Our results demonstrated that the cleavable peptide augments the endosomal escape mediated by glycosylated triterpenoids while maintaining specificity. Thus, the adapter is a promising addition to glycosylated triterpenoids to further increase the efficacy and therapeutic window of targeted toxins.


Asunto(s)
Endosomas , Humanos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Triterpenos/farmacología , Triterpenos/química , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología
11.
Biophys J ; 123(7): 901-908, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38449310

RESUMEN

A cell-penetrating peptide (CPP) is a short amino-acid sequence capable of efficiently translocating across the cellular membrane of mammalian cells. However, the potential of CPPs as a delivery vector is hampered by the strong reduction of its translocation efficiency when it bears an attached molecular cargo. To overcome this problem, we used previously developed diblock copolymers of elastin-like polypeptides (ELPBCs), which we end functionalized with TAT (transactivator of transcription), an archetypal CPP built from a positively charged amino acid sequence of the HIV-1 virus. These ELPBCs self-assemble into micelles at a specific temperature and present the TAT peptide on their corona. These micelles can recover the lost membrane affinity of TAT and can trigger interactions with the membrane despite the presence of a molecular cargo. Herein, we study the influence of membrane surface charge on the adsorption of TAT-functionalized ELP micelles onto giant unilamellar vesicles (GUVs). We show that the TAT-ELPBC micelles show an increased binding constant toward negatively charged membranes compared to neutral membranes, but no translocation is observed. The affinity of the TAT-ELPBC micelles for the GUVs displays a stepwise dependence on the lipid charge of the GUV, which, to our knowledge, has not been reported previously for interactions between peptides and lipid membranes. By unveiling the key steps controlling the interaction of an archetypal CPP with lipid membranes, through regulation of the charge of the lipid bilayer, our results pave the way for a better design of delivery vectors based on CPPs.


Asunto(s)
Péptidos de Penetración Celular , Micelas , Animales , Polipéptidos Similares a Elastina , Adsorción , Membrana Dobles de Lípidos/química , Péptidos/química , Liposomas Unilamelares/química , Péptidos de Penetración Celular/química , Mamíferos/metabolismo
12.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542884

RESUMEN

Cell-penetrating peptides (CPPs) are invaluable tools for delivering various substances into cells by crossing biological membranes. However, the effects of cell-penetrating peptide fusion proteins on the biological activity of antibodies remain to be fully understood. Here, we engineered a recombinant protein, LP-scFv, which combines the single-chain variable region of anti-human epidermal growth factor receptor-2 with a novel and non-oxic cell-penetrating peptide as a leader peptide. The introduction of this leader peptide led to a more than twofold increase in the internalization efficiency of the single-chain antibody, as confirmed using microscopic analysis and flow cytometry. The effects of the single-chain antibodies and LP-scFv on cell viability were evaluated using the MTT assay. Both the single-chain antibodies and LP-scFv reduced the viability of BT474 and NCI-N87 cells in a dose-dependent manner while exhibiting minimal toxicity towards MCF-7 and MCF-10A cells. Further investigation into LP-scFv's mechanism revealed that the induced leader peptide does not alter the MAPK-ERK1/2 and PI3K/AKT pathways of single-chain antibodies. An enhanced antitumor activity was also confirmed in an NCI-N87 tumor xenograft model in mice with a reduction of 45.2% in tumor growth inhibition (vs. 23.1% for scFv) with a 50 mg/kg dose after orthotopic injection administration, which was equivalent to that of trastuzumab (vs. 55.7% for trastuzumab). Overall, these results indicate that LP-scFv exhibits significant permeation activity in HER2-positive cells to enhance the intracellular dose effect on antitumor activity in vitro and in vivo. This research lays the foundation for designing novel antibody-based therapies for cancer.


Asunto(s)
Neoplasias de la Mama , Péptidos de Penetración Celular , Anticuerpos de Cadena Única , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , Anticuerpos de Cadena Única/farmacología , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Señales de Clasificación de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Acc Chem Res ; 57(8): 1098-1110, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530194

RESUMEN

ConspectusFor the delivery of drugs, different nanosized drug carriers (e.g., liposomes, lipid nanoparticles, and micelles) have been developed in order to treat diseases that afflict society. Frequently, these vehicles are formed by the self-assembly of small molecules to encapsulate the therapeutic cargo of interest. Over decades, nanoparticles have been optimized to make them more efficient and specific to fulfill tailor-made tasks, such as specific cell targeting or enhanced cellular uptake. In recent years, lipid-based nanoparticles in particular have taken center stage; however, off-targeting side effects and poor endosomal escape remain major challenges since therapies require high efficacy and acceptable toxicity.To overcome these issues, many different approaches have been explored to make drug delivery more specific, resulting in reduced side effects, to achieve an optimal therapeutic effect and a lower required dose. The fate of nanoparticles is largely dependent on size, shape, and surface charge. A common approach to designing drug carriers with targeting capability is surface modification. Different approaches to functionalize nanoparticles have been investigated since the attachment of targeting moieties plays a significant role in whether they can later interact with surface-exposed receptors of cells. To this end, various strategies have been used involving different classes of biomolecules, such as small molecules, nucleic acids, antibodies, aptamers, and peptides.Peptides in particular are often used since there are many receptors overexpressed in different specific cell types. Furthermore, peptides can be produced and modified at a low cost, enabling high therapeutic screening. Cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs) are frequently used for this purpose. Less studied in this context are fusogenic coiled-coil peptides. Lipid-based nanoparticles functionalized with these peptides are able to avoid the endolysosomal pathway; instead such particles can be taken up by membrane fusion, resulting in increased delivery of payload. Furthermore, they can be used for targeting cells/organs but are not directed at surface-exposed receptors. Instead, they recognize complementary peptide sequences, facilitating their uptake into cells.In this Account, we will discuss peptides as moieties for enhanced cytosolic delivery, targeted uptake, and how they can be attached to lipid-based nanoparticles to alter their properties. We will discuss the properties imparted to the particles by peptides, surface modification approaches, and recent examples showing the power of peptides for in vitro and in vivo drug delivery. The main focus will be on the functionalization of lipid-based nanoparticles by fusogenic coiled-coil peptides, highlighting the relevance of this concept for the development of future therapeutics.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Liposomas/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos , Péptidos de Penetración Celular/química , Lípidos/química
14.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38440998

RESUMEN

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Asunto(s)
Barrera Hematoencefálica , Péptidos de Penetración Celular , Sistemas de Liberación de Medicamentos , Nanopartículas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/administración & dosificación , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico
15.
Chemistry ; 30(28): e202400174, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456376

RESUMEN

We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.


Asunto(s)
Calixarenos , Péptidos de Penetración Celular , Cricetulus , Calixarenos/química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Humanos , Células CHO , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Fenoles/química , Endocitosis , Tensoactivos/química
16.
Biomater Sci ; 12(9): 2321-2330, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38488841

RESUMEN

Nanotherapies, valued for their high efficacy and low toxicity, frequently serve as antitumor treatments, but do not readily penetrate deep into tumor tissues and cells. Here we developed an improved tumor-penetrating peptide (TPP)-based drug delivery system. Briefly, the established TPP iNGR was modified to generate a linear NGR peptide capable of transporting nanotherapeutic drugs into tumors through a CendR pathway-dependent, neuropilin-1 receptor-mediated process. Although TPPs have been reported to reach intended tumor targets, they often fail to penetrate cell membranes to deliver tumoricidal drugs to intracellular targets. We addressed this issue by harnessing cell penetrating peptide technology to develop a liposome-based multibarrier-penetrating delivery system (mbPDS) with improved synergistic drug penetration into deep tumor tissues and cells. The system incorporated doxorubicin-loaded liposomes coated with nona-arginine (R9) CPP and cyclic iNGR (CRNGRGPDC) molecules, yielding Lip-mbPDS. Lip-mbPDS tumor-targeting, tumor cell/tissue-penetrating and antitumor capabilities were assessed using CD13-positive human fibrosarcoma-derived cell (HT1080)-based in vitro and in vivo tumor models. Lip-mbPDS evaluation included three-dimensional layer-by-layer confocal laser scanning microscopy, cell internalization/toxicity assays, three-dimensional tumor spheroid-based penetration assays and antitumor efficacy assays conducted in an animal model. Lip-mbPDS provided enhanced synergistic drug penetration of multiple biointerfaces for potentially deep tumor therapeutic outcomes.


Asunto(s)
Péptidos de Penetración Celular , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liposomas , Humanos , Animales , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Péptidos de Penetración Celular/química , Línea Celular Tumoral , Liposomas/química , Ratones , Portadores de Fármacos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Desnudos , Péptidos Cíclicos/química , Péptidos Cíclicos/administración & dosificación
17.
ACS Chem Biol ; 19(4): 908-915, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38525961

RESUMEN

The efficient cytosolic delivery of proteins is critical for advancing novel therapeutic strategies. Current delivery methods are severely limited by endosomal entrapment, and detection methods lack sophistication in tracking the fate of delivered protein cargo. HaloTag, a commonly used protein in chemical biology and a challenging delivery target, is an exceptional model system for understanding and exploiting cellular delivery. Here, we employed a combinatorial strategy to direct HaloTag to the cytosol. We established the use of Virginia Orange, a pH-sensitive fluorophore, and Janelia Fluor 585, a similar but pH-agnostic fluorophore, in a fluorogenic assay to ascertain protein localization within human cells. Using this assay, we investigated HaloTag delivery upon modification with cell-penetrating peptides, carboxyl group esterification, and cotreatment with an endosomolytic agent. We found efficacious cytosolic entry with two distinct delivery methods. This study expands the toolkit for detecting the cytosolic access of proteins and highlights that multiple intracellular delivery strategies can be used synergistically to effect cytosolic access. Moreover, HaloTag is poised to serve as a platform for the delivery of varied cargo into human cells.


