Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Int J Food Microbiol ; 418: 110730, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38714095

RESUMEN

Aerobic spore-forming (ASF) bacteria have been reported to cause ropiness in bread. Sticky and stringy degradation, discoloration, and an odor reminiscent of rotting fruit are typical characteristics of ropy bread spoilage. In addition to economic losses, ropy bread spoilage may lead to health risks, as virulent strains of ASF bacteria are not uncommon. However, the lack of systematic approaches to quantify physicochemical spoilage characteristics makes it extremely difficult to assess rope formation in bread. To address this problem, the aim of this study was to identify, characterize and objectively assess the spoilage potential of ASF bacteria associated with ropy bread. Hence, a set of 82 ASF bacteria, including isolates from raw materials and bakery environments as well as strains from international culture collections, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and their species identity confirmed by 16S rRNA and gyrA or panC gene sequencing. A standardized approach supported by objective colorimetric measurements was developed to assess the rope-inducing potential (RIP) of a strain by inoculating autoclaved bread slices with bacterial spores. In addition, the presence of potential virulence factors such as swarming motility or hemolysis was investigated. This study adds B. velezensis, B. inaquosorum and B. spizizenii to the species potentially implicated of causing ropy bread spoilage. Most importantly, this study introduces a standardized classification protocol for assessing the RIP of a bacterial strain. Colorimetric measurements are used to objectively quantify the degree of breadcrumb discoloration. Furthermore, our results indicate that strains capable of inducing rope spoilage in bread often exhibit swarming motility and virulence factors such as hemolysis, raising important food quality considerations.


Asunto(s)
Pan , Microbiología de Alimentos , Pan/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Bacterias Aerobias/aislamiento & purificación , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Bacterias Aerobias/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Factores de Virulencia/genética , Contaminación de Alimentos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
J Food Prot ; 87(6): 100280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642807

RESUMEN

A validation study was conducted to investigate the effect of the English muffin baking process to control Salmonella contamination and to study the thermal inactivation kinetic parameters (D- and z-values) of Salmonella in English muffin dough. The unbleached bread flour was inoculated with 3 serovar Salmonella cocktail (Salmonella serovars viz., Newport, Typhimurium, and Senftenberg), and dried back to its preinoculated water activity levels with 7.46 ± 0.12 log CFU/g of Salmonella concentration. The Salmonella inoculated flour was used to prepare English muffin batter and baked at 204.4°C (400°F) for 18 min and allowed to cool at ambient air for 15 min. The English muffins reached 99 ± 0°C (211.96 ± 0.37°F) as their maximum mean internal temperature during baking. The pH and aw of English muffin dough were 5.01 ± 0.01 and 0.947 ± 0.003, respectively. At the end of the 18-min baking period, the Salmonella inoculated English muffins recorded a more than 5 log CFU/g reduction on the injury-recovery media. The D-values of 3 serovar cocktails of Salmonella at 55, 58.5, and 62°C were 42.0 ± 5.68, 15.6 ± 0.73, and 3.0 ± 0.32 min, respectively; and the z-value was 6.2 ± 0.59°C. The water activity (aw) of the English muffin crumb (0.947 ± 0.003 to 0.9557 ± 0.001) remained statistically unchanged during baking, whereas the aw of the muffin crust decreased significantly (0.947 ± 0.003 to 0.918 ± 0.002) by the end of 18 min of baking. This study validates and documents the first scientific evidence that baking English muffins at 204.4°C (400°F) for 18 min acts as an effective kill step by controlling Salmonella population by >5 log CFU/g.


Asunto(s)
Recuento de Colonia Microbiana , Contaminación de Alimentos , Microbiología de Alimentos , Salmonella , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Pan/microbiología , Humanos , Manipulación de Alimentos/métodos , Culinaria , Harina/microbiología , Cinética
3.
Int J Food Microbiol ; 417: 110705, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38640815

RESUMEN

The effect of a casein hydrolysate (CH) on the fermentation and quality of a naturally-fermented buckwheat sourdough (NFBS) were investigated, through assessing the fermentation characteristics, carbohydrate and protein degradation, texture, and bacterial composition of NFBS. According to the assaying data, CH might both increase the amount of lactic acid bacteria by 2.62 % and shorten the fermentation period by at least 3 h, subsequently leading to enhanced degradation of carbohydrate and protein, accompanied by a softer texture. More importantly, CH increased the relative abundance of lactobacillus in NFBS, making it the dominant bacterial genus and inhibited the growth of spoilage bacteria. In addition, Spearman correlation analysis indicated that the pH value, lactic and acetic acid contents, carbohydrates, protease activity, and these textural indices like hardness, elasticity, and adhesion had a positive/negative correlation with the bacterial composition of NFBS (Spearman correlation coefficient: -0.93-0.95). CH was thus regarded to be helpful to NFBS processing and production mainly by shortening its fermentation time, improving its fermentation performance, causing a finer texture and microstructure, and changing bacterial composition.


Asunto(s)
Pan , Caseínas , Fagopyrum , Fermentación , Fagopyrum/química , Pan/microbiología , Caseínas/metabolismo , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactobacillus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Alimentos Fermentados/microbiología
5.
Int J Food Microbiol ; 413: 110590, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38280258

RESUMEN

Fungi are the main microorganisms responsible for the spoilage of bakery products, and their control and subsequent reduction of food waste are significant concerns in the agri-food industry. Synthetic preservatives are still the most used compounds to reduce bakery product spoilage. On the other hand, studies have shown that biopreservation can be an attractive approach to overcoming food and feed spoilage and increasing their shelf-life. However, limited studies show the preservation effects on real food matrices. Therefore, this study aimed to investigate the influence of microorganisms such as lactic acid bacteria (LAB) and yeasts on the growth of spoilage filamentous fungi (molds) on bread and panettones. In general, on conventional and multigrain bread, treatments containing Limosilactobacillus fermentum IAL 4541 and Wickerhamomyces anomalus IAL 4533 showed similar results when compared to the negative control (calcium propionate) in delaying the fungal growth of the tested species (Aspergillus chevalieri, Aspergillus montevidensis, and Penicillium roqueforti). Different from bread, treatments with W. anomallus in panettones delayed the A. chevalieri growth up to 30 days, 13 days longer than observed on negative control (without preservatives). This study showed that biopreservation is a promising method that can extend bakery products' shelf-life and be used as an alternative to synthetic preservatives.


Asunto(s)
Limosilactobacillus fermentum , Eliminación de Residuos , Saccharomycetales , Alimentos , Hongos , Conservación de Alimentos/métodos , Microbiología de Alimentos , Pan/microbiología
6.
Int J Food Microbiol ; 410: 110487, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035403

RESUMEN

Sourdough fermentation is attracting growing attention because of its positive effects on properties of leavened baked good. However, the changes in dough features and the mechanisms behind them are not well understood, which limits its widespread use. In this study, we assessed the effects of representative lactic acid bacteria in sourdough monoculture or co-culture with yeasts on dough characteristics. Physicochemical analysis identified increased proteolysis and enhanced nutritional properties of co-culture groups. However, a reduction in organic acids contents of co-culture groups compared to monoculture was detected, and this effect was not limited by the yeast species. The RNA sequencing further demonstrated that the presence of yeast enhanced the protein metabolic activity of lactic acid bacteria, while decreased its organic acid biosynthetic activity. Moreover, the proteomic analysis revealed that endogenous metabolic proteins of flour, such as pyruvate kinase, glucosyltransferase and pyruvate dehydrogenase play a key role in carbohydrate metabolism during fermentation. This study uncovered the influence of typical microorganisms and endogenous enzymes on dough characteristics based on different aspects. Bacteria-mediated consumption of proteins and increased proteolysis in co-culture groups may underlie the improved digestibility and nutritional effects of sourdough fermented products, which provides an important basis for nutrient fortified bread making with multi-strain leavening agent.


Asunto(s)
Alimentos Fermentados , Lactobacillales , Microbiota , Fermentación , Proteómica , Levaduras/metabolismo , Pan/microbiología , Harina/microbiología , Carbohidratos , Alimentos Fermentados/análisis , China
7.
Int J Food Microbiol ; 410: 110505, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38043377

RESUMEN

Fermentation has recently been rediscovered as an attractive technique to process legumes, as it can improve the nutritional quality and value of the end product. This study investigated the dynamics and stability of the microbial communities in spontaneously fermented sourdoughs made from flours of two cultivars of faba beans and two cultivars of peas. Sourdoughs were established by the backslopping technique, and the microbial development at 22 °C and 30 °C was followed by culture dependent and culture independent methods. The utilization of substrates and formation of metabolites were also determined by high-performance liquid chromatography. A stable pH was reached in all the sourdoughs after 11-15 days of daily backslopping. Lactic acid bacteria and yeast from pH stable sourdoughs were isolated, characterized and identified. The fermentation temperature influenced the development of the microbial community and the substrate utilization during spontaneous fermentation. In the 30 °C fermentations, one species dominated (Lactiplantibacillus plantarum/pentosus), a lower pH was achieved, and the available substrates were more extensively converted. The 22 °C fermentation resulted in a more diverse microbial community (Lactiplantibacillus, Leuconostoc, Pediococcus), a higher pH, and more residual substrates were available after fermentation. Yeasts were only detected in one of the pea sourdoughs fermented at 30 °C, with Saccharomyces cerevisiae being the dominant species. Nearly all sourdoughs were depleted of maltose after 24 h fermentation cycles, and higher levels of lactic and acetic acid were detected in 30 °C fermen-tations. This research adds to our understanding of the autochthonous microbial community present in faba beans and peas as well as their natural capacity to establish themselves and ferment legume flours. These findings enhance the possibilities of utilizing and improving plant based protein sources.


Asunto(s)
Fabaceae , Microbiota , Vicia faba , Fermentación , Saccharomyces cerevisiae , Pediococcus , Verduras , Harina/microbiología , Pan/microbiología , Microbiología de Alimentos
8.
Int J Food Microbiol ; 410: 110513, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38043376

RESUMEN

Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.


Asunto(s)
Lactobacillales , Saccharomyces cerevisiae , Fermentación , Saccharomyces cerevisiae/metabolismo , Secale/química , Secale/microbiología , Pan/microbiología , Acrilamidas/metabolismo , Harina/microbiología
9.
J Agric Food Chem ; 71(48): 18973-18985, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915201

RESUMEN

Chinese steamed bread (CSB) made with commercial yeasts and traditional Chinese sourdoughs was analyzed for the flavor and microbial communities. Sensory attributes were assessed using quantitative descriptive analysis (QDA). Results showed that commercial yeast CSB-1 (JMMT1), a yeast-based sample, had stronger milky and sweet attributes, while commercial yeast CSB-2 (JMMT2) had more pronounced yeasty attributes. Among the sourdough-based samples, Shandong traditional sourdough steamed bread (SDMT) exhibited a winelike character with a weak sweet aftertaste, whereas Shanxi traditional sourdough steamed bread (SXMT) had a distinct sour attribute and a less prominent floury taste. SAFE-GC-O-MS analysis identified 40 aroma compounds with FD values ≥2, including 33 key aroma compounds with an OAV of ≥1. Compounds such as 2,3-butanediol, decanal, methyl isobutenyl ketone, gamma-nonanolactone, ethyl caprate, 2-ethylhexyl acetate, vanillin, and indole contributed significantly to the diverse aroma profiles. High-throughput sequencing revealed dominant strains: Bacillus in JMMT1, Lactobacillus in JMMT2, Bacillus in SDMT, and Lactobacillus in SXMT. Over two-thirds of the aroma compounds showed correlations with microorganisms. Notably, Acetobacter exhibited a highly significant correlation with butanoic acid, while Lactobacillus played a significant role in the formation of ester flavors. These findings contribute to the flavor evaluation and microbial community analysis of steamed bread made with different leavening agents, providing valuable insights into their relationship.


Asunto(s)
Pan , Microbiota , Saccharomyces cerevisiae , Pan/microbiología , Fermentación , Lactobacillus , Saccharomyces cerevisiae/genética , Bacillus
10.
J Microbiol Biotechnol ; 33(12): 1671-1680, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-37915231

RESUMEN

The gluten protein content in whole-wheat flour is low, which affects the elasticity and viscosity of the dough. Enzymatic modification of the protein may result in a network that mimics gluten, which plays an important role in the processing of whole-wheat foods. In this study, the effects of Halomonas alkaliantartica laccase (LacHa) on the quality parameters of whole-wheat bread were investigated. The optimum dosage of LacHa was 4 U/100 g of whole-wheat flour. At this dosage, whole-wheat bread exhibited the best specific volume and optimum texture parameters. Laccase also extended the storage duration of whole-wheat bread. We analyzed the micro-structure of the dough to determine its gluten-free protein extractable rate and free sulfhydryl group content, and verify that LacHa mediates cross-linking of gluten-free proteins. The results demonstrated that the cross-linking of gluten-free protein by LacHa improves the texture of whole-wheat bread. As a flour improver, LacHa has great developmental and application potential in baked-food production.


Asunto(s)
Lacasa , Triticum , Lacasa/metabolismo , Triticum/metabolismo , Pan/microbiología , Harina , Glútenes/química
11.
Int J Food Microbiol ; 407: 110402, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37778079

RESUMEN

Sourdough starters harbor microbial consortia that benefit the final product's aroma and volume. The complex nature of these spontaneously developed communities raises challenges in predicting the fermentation phenotypes. Herein, we demonstrated for the first time in this field the potential of genome-scale metabolic modeling (GEMs) in the study of sourdough microbial communities. Broad in-silico modeling of microbial growth was applied on communities composed of yeast (Saccharomyces cerevisiae) and different Lactic Acid Bacteria (LAB) species, which mainly predominate in sourdough starters. Simulations of model-represented communities associated specific bacterial compositions with sourdough phenotypes. Based on ranking the phenotypic performances of different combinations, Pediococcus spp. - Lb. sakei group members were predicted to have an optimal effect considering the increase in S. cerevisiae growth abilities and overall CO2 secretion rates. Flux Balance Analysis (FBA) revealed mutual relationships between the Pediococcus spp. - Lb. sakei group members and S. cerevisiae through bidirectional nutrient dependencies, and further underlined that these bacteria compete with the yeast over nutrients to a lesser extent than the rest LAB species. Volatile compounds (VOCs) production was further modeled, identifying species-specific and community-related VOCs production profiles. The in-silico models' predictions were validated by experimentally building synthetic sourdough communities and assessing the fermentation phenotypes. The Pediococcus spp. - Lb. sakei group was indeed associated with increased yeast cell counts and fermentation rates, demonstrating a 25 % increase in the average leavening rates during the first 10 fermentation hours compared to communities with a lower representation of these group members. Overall, these results provide a possible novel strategy towards the de-novo design of sourdough starter communities with tailored-made characterizations, including a shortened leavening period.


Asunto(s)
Lactobacillales , Levadura Seca , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Lactobacillales/metabolismo , Bacterias , Pediococcus , Pan/microbiología , Harina/microbiología , Microbiología de Alimentos
12.
World J Microbiol Biotechnol ; 39(12): 331, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37798570

RESUMEN

The present study aimed at characterizing lactic acid bacteria (LAB) strains isolated from traditional sourdoughs collected in different regions of Morocco. Isolated strains were firstly identified using Gram staining and catalase reaction test. Presumptive LAB strains were then checked for various phenotypical properties including growth at 45 °C, resistance to NaCl, enzyme production, acidification capacity, diacetyl and exopolysaccharide (EPS) production, and antifungal activity. Finally, selected LAB strains were identified using 16S rDNA sequencing. Results showed that 32.1% of the isolates were thermophilic (45 °C) and 83.9% were resistant to NaCl (6.5%). Moreover, 51.7 and 37.5% were able to produce diacetyl and EPS, respectively. Regarding enzyme production, 55.3 and 7.1% of the isolates showed lipolytic and proteolytic activities, respectively. Low pH values (3.37-3.76) were obtained after 24 h of incubation of LAB strains in de Man, Rogosa and Sharpe (MRS) broth. Antifungal activity test against Aspergillus flavus, Aspergillus niger and Penicillium spp. showed an inhibition rate up to 50%. Bacterial DNA sequencing showed that LAB isolates belong to seven species, chiefly Levilactobacillus brevis, Lentilactobacillus parabuchneri, Lactiplantibacillus plantarum, Pediococcus pentosaceus, Enterococcus hirae, Bifidobacterium pseudocatenulatum, and Companilactobacillus paralimentarius. These findings, for the first time in Moroccan sourdoughs, indicate that the isolated LAB strains have good multifunctional properties and could be suitable as good starters for sourdough bread production under controlled conditions.


Asunto(s)
Lactobacillales , Humanos , Antifúngicos , Diacetil , Cloruro de Sodio , Fermentación , Biodiversidad , Pan/microbiología , Microbiología de Alimentos
14.
Int J Food Microbiol ; 404: 110322, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37454506

RESUMEN

The nutritional quality of gluten-free (GF) products is usually improved by using flours derived from alternative grains (e.g., pseudocereals and legumes), additives and hydrolysates, leading to long ingredient lists in the labels, that conflict with current customer expectations. In this work, chestnut, carob, and hemp flours were used as mixed ingredients for making a gluten-free type-II sourdough. Three exopolysaccharides-producer lactic acid bacteria, belonging to Leuconostoc mesenteroides, Weissella cibaria, and Leuconostoc pseudomesenteroides, were used, and the fermentation processes (6 log10 cfu/g, 25 °C, 16 h) optimize to maximize the EPS synthesis (15.70 ± 2.1 mg/kg). The chestnut-hemp (70:30) type-II sourdough was included in a rice/corn gluten-free bread recipe also containing psyllium flour as structuring agent. Although the fortification with unfermented flours already led the achievement of 6 g/100 g of fiber (high fiber, Regulation EC n. 1924/2006) and content of magnesium higher than the daily reference intakes, the use of type-II sourdoughs led to a further structural, sensory, and nutritional improvements (e.g., decreasing the main anti-nutritional factor phytic acid). This work demonstrated that the use of ad-hoc selected ingredients and optimized protocol can be used to produce a GF and "clean label" bread with optimal nutritional features and appreciable sensory and structural properties.


Asunto(s)
Cannabis , Pan/microbiología , Fermentación , Dieta Sin Gluten , Valor Nutritivo , Harina/microbiología
15.
Food Chem ; 425: 136369, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269640

RESUMEN

Exopolysaccharides (EPS) produced in situ by lactic acid bacteria (LAB) during sourdough fermentation have the potential to replace hydrocolloids in gluten-free sourdoughs. This study investigated effects of an EPS-producing Weissella cibaria NC516.11 fermentation on chemical, rheological properties of sourdough and the quality of buckwheat bread. Results indicate that the buckwheat sourdough fermentation by W. cibaria NC516.11 had lower pH (4.47) and higher total titrable acidity (8.36 mL) compared with other groups, and the polysaccharide content reached 3.10 ± 0.16 g/kg. W. cibaria NC516.11 can significantly improve the rheological properties and viscoelastic properties of sourdough. Compared with control group, the baking loss of NC516.11 group bread decreased by 19.94%, specific volume increased by 26.03%, and showed good appearance and cross-sectional morphology. Scanning electron micrograph revealed an intact and less porous cell structure. Meanwhile, W. cibaria NC516.11 significantly improved the texture of the bread and reduced the hardness and moisture loss during storage.


Asunto(s)
Fagopyrum , Lactobacillales , Pan/microbiología , Estudios Transversales , Lactobacillus , Fermentación
16.
J Sci Food Agric ; 103(10): 5116-5125, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37002807

RESUMEN

BACKGROUND: Steamed bread is a popular staple food in China, and the significant regional differences of the microbiota in traditional starters make the flavor and quality of steamed bread highly variable along with long preparation times. Therefore, analyzing the microbial flora of traditional starters and their influences on the flavor and quality may help to solve the problems mentioned earlier, and it may also be conducive to potentially meet consumer needs and permit industrialization of this traditional fermented food. RESULTS: One hundred and thirty-two fungal and 50 bacterial species were identified in five traditional starters, each with a different dominant genus. The fermentation properties of dough showed that total titratable acid, dough volume and gas production increased and the pH decreased with fermentation time. The traditional starters improved the quality of Chinese steamed bread (CSB) including the crumb structure, specific volume and sensory attributes. Thirty-three aroma compounds with a VIP (variable importance for the projection) > 1 were identified as characteristic aroma compounds. The correlations among the microbiota, aroma and qualities of CSB showed a greater contribution from the bacteria, which was consistent with the predictions of metabolic pathways in the sequenced genomes. CONCLUSION: The quality of CSB fermented with traditional starters was improved induced by their different microbial profiles, and bacteria made a greater contribution than fungus to the aroma and qualities of CSB. © 2023 Society of Chemical Industry.


Asunto(s)
Pan , Microbiota , Bacterias/genética , Bacterias/metabolismo , Pan/análisis , Pan/microbiología , Fermentación , Odorantes
17.
Int J Food Microbiol ; 395: 110194, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37004495

RESUMEN

Almond production generates large amounts of by-products rich in polyphenols. In this study, almond skin was explored as a valuable food ingredient in bread making. To this purpose, almond skin was used to produce functional products modifying a traditional sourdough bread recipe. The doughs were prepared replacing semolina with powdered almond skin (PAS) at 5 and 10 % (w/w). Sourdough inoculum was started with a mix of lactic acid bacteria (LAB) and propagated in semolina until reaching pH 3.7. The pH of PAS added breads was higher than that of control (CTR) breads before and after fermentation. Plate counts showed a similar evolution of LAB and total mesophilic microorganisms, but members of Enterobacteriaceae and coliform were detectable in PAS doughs. Illumina data clearly showed a dominance of lactobacilli in all trials, but PAS doughs displayed the presence of Bacillus. The final bread characteristics were influenced by PAS and its addition percentage; in particular, crust and crumb colour resulted darker, the alveolation decreased and, regarding sensory attributes, odour intensity increased, while bread odour diminished. In presence of PAS, bread emissions were characterized by lower percentages of alcohols and aromatic hydrocarbons and higher percentages of the other volatile compound classes, especially terpenoids like ß-pinene, ß-myrcene and limonene than CTR trial. After in vitro simulated digestion, the final release of phytochemicals from 10 % PAS bread was almost 100 %. Thus, PAS determined an increase of the antioxidant capacity of the breads. Phytochemicals released from digested PAS-fortified bread can provide antioxidant protection in a complex biological environment such as human intestinal-like cells. Besides the positive functional properties of PAS, this work also evidenced the hygienic issues of almond skin and, in order to avoid potential risks for the human health, highlighted the need to preserve its microbiological characteristics during storage for their reuse in bread production.


Asunto(s)
Lactobacillales , Prunus dulcis , Humanos , Pan/microbiología , Antioxidantes , Lactobacillus , Triticum/microbiología , Fermentación , Grano Comestible
18.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36948609

RESUMEN

Mixed microorganism cultures are prevalent in the food industry. A variety of microbiological mixtures have been used in these unique fermenting processes to create distinctive flavor profiles and potential health benefits. Mixed cultures are typically not well characterized, which may be due to the lack of simple measurement tools. Image-based cytometry systems have been employed to automatically count bacteria or yeast cells. In this work, we aim to develop a novel image cytometry method to distinguish and enumerate mixed cultures of yeast and bacteria in beer products. Cellometer X2 from Nexcelom was used to count of Lactobacillus plantarum and Saccharomyces cerevisiae in mixed cultures using fluorescent dyes and size exclusion image analysis algorithm. Three experiments were performed for validation. (1) Yeast and bacteria monoculture titration, (2) mixed culture with various ratios, and (3) monitoring a Berliner Weisse mixed culture fermentation. All experiments were validated by comparing to manual counting of yeast and bacteria colony formation. They were highly comparable with ANOVA analysis showing p-value > 0.05. Overall, the novel image cytometry method was able to distinguish and count mixed cultures consistently and accurately, which may provide better characterization of mixed culture brewing applications and produce higher quality products.


Asunto(s)
Lactobacillus , Saccharomyces , Saccharomyces cerevisiae , Fermentación , Bacterias , Pan/microbiología , Microbiología de Alimentos
19.
World J Microbiol Biotechnol ; 39(4): 95, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759385

RESUMEN

The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.


Asunto(s)
Chenopodium quinoa , Lactobacillales , Antioxidantes , Chenopodium quinoa/microbiología , Pan/microbiología , Lactobacillaceae , Fermentación , Microbiología de Alimentos
20.
Food Chem ; 413: 135660, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787668

RESUMEN

The intake of dietary fibers is related with important benefits for human health. We produced two different arabinoxylan fibers with (FAX) and without ferulic acid linked (AX), 12.5 and 0.1 mg g-1 of ferulic acid respectively, by subcritical water extraction of wheat bran. Both FAX and AX fibers were used as supplement in bread production, while non-supplemented bread was used as control. Through an enzymatic deconstruction process we investigated the effect of bread making on the fibers, the preservation of their molecular structure (A/X ratio of 0.13 and Mw of 105 Da) and the interaction with other macromolecules in the bread. By mimicking the upper track digestion, we could confirm the non-digestability of the fibers and we used them for the fermentation with B. ovatus and B. adolescentis. The presence of AX fibers during fermentation showed specific substrate adaptation by the probiotic bacteria in correlation with its potential prebiotic effect.


Asunto(s)
Pan , Fibras de la Dieta , Humanos , Pan/microbiología , Fermentación , Xilanos/química , Digestión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA