Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Chem Biol Drug Des ; 104(1): e14574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958121

RESUMEN

To develop novel bovine lactoferrin (bLF) peptides targeting bLF-tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) binding sites, we identified two peptides that could target bLF-TRAF6 binding sites using structural analysis. Moreover, another peptide that could bind to the TRAF6 dimerization area was selected from the bLF sequence. The effects of each peptide on cytokine expression in lipopolysaccharide (LPS)-stimulated osteoblasts (ST2) and on osteoclastogenesis were examined using an LPS-treated co-culture of primary bone marrow cells (BMCs) with ST2 cells and a single culture of osteoclast precursor cells (RAW-D) treated with soluble receptor activator of NF-κB ligand. Finally, the effectiveness of these peptides against LPS-induced alveolar bone destruction was assessed. Two of the three peptides significantly suppressed LPS-induced TNF-α and interleukin-1ß expression in ST2 cells. Additionally, these peptides inhibited and reversed LPS-induced receptor activator of NF-κB ligand (RANKL) upregulation and osteoprotegerin (OPG) downregulation, respectively. Furthermore, both peptides significantly reduced LPS-induced osteoclastogenesis in the BMC-ST2 co-culture and RANKL-induced osteoclastogenesis in RAW-D cells. In vivo, topical application of these peptides significantly reduced the osteoclast number by downregulating RANKL and upregulating OPG in the periodontal ligament. It is indicated that the novel bLF peptides can be used to treat periodontitis-associated bone destruction.


Asunto(s)
Lactoferrina , Lipopolisacáridos , Osteoclastos , Péptidos , Animales , Lactoferrina/farmacología , Lactoferrina/química , Lactoferrina/metabolismo , Lipopolisacáridos/farmacología , Ratas , Péptidos/farmacología , Péptidos/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Masculino , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Bovinos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Sitios de Unión , Técnicas de Cocultivo , Osteoprotegerina/metabolismo , Modelos Animales de Enfermedad
2.
PLoS One ; 19(6): e0303374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843156

RESUMEN

The objective of this study is to investigate the effects of a moderate intensity physical training protocol, on alveolar bone morphology of rats submitted to ligature-induced periodontitis. Twenty-eight male Wistar rats were divided into four groups, considering the presence/absence of periodontitis and presence/absence of training. The training protocol was performed on a treadmill, 30 min/day, 5 days a week, for 4 weeks. In the experimental periodontal breakdown, with/without training, ligatures were placed on the lower first molars on the 14th day of the experiment, and were followed until the end of the protocol. At the end of the experiment, animals were euthanized and samples of plasma and mandibles were collected for immunoenzymatic evaluation of interleukins (IL)-1ß, IL-6, TNF-α and IL-10, evaluation of serum concentrations of C-reactive protein, analysis of lipid peroxidation (LPO) and reduced glutathione, histological and microtomographic analyses were performed. Physical training resulted in a reduced levels of IL-1ß, IL-6, TNF-α C-reactive protein and LPO and an increase in the levels of IL-10 in rats with periodontitis (p<0.05); a reduction in the inflammatory infiltrate and decreased fiber degradation was identified in histological analysis. Additionally, it was shown a decrease in vertical bone loss and an increase in the bone volume/trabecular volume ratio was identified in periodontitis+physical training group (p<0.05). Based on the results, the practice of frequent physical exercise, at moderate intensity, can contribute to the reduction of damage related to the disproportionate inflammatory response in periodontitis.


Asunto(s)
Peroxidación de Lípido , Estrés Oxidativo , Periodontitis , Condicionamiento Físico Animal , Ratas Wistar , Animales , Periodontitis/metabolismo , Periodontitis/patología , Masculino , Ratas , Proteína C-Reactiva/metabolismo , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/metabolismo , Glutatión/metabolismo , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Citocinas/sangre
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892405

RESUMEN

Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.


Asunto(s)
MicroARNs , Periodontitis , Streptococcus gordonii , MicroARNs/genética , MicroARNs/metabolismo , Animales , Streptococcus gordonii/genética , Periodontitis/microbiología , Periodontitis/genética , Ratones , Masculino , Femenino , Ratones Endogámicos C57BL , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/genética , Encía/microbiología , Encía/metabolismo , Regulación de la Expresión Génica , Pérdida de Hueso Alveolar/microbiología , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/genética , Perfilación de la Expresión Génica , Cinética
4.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791262

RESUMEN

Orthodontic space closure following tooth extraction is often hindered by alveolar bone deficiency. This study investigates the therapeutic use of nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides loaded with polylactic-co-glycolic acid nanospheres (PLGA-NfDs) to mitigate alveolar bone loss during orthodontic tooth movement (OTM) following the bilateral extraction of maxillary first molars in a controlled experiment involving forty rats of OTM model with ethics approved. The decreased tendency of the OTM distance and inclination angle with increased bone volume and improved trabecular bone structure indicated minimized alveolar bone destruction. Reverse transcription-quantitative polymerase chain reaction and histomorphometric analysis demonstrated the suppression of inflammation and bone resorption by downregulating the expression of tartrate-resistant acid phosphatase, tumor necrosis factor-α, interleukin-1ß, cathepsin K, NF-κB p65, and receptor activator of NF-κB ligand while provoking periodontal regeneration by upregulating the expression of alkaline phosphatase, transforming growth factor-ß1, osteopontin, and fibroblast growth factor-2. Importantly, relative gene expression over the maxillary second molar compression side in proximity to the alveolus highlighted the pharmacological effect of intra-socket PLGA-NfD administration, as evidenced by elevated osteocalcin expression, indicative of enhanced osteocytogenesis. These findings emphasize that locally administered PLGA-NfD serves as an effective inflammatory suppressor and yields periodontal regenerative responses following tooth extraction.


Asunto(s)
Nanosferas , Oligodesoxirribonucleótidos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Técnicas de Movimiento Dental , Alveolo Dental , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Nanosferas/química , Técnicas de Movimiento Dental/métodos , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/administración & dosificación , Alveolo Dental/efectos de los fármacos , Alveolo Dental/patología , Masculino , FN-kappa B/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Pérdida de Hueso Alveolar/terapia , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo , Extracción Dental
5.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38637003

RESUMEN

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Asunto(s)
Células Endoteliales , Encía , Células Endoteliales de la Vena Umbilical Humana , Periodontitis , Proteínas de Unión a Fosfato , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Piroptosis , Animales , Ratones , Humanos , Periodontitis/metabolismo , Periodontitis/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Encía/patología , Encía/metabolismo , Encía/citología , Proteínas de Unión a Fosfato/metabolismo , Células Endoteliales/metabolismo , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtomografía por Rayos X , Modelos Animales de Enfermedad , Porphyromonas gingivalis
6.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615917

RESUMEN

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Asunto(s)
Hierro , Ratones Endogámicos C57BL , Mitocondrias , Biogénesis de Organelos , Osteoclastos , Periodontitis , Animales , Ratones , Hierro/metabolismo , Células RAW 264.7 , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteogénesis/efectos de los fármacos , Masculino , Resorción Ósea/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Resorción Ósea/etiología , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/patología
7.
Sci China Life Sci ; 67(5): 1010-1026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489007

RESUMEN

Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.


Asunto(s)
Pérdida de Hueso Alveolar , Berberina , Regeneración Ósea , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Células Madre Mesenquimatosas , Berberina/farmacología , Humanos , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Regeneración Ósea/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Factor Estimulante de Colonias de Macrófagos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Células Cultivadas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones
8.
Cell Biol Int ; 48(6): 808-820, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433534

RESUMEN

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cobalto , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteogénesis , Ligamento Periodontal , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Cobalto/farmacología , Diferenciación Celular/efectos de los fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hipoxia de la Célula , Células Madre/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Pérdida de Hueso Alveolar/metabolismo , Fosfoproteínas/metabolismo , Masculino , Conejos , Regeneración Ósea/efectos de los fármacos
9.
Int Endod J ; 57(8): 1110-1123, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38441141

RESUMEN

AIM: Apical periodontitis is an inflammatory disorder triggered by an immune response to bacterial infection, leading to the periapical tissue damage and alveolar resorption. However, the underlying mechanisms driving this process remain elusive, due to the complex and interconnected immune microenvironment within the local lesion site. In this study, the influence of Nlrp3 inflammasome-mediated immune response on the apical periodontitis was investigated. METHODOLOGY: RNA sequencing, immunohistochemistry and ELISA assay were performed to investigate the activation of Nlrp3 inflammasome signalling pathways in the human periapical tissues, including radicular cysts, periapical granulomas and healthy oral mucosa. A mouse model of apical periodontitis was established to study the role of Nlrp3 knockout in periapical bone resorption and Treg cell stability, and the underlying mechanism was explored through in vitro experiments. In vivo Treg cell adoptive transfer was performed to investigate the effects of Treg cells on the progression of apical periodontitis. RESULTS: Our findings find that the hyperactivated Nlrp3 inflammasome is present in human periapical lesions and plays a vital role in the immune-related periapical bone loss. Using a mouse model of apical periodontitis, we observe that Nlrp3 deficiency is resistant to bone resorption. This protection was accompanied by elevated generation and infiltration of local Treg cells that displayed a notable ability to suppress RANKL-dependent osteoclast differentiation. In terms of the mechanism of action, Nlrp3 deficiency directly inhibits the osteoclast differentiation and bone loss through JNK/MAPK and NF-κB pathways. In addition, Nlrp3 induces pyroptosis in the stem cells from apical papilla (SCAPs), and the subsequent release of cytokines affects the stability of Treg cell in periapical lesions, leading indirectly to enhanced bone resorption. In turn, adoptive transfer of both Nlrp3-deficient and wild-type Treg cells effectively prevent the bone erosion during apical periodontitis. CONCLUSIONS: Together, our data identify that the Nlrp3 inflammasome modulates the Treg cell stability and osteoclastogenesis in the periapical inflammatory microenvironment, thus determining the progression of bone erosion.


Asunto(s)
Modelos Animales de Enfermedad , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Periodontitis Periapical , Linfocitos T Reguladores , Animales , Humanos , Ratones , Pérdida de Hueso Alveolar/inmunología , Pérdida de Hueso Alveolar/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Granuloma Periapical/inmunología , Periodontitis Periapical/inmunología , Periodontitis Periapical/metabolismo , Quiste Radicular/inmunología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Masculino
10.
BMC Oral Health ; 24(1): 395, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549147

RESUMEN

BACKGROUND: Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS: Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS: Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION: The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.


Asunto(s)
Pérdida de Hueso Alveolar , Curcumina , Compuestos Organometálicos , Periodontitis , Piridinas , Ratas , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Hidrogeles/uso terapéutico , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Periodontitis/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/metabolismo , Porphyromonas gingivalis
11.
Int Immunopharmacol ; 130: 111745, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38430803

RESUMEN

Autologous tooth grafting is a dental restorative modality based on periodontal ligament healing.Human periodontal ligament stem cells(PDLSCs) are involved in the formation and remodeling of periodontal tissue.Based on previous findings, the proliferation and differentiation of processing cryopreserved periodontal ligament stem cells (PDLSCs) exhibit similarities to those of fresh cells. However, there is evident absorption in the transplanted frozen tooth's roots and bones, with the underlying cause remaining unknown. Granulocyte macrophage colony-stimulating factor(GM-CSF) is named for its produce granulocyte and macrophage precursors from bone marrow precursors, and it also serves as one of the regulatory factors in inflammatory and osteoclast formation. This study aimed to investigate changes in GM-CSF expression in frozen PDLSCs (fhPDLSCs) and evaluate the impact of GM-CSF on PDLSCs with respect to cellular activity and osteogenic ability. The role of GM-CSF in periodontal absorption was further speculated by comparing with IL-1ß. The results revealed a significant increase in GM-CSF levels from fhPDLSCs compared to fresh cells, which exhibited an equivalent inflammatory stimulation effect as 1 ng/ml IL-1ß. Cell viability also increased with increasing concentrations of GM-CSF; however, the GM-CSF from fhPDLSCs was not sufficient to significantly trigger osteoclastic factors. Considering its interaction with IL-1ß and positive feedback mechanism, environments with high doses of GM-CSF derived from fhPDLSCs are more likely to activate osteoclastic responses.Therefore, for frozen tooth replantation, great attention should be paid to anti-inflammation and anti-infection.GM-CSF may serve as a potential therapeutic target for inhibiting periodontal resorption in delayed grafts.


Asunto(s)
Pérdida de Hueso Alveolar , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Diente , Humanos , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/terapia , Diferenciación Celular , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos , Osteoclastos , Diente/trasplante , Trasplante Autólogo
12.
J Bone Miner Res ; 39(5): 580-594, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477783

RESUMEN

Healthy alveolar bone is the cornerstone of oral function and oral treatment. Alveolar bone is highly dynamic during the entire lifespan and is affected by both systemic and local factors. Importantly, alveolar bone is subjected to unique occlusal force in daily life, and mechanical force is a powerful trigger of bone remodeling, but the effect of occlusal force in maintaining alveolar bone mass remains ambiguous. In this study, the Piezo1 channel is identified as an occlusal force sensor. Activation of Piezo1 rescues alveolar bone loss caused by a loss of occlusal force. Moreover, we identify Piezo1 as the mediator of occlusal force in osteoblasts, maintaining alveolar bone homeostasis by directly promoting osteogenesis and by sequentially regulating catabolic metabolism through Fas ligand (FasL)-induced osteoclastic apoptosis. Interestingly, Piezo1 activation also exhibits remarkable efficacy in the treatment of alveolar bone osteoporosis caused by estrogen deficiency, which is highly prevalent among middle-aged and elderly women. Promisingly, Piezo1 may serve not only as a treatment target for occlusal force loss-induced alveolar bone loss but also as a potential target for metabolic bone loss, especially in older patients.


Daily occlusal force and estrogen synergistically maintain alveolar bone homeostasis. PIEZO1 in osteoblasts plays a critical role in sensing occlusal force and maintaining bone mass. PIEZO1 may promote osteoclastic apoptosis through osteoblast-secreted FasL through a PIEZO1-STAT3/ESR1-FasL pathway. Restoration of occlusal force with dental therapies as early as possible to prevent alveolar bone loss is the major priority in oral health care. PIEZO1 may serve as a potential target for bone metabolism disorders.


Asunto(s)
Homeostasis , Canales Iónicos , Animales , Femenino , Canales Iónicos/metabolismo , Ratones , Fuerza de la Mordida , Osteogénesis , Humanos , Osteoblastos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Apoptosis , Osteoclastos/metabolismo
13.
J Dent Res ; 103(6): 631-641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491721

RESUMEN

Periodontal tissue destruction in periodontitis is a consequence of the host inflammatory response to periodontal pathogens, which could be aggravated in the presence of type 2 diabetes mellitus (T2DM). Accumulating evidence highlights the intricate involvement of macrophage-mediated inflammation in the pathogenesis of periodontitis under both normal and T2DM conditions. However, the underlying mechanism remains elusive. Alpha-2-glycoprotein 1 (AZGP1), a glycoprotein featuring an MHC-I domain, has been implicated in both inflammation and metabolic disorders. In this study, we found that AZGP1 was primarily colocalized with macrophages in periodontitis tissues. AZGP1 was increased in periodontitis compared with controls, which was further elevated when accompanied by T2DM. Adeno-associated virus-mediated overexpression of Azgp1 in the periodontium significantly enhanced periodontal inflammation and alveolar bone loss, accompanied by elevated M1 macrophages and pyroptosis in murine models of periodontitis and T2DM-associated periodontitis, while Azgp1-/- mice exhibited opposite effects. In primary bone marrow-derived macrophages stimulated by lipopolysaccharide (LPS) or LPS and palmitic acid (PA), overexpression or knockout of Azgp1 markedly upregulated or suppressed, respectively, the expression of macrophage M1 markers and key components of the NLR Family Pyrin Domain Containing 3 (NLRP3)/caspase-1 signaling. Moreover, conditioned medium from Azgp1-overexpressed macrophages under LPS or LPS+PA stimulation induced higher inflammatory activation and lower osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs). Furthermore, elevated M1 polarization and pyroptosis in macrophages and associated detrimental effects on hPDLSCs induced by Azgp1 overexpression could be rescued by NLRP3 or caspase-1 inhibition. Collectively, our study elucidated that AZGP1 could aggravate periodontitis by promoting macrophage M1 polarization and pyroptosis through the NLRP3/casapse-1 pathway, which was accentuated in T2DM-associated periodontitis. This finding deepens the understanding of AZGP1 in the pathogenesis of periodontitis and suggests AZGP1 as a crucial link mediating the adverse effects of diabetes on periodontal inflammation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Macrófagos , Periodontitis , Piroptosis , Animales , Macrófagos/metabolismo , Periodontitis/metabolismo , Periodontitis/inmunología , Ratones , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Caspasa 1/metabolismo , Masculino , Ratones Noqueados , Transducción de Señal , Pérdida de Hueso Alveolar/metabolismo , Glicoproteínas/metabolismo
14.
Int J Oral Sci ; 16(1): 20, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418808

RESUMEN

Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Animales , Ratones , Pérdida de Hueso Alveolar/metabolismo , Eferocitosis , Macrófagos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico , Periodontitis/tratamiento farmacológico
15.
J Periodontal Res ; 59(3): 576-588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411269

RESUMEN

OBJECTIVE: The aim of this study was to investigate the association between autoinducer-2 (AI-2) of oral microbial flora and the alveolar bone destruction in periodontitis to determine if AI-2 may have the potential that monitor periodontitis and predict bone loss. BACKGROUND: Plaque biofilm was the initiating factor of periodontitis and the essential factor of periodontal tissue destruction. The formation of biofilms depended on the complex regulation of the quorum sensing (QS) system, in which bacteria could sense changes in surrounding bacterial density by secreting the autoinducer (AI) to regulate the corresponding physiological function. Most oral bacteria also communicated with each other to form biofilms administrating the QS system, which implied that the QS system of periodontal pathogens was related to periodontitis, but the specific relationship was unknown. METHOD: We collected the gingival crevicular fluid (GCF) samples and measured the concentration of AI-2 in samples using the Vibrio harveyi BB180 bioluminescent-reporter system. To explore the interaction between AI-2 and bone metabolism, we utilized AI-2 purified from Fusobacterium nucleatum to investigate the impact of F. nucleatum AI-2 on osteoclast differentiation. Moreover, we constructed murine periodontitis models and multi-species biofilm models to study the association between AI-2 and periodontal disease progression. RESULTS: The AI-2 concentration in GCF samples increased along with periodontal disease progression (p < .0001). F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner. In the periodontitis mice model, the CEJ-ABC distance in the F. nucleatum AI-2 treatment group was higher than that in the simple ligation group (p < .01), and the maxilla of the mice in the group exhibited significantly lower BMD and BV/TV values (p < .05). CONCLUSIONS: We demonstrated that the AI-2 concentration varied with the alveolar bone destruction in periodontitis, and it may have the potential for screening periodontitis. F. nucleatum AI-2 promoted osteoclast differentiation in a dose-dependent manner and aggravated bone loss.


Asunto(s)
Pérdida de Hueso Alveolar , Biopelículas , Fusobacterium nucleatum , Homoserina , Lactonas , Periodontitis , Pérdida de Hueso Alveolar/microbiología , Pérdida de Hueso Alveolar/metabolismo , Periodontitis/microbiología , Animales , Homoserina/análogos & derivados , Homoserina/metabolismo , Biopelículas/crecimiento & desarrollo , Ratones , Humanos , Líquido del Surco Gingival/microbiología , Líquido del Surco Gingival/química , Masculino , Modelos Animales de Enfermedad , Osteoclastos , Percepción de Quorum , Femenino , Adulto , Diferenciación Celular , Persona de Mediana Edad , Microtomografía por Rayos X
16.
Histol Histopathol ; 39(8): 1053-1063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38235568

RESUMEN

BACKGROUND: Hypoxia and mouth breathing are closely related to maxillofacial bone metabolism and are characteristic of obstructive sleep apnea-hypopnea syndrome (OSAHS). Being key factors in the hypoxia response, hypoxia-inducible factor 1α (HIF-1α) and HIF-responsive gene vascular endothelial growth factor (VEGF) are essential for bone remodeling. This study focuses on the role of the HIF-1α/VEGF pathway in alveolar bone metabolism during OSAHS. MATERIALS AND METHODS: 36 three-week-old male Wistar rats were divided into three groups: twelve control rats, twelve bilateral nasal obstructed (BNO) rats, twelve BNO rats treated with intraperitoneal injection of Dimethyloxalylglycine (DMOG). After two weeks, the microstructure and bone mineral density (BMD) of alveolar bone were evaluated using micro-computed tomography (micro-CT). The expressions of HIF-1α and VEGF in the alveolar bone were then assessed via immunohistochemistry staining, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Alkaline phosphatase (ALP) staining and Alizarin red S staining were performed to evaluate osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). RESULTS: Significant reductions in alveolar bone density were noted in BNO rats. Bilateral nasal obstruction increased the expressions of HIF-1α and VEGF in alveolar bone. With upregulation of HIF-1α/VEGF via DMOG, alveolar bone density of BNO rats increased. Furthermore, DMOG promoted the osteogenic differentiation of BMSCs by stabilizing the HIF-1α protein and increasing the expression of VEGF. CONCLUSION: Bilateral nasal obstruction changes alveolar bone structure and leads to a reduction in alveolar bone density. Moreover, the expression of the HIF-1α/VEGF signaling pathway increases to protect alveolar bone density reduction in BNO rats.


Asunto(s)
Densidad Ósea , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratas Wistar , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratas , Densidad Ósea/efectos de los fármacos , Transducción de Señal , Obstrucción Nasal/metabolismo , Osteogénesis/efectos de los fármacos , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Modelos Animales de Enfermedad , Apnea Obstructiva del Sueño/metabolismo
17.
J Dent Res ; 103(2): 208-217, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38193302

RESUMEN

Periodontitis is a complex disease characterized by distinct inflammatory stages, with a peak of inflammation in the early phase and less prominent inflammation in the advanced phase. The insulin-like growth factor 2-binding proteins 2 (IGF2BP2) has recently been identified as a new m6A reader that protects m6A-modified messenger RNAs (mRNAs) from decay, thus participating in multiple biological processes. However, its role in periodontitis remains unexplored. Here, we investigated the role of IGF2BP2 in inflammation and osteoclast differentiation using a ligature-induced periodontitis model. Our findings revealed that IGF2BP2 responded to bacterial-induced inflammatory stimuli and exhibited differential expression patterns in early and advanced periodontitis stages, suggesting its dual role in regulating this disease. Depletion of Igf2bp2 contributed to increased release of inflammatory cytokines, thereby exacerbating periodontitis after 3 d of ligature while suppressing osteoclast differentiation and ameliorating periodontitis after 14 d of ligature. Mechanistically, we demonstrated that IGF2BP2 directly interacted with Cd5l and Cd36 mRNA via RNA immunoprecipitation assay. Overexpression of CD36 or recombinant CD5L rescued the osteoclast differentiation ability of Igf2bp2-null cells upon lipopolysaccharide stimulus, and thus the downregulation of Cd36 and Cd5l effectively reversed periodontitis in the advanced stage. Altogether, this study deepens our understanding of the potential mechanistic link among the dysregulated m6A reader IGF2BP2, immunomodulation, and osteoclastogenesis during different stages of periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Osteoclastos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Periodontitis/metabolismo , Inflamación/metabolismo , Osteogénesis , Proteínas de Unión al ARN/farmacología
18.
J Periodontal Res ; 59(3): 565-575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38240289

RESUMEN

BACKGROUND AND OBJECTIVE: Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS: We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS: We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION: HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.


Asunto(s)
Pérdida de Hueso Alveolar , Factor de Crecimiento de Hepatocito , Ratones Endogámicos C57BL , Ratones Transgénicos , Periodontitis , Microtomografía por Rayos X , Animales , Factor de Crecimiento de Hepatocito/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Ratones , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Masculino , Ensayo de Inmunoadsorción Enzimática
19.
J Clin Periodontol ; 51(6): 742-753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267365

RESUMEN

AIM: To investigate the specific role of arrestin beta-2 (ARRB2) in the progression of periodontitis and the underlying mechanisms. MATERIALS AND METHODS: Single-cell RNA sequencing data were used to analyse gene expression in periodontal tissues from healthy controls and patients with periodontitis. Real-time quantitative polymerase chain reaction, Western blotting and immunohistochemical staining were performed to detect the expression of ARRB2. Furthermore, a ligature-induced periodontitis model was created. Using radiographic and histological methods, RNA sequencing and luciferase assay, the role of ARRB2 in periodontitis and the underlying mechanisms were explored. Finally, the therapeutic effect of melatonin, an inhibitor of activating transcription factor 6 (ATF6), on periodontitis in mice was assessed in both in vivo and in vitro experiments. RESULTS: ARRB2 expression was up-regulated in inflammatory periodontal tissue. In the ligature-induced mouse model, Arrb2 knockout exacerbated alveolar bone loss (ABL) and extracellular matrix (ECM) degradation. ARRB2 exerted a negative regulatory effect on ATF6, an essential targeted gene. Melatonin ameliorated ABL and an imbalance in ECM remodelling in Arrb2-deficient periodontitis mice. CONCLUSIONS: ARRB2 mediates ECM remodelling via inhibition of the ATF6 signalling pathway, which ultimately exerts a protective effect on periodontal tissues.


Asunto(s)
Factor de Transcripción Activador 6 , Modelos Animales de Enfermedad , Matriz Extracelular , Periodontitis , Arrestina beta 2 , Animales , Matriz Extracelular/metabolismo , Ratones , Periodontitis/metabolismo , Periodontitis/genética , Arrestina beta 2/metabolismo , Arrestina beta 2/genética , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Ratones Noqueados , Masculino , Pérdida de Hueso Alveolar/metabolismo , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Transducción de Señal
20.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38243688

RESUMEN

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Asunto(s)
Pérdida de Hueso Alveolar , Demencia , Modelos Animales de Enfermedad , Ratones Transgénicos , Periodontitis , Ligando RANK , Animales , Femenino , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/metabolismo , Masculino , Ratones , Demencia/etiología , Humanos , Anciano , Ligando RANK/análisis , Ligando RANK/metabolismo , Factores Sexuales , Periodontitis/complicaciones , Periodontitis/patología , Microtomografía por Rayos X , Osteoclastos/patología , Péptidos beta-Amiloides/metabolismo , Líquido del Surco Gingival/química , Fragmentos de Péptidos/análisis , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...