Asunto(s)
Péptidos de Penetración Celular , Colorantes Fluorescentes , Hidrolasas , Humanos , Transporte Biológico , Péptidos de Penetración Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Colorantes Fluorescentes/química
18.
Protein Sci ; 33(4): e4944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501479

RESUMEN

Antibody (Ab)-based drugs have been widely used in targeted therapies and immunotherapies, leading to significant improvements in tumor therapy. However, the failure of Ab therapy due to the loss of target antigens or Ab modifications that affect its function limits its application. In this study, we expanded the application of antibodies (Abs) by constructing a fusion protein as a versatile tool for Ab-based target cell detection, delivery, and therapy. We first constructed a SpaC Catcher (SpaCC for short) fusion protein that included the C domains of Staphylococcal protein A (SpaC) and the SpyCatcher. SpaCC conjugated with SpyTag-X (S-X) to form the SpaCC-S-X complex, which binds non-covalently to an Ab to form the Ab-SpaCC-S-X protein complex. The "X" can be a variety of small molecules such as fluoresceins, cell-penetrating peptide TAT, Monomethyl auristatin E (MMAE), and DNA. We found that Ab-SpaCC-S-FITC(-TAT) could be used for target cell detection and delivery. Besides, we synthesized the Ab-SpaCC-SN3-MMAE complex by linking Ab with MMAE by SpaCC, which improved the cytotoxicity of small molecule toxins. Moreover, we constructed an Ab-DNA complex by conjugating SpaCC with the aptamer (Ap) and found that Ab-SpaCC-SN3-Ap boosted the tumor-killing function of T-cells by retargeting tumor cells. Thus, we developed a multifunctional tool that could be used for targeted therapies and immunotherapies, providing a cheap and convenient novel drug development strategy.


Asunto(s)
Péptidos de Penetración Celular , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Inmunoterapia , Anticuerpos , ADN , Línea Celular Tumoral
19.
Molecules ; 29(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543041

RESUMEN

Design of amyloid ß-protein (Aß) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer's disease (AD). However, the limited blood-brain barrier (BBB) penetration and poor Aß-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aß-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aß aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 µg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 µg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aß-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 µg/mL increased the viability of Aß-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aß in vivo, and provided new insights into the design of multifunctional nanocomposites of protein-metal clusters against AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos de Penetración Celular , Fragmentos de Péptidos , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Compuestos de Manganeso/farmacología , Óxidos/farmacología , Prealbúmina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Placa Amiloide/metabolismo , Mamíferos/metabolismo
20.
Bioconjug Chem ; 35(3): 419-431, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38450606

RESUMEN

The design of a potent amyloid-ß protein (Aß) inhibitor plays a pivotal role in the prevention and treatment of Alzheimer's disease (AD). Despite endogenous transthyretin (TTR) being recognized as an Aß inhibitor, the weak inhibitory and blood brain barrier (BBB) crossing capabilities hinder it for Aß aggregation inhibition and transport. Therefore, we have herein designed a recombinant TTR by conjugating a cationic cell penetrating peptide (penetratin, Pen), which not only enabled the fusion protein, TTR-Pen (TP), to present high BBB penetration but also greatly enhanced the potency of Aß inhibition. Namely, the protein fusion made TP positively charged, leading to a potent suppression of Aß40 fibrillization at a low concentration (1.5 µM), while a TTR concentration as high as 12.5 µM was required to gain a similar function. Moreover, TP could mitigate Aß-induced neuronal death, increase cultured cell viability from 72% to 92% at 2.5 µM, and extend the lifespan of AD nematodes from 14 to 18 d. Thermodynamic studies revealed that TP, enriched in positive charges, presented extensive electrostatic interactions with Aß40. Importantly, TP showed excellent BBB penetration performance, with a 10 times higher BBB permeability than TTR, which would allow TP to enter the brain of AD patients and participate in the transport of Aß species out of the brain. Thus, it is expected that the fusion protein has great potential for drug development in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Péptidos de Penetración Celular , Humanos , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/metabolismo , Prealbúmina/metabolismo , Prealbúmina/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Proteínas Recombinantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA