Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824241

RESUMEN

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Asunto(s)
Diferenciación Celular , Papila Dental , Luz , Odontogénesis , Osteogénesis , ARN Circular , Células Madre , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Osteogénesis/genética , Diferenciación Celular/genética , Células Madre/metabolismo , Células Madre/citología , Odontogénesis/genética , Papila Dental/citología , Papila Dental/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ontología de Genes , Células Cultivadas , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regulación de la Expresión Génica/efectos de la radiación , Luz Azul
2.
J Appl Oral Sci ; 32: e20230449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38896639

RESUMEN

OBJECTIVE: To explore the feasibility of injectable platelet-rich fibrin (i-PRF) in regenerative endodontics by comparing the effect of i-PRF and platelet-rich fibrin (PRF) on the biological behavior and angiogenesis of human stem cells from the apical papilla (SCAPs). METHODOLOGY: i-PRF and PRF were obtained from venous blood by two different centrifugation methods, followed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). Enzyme-linked immunosorbent assay (ELISA) was conducted to quantify the growth factors. SCAPs were cultured with different concentrations of i-PRF extract (i-PRFe) and PRF extract (PRFe), and the optimal concentrations were selected using the Cell Counting Kit-8 (CCK-8) assay. The cell proliferation and migration potentials of SCAPs were then observed using the CCK-8 and Transwell assays. Mineralization ability was detected by alizarin red staining (ARS), and angiogenesis ability was detected by tube formation assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of genes related to mineralization and angiogenesis. The data were subjected to statistical analysis. RESULTS: i-PRF and PRF showed a similar three-dimensional fibrin structure, while i-PRF released a higher concentration of growth factors than PRF ( P <.05). 1/4× i-PRFe and 1/4× PRFe were selected as the optimal concentrations. The cell proliferation rate of the i-PRFe group was higher than that of the PRFe group ( P <.05), while no statistical difference was observed between them in terms of cell mitigation ( P >.05). More importantly, our results showed that i-PRFe had a stronger effect on SCAPs than PRFe in facilitating mineralization and angiogenesis, with the consistent result of RT-qPCR ( P <.05). CONCLUSION: This study revealed that i-PRF released a higher concentration of growth factors and was superior to PRF in promoting proliferation, mineralization and angiogenesis of SCAPs, which indicates that i-PRF could be a promising biological scaffold for application in pulp regeneration.


Asunto(s)
Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Péptidos y Proteínas de Señalización Intercelular , Microscopía Electrónica de Rastreo , Neovascularización Fisiológica , Fibrina Rica en Plaquetas , Reacción en Cadena en Tiempo Real de la Polimerasa , Endodoncia Regenerativa , Humanos , Proliferación Celular/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Endodoncia Regenerativa/métodos , Células Cultivadas , Reproducibilidad de los Resultados , Movimiento Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Factores de Tiempo , Estudios de Factibilidad , Análisis de Varianza , Papila Dental/efectos de los fármacos , Papila Dental/citología , Valores de Referencia
3.
J Dent ; 146: 105028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719135

RESUMEN

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Papila Dental , Dentina , Gelatina , Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Humanos , Papila Dental/citología , Células Madre/citología , Odontogénesis , Osteogénesis/fisiología , Metacrilatos , Técnicas de Cultivo de Célula , Microfluídica/métodos , Microfluídica/instrumentación , Técnicas de Cultivo Tridimensional de Células/métodos , Técnicas de Cultivo Tridimensional de Células/instrumentación , Células Cultivadas
4.
Matrix Biol ; 129: 1-14, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490466

RESUMEN

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Papila Dental , Ácido Hialurónico , Hialuronoglucosaminidasa , Odontoblastos , Animales , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/genética , Ratones , Ácido Hialurónico/metabolismo , Odontoblastos/metabolismo , Odontoblastos/citología , Papila Dental/citología , Papila Dental/metabolismo , Transducción de Señal , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Células Cultivadas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética
5.
Int Endod J ; 55(3): 263-274, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34807471

RESUMEN

AIM: To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY: miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS: miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS: miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , MicroARNs , Factores de Transcripción NFI , Células Cultivadas , Humanos , MicroARNs/genética , Factores de Transcripción NFI/genética , Osteogénesis , Células Madre
6.
Biomed Res Int ; 2021: 1481215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660780

RESUMEN

Currently, it still remains a difficult problem to treat apical insufficiency of young permanent teeth resulted from pulp necrosis or periapical periodontitis. Previous studies have demonstrated that the treatment of revascularization using stem cells from apical papilla (SCAPs) results in increased root length and thickness of traumatized immature teeth and necrotic pulp. In this study, we investigated the role of 1,25-dihydroxyvitamin D3 in regulating the adhesion, spreading, proliferation, and osteogenic differentiation of SCAP, laying the foundation for subsequent clinical drug development. The immature tooth samples were collected in clinical treatment. SCAPs with stable passage ability were isolated and cultured. The multidifferentiation potential was determined by directed induction culture, while the stem cell characteristics were identified by flow cytometry. There were three groups: group A-SCAPs general culture group; group B-SCAPs osteogenesis induction culture group; and group C-SCAPs osteogenesis induction culture+1,25-dihydroxyvitamin D3 group, and the groups were compared statistically. The proliferation of SCAPs in each groups was detected through CCK-8 assay. RT-qPCR was used to detect the transcription levels of Runx2, ALP, Col I, and OCN of SCAPs in each groups. Results exhibited that the isolated SCAPs had multidifferentiation potential and stem cell characteristics. After 24 h culturing, cells in group C spread better than those in groups A and B. The proliferation activity of SCAPs factored by CCK-8 ranked as group C > group B > group A, while the transcription levels of Runx2, ALP, Col I, and OCN leveled as group C > group B > group A. These results suggested that 1,25-dihydroxyvitamin D3 can significantly promote the adhesion, spreading, and proliferation of SACPs and improve the osteogenic differentiation of SCAPs by means of regulating upward the transcription level of osteogenic differentiation marker.


Asunto(s)
Calcitriol/farmacología , Papila Dental/fisiología , Odontogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Madre/fisiología , Adolescente , Conservadores de la Densidad Ósea/farmacología , Adhesión Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Niño , Papila Dental/citología , Papila Dental/efectos de los fármacos , Humanos , Células Madre/citología , Células Madre/efectos de los fármacos
7.
Arch Oral Biol ; 131: 105264, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34598025

RESUMEN

OBJECTIVE: Insulin-like growth factor 1 (IGF1) is one of the vital factors in regenerative endodontics. Previous studies have focused on the role of IGF1 in the mineralization of dental tissues. However, the role of IGF1 in the neural differentiation of dental stem cells was little discussed. DESIGN: IGF1 was overexpressed in human stem cells from the apical papilla (hSCAPs) by lentivirus and knocked down in hSCAPs by small interfering RNA. The neural differentiation level of hSCAPs was investigated histologically by HE staining and Nissl staining after neural induction for 3 days. The expression of proteins was examined by western blot and immunofluorescence. RESULTS: IGF1 promoted neural differentiation of hSCAPs, more cell processes and Nissl-positive body stained cells. IGF1 overexpression could both promote glial differentiation in hSCAPs, characterized by the increase of S100ß and GFAP proteins, and neuronal differentiation, characterized by the increase of ßIII-tubulin and functional GAD67/vGLUT1 proteins. Conversely, IGF1 knockdown suppressed both glial and neuronal differentiation. IGF1 activated AKT to regulate the early neural differentiation of hSCAPs. CONCLUSIONS: The results indicate IGF1 could promote neural differentiation of hSCAPs by activating AKT signaling and provide a cue for the candidate of induced neural seeding cells in regenerative endodontics.


Asunto(s)
Diferenciación Celular , Factor I del Crecimiento Similar a la Insulina , Células Madre , Células Cultivadas , Papila Dental/citología , Humanos , Lentivirus , Transducción de Señal , Células Madre/citología
8.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809391

RESUMEN

Stem cells from apical papilla (SCAPs) are desirable sources of dentin regeneration. Epigallocatechin-3-gallate (EGCG), a natural component of green tea, shows potential in promoting the osteogenic differentiation of bone mesenchymal stem cells. However, whether EGCG regulates the odontogenic differentiation of SCAPs and how this occurs remain unknown. SCAPs from immature human third molars (16-20 years, n = 5) were treated with a medium containing different concentrations of EGCG or bone morphogenic protein 2 (BMP2), with or without LDN193189 (an inhibitor of the canonical BMP pathway). Cell proliferation and migration were analyzed using a CCK-8 assay and wound-healing assay, respectively. Osteo-/odontogenic differentiation was evaluated via alkaline phosphatase staining, alizarin red S staining, and the expression of osteo-/odontogenic markers using qPCR and Western blotting. We found that EGCG (1 or 10 µM) promoted the proliferation of SCAPs, increased alkaline phosphatase activity and mineral deposition, and upregulated the expression of osteo-/odontogenic markers including dentin sialophosphoprotein (Dspp), dentin matrix protein-1 (Dmp-1), bone sialoprotein (Bsp), and Type I collagen (Col1), along with the elevated expression of BMP2 and phosphorylation level of Smad1/5/9 (p < 0.01). EGCG at concentrations below 10 µM had no significant influence on cell migration. Moreover, EGCG-induced osteo-/odontogenic differentiation was significantly attenuated via LDN193189 treatment (p < 0.01). Furthermore, EGCG showed the ability to promote mineralization comparable with that of recombinant BMP2. Our study demonstrated that EGCG promotes the osteo-/odontogenic differentiation of SCAPs through the BMP-Smad signaling pathway.


Asunto(s)
Catequina/análogos & derivados , Papila Dental/citología , Papila Dental/efectos de los fármacos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Adolescente , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Papila Dental/metabolismo , Humanos , Células Madre Multipotentes/metabolismo , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Adulto Joven
9.
PLoS One ; 16(3): e0233944, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33770099

RESUMEN

During tooth development, dental papilla cells differentiate into odontoblasts with polarized morphology and cell function. Our previous study indicated that the C-Jun N-terminal kinase (JNK) pathway regulates human dental papilla cell adhesion, migration, and formation of focal adhesion complexes. The aim of this study was to further examine the role of the JNK pathway in dental papilla cell polarity formation. Histological staining, qPCR, and Western Blot suggested the activation of JNK signaling in polarized mouse dental papilla tissue. After performing an in vitro tooth germ organ culture and cell culture, we found that JNK inhibitor SP600125 postponed tooth germ development and reduced the polarization, migration and differentiation of mouse dental papilla cells (mDPCs). Next, we screened up-regulated polarity-related genes during dental papilla development and mDPCs or A11 differentiation. We found that Prickle3, Golga2, Golga5, and RhoA were all up-regulated, which is consistent with JNK signaling activation. Further, constitutively active RhoA mutant (RhoA Q63L) partly rescued the inhibition of SP600125 on cell differentiation and polarity formation of mDPCs. To sum up, this study suggests that JNK signaling has a positive role in the formation of dental papilla cell polarization.


Asunto(s)
Papila Dental/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Animales , Antracenos/farmacología , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Papila Dental/citología , Papila Dental/patología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Mutagénesis , Germen Dentario/crecimiento & desarrollo , Germen Dentario/metabolismo , Germen Dentario/patología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669807

RESUMEN

Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , Melatonina/farmacología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Odontoblastos/citología , Odontoblastos/metabolismo , Odontogénesis , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Odontoblastos/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
11.
Int J Biochem Cell Biol ; 134: 105962, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33636397

RESUMEN

INTRODUCTION: SIRT4 is a mitochondrial sirtuin. Owing to its dependance on the cofactor nicotinamide adenine dinucleotide (NAD+), SIRT4 can act as a mitochondrial metabolic sensor of cellular energy status. We have previously shown that enhancement of mitochondrial functions is vital for the odontogenic diff ;erentiation of dental papilla cells (DPCs) during dentinogenesis. However, whether SIRT4 serves as an effective regulator of DPC diff ;erentiation by affecting mitochondrial functions remains unexplored. METHODS: Primary DPCs obtained from the first molar dental papilla of neonatal Sprague-Dawley rats were used in this study. The expression pattern of SIRT4 was observed by immunohistochemistry in the first molar of postnatal day 1 (P1) rats. The changes in SIRT4 expression during odontogenic DPC differentiation were evaluated using real-time quantitative polymerase chain reaction (PCR), western blotting, and immunofluorescence. DPCs with loss (small interfering RNA-mediated knockdown) and gain (plasmid transfection-induced overexpression) of SIRT4 function were used to explore the role of SIRT4 in odontogenic differentiation. Mitochondrial function assays were performed using ATP, reactive oxygen species (ROS), and NAD+/NADH kits to investigate the potential mechanisms involved in SIRT4-mediated dentinogenesis. RESULTS: In the present study, we found that SIRT4 expression increased in a time-dependent manner during odontogenic differentiation bothin vivo and in vitro. Sirt4 knockdown resulted in reduced odontogenic differentiation and mineralization, whereas an opposite effect was observed with SIRT4 overexpression. Furthermore, our results verified that in addition to reducing DPC differentiation, Sirt4 knockdown could also significantly reduce ATP levels, elevate the NAD+/NADH ratio, and increase ROS levels. CONCLUSION: SIRT4 regulates mitochondrial functions and the antioxidant capacity of DPCs, thereby influencing dentin formation and tooth development, a phenomenon that may provide a foundation for better understanding the specific molecular mechanisms underlying dentin regeneration.


Asunto(s)
Papila Dental/citología , Mitocondrias/metabolismo , Odontogénesis , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Papila Dental/metabolismo , Modelos Animales , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Sirtuinas/genética
12.
J Biomed Mater Res A ; 109(2): 207-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32441418

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a second messenger involved in the dental regeneration. However, efficient long-lasting delivery of cAMP that is sufficient to mimic the in vivo microenvironment remains a major challenge. Here, cAMP was loaded in stem cells from apical papilla (SCAPs) using layer-by-layer self-assembly with gelatin and alginate polyelectrolytes (LBL-cAMP-SCAPs). LBL-cAMP-SCAPs expressed cAMP and increased the phosphorylation level of cAMP-response element-binding protein (CREB) which were evaluated by immunofluorescence and western blotting (WB). Enzyme-linked immunosorbent assay (ELISA) demonstrated that a sustained release of cAMP and vascular endothelial growth factor (VEGF) were present up to 14 days. Scanning electron microscopy (SEM) found LBL-coated SCAPs exhibited a spheroid-like morphology. CCK8 and live/dead staining showed that LBL treatment had no significant effect on cell proliferation and viability. LBL-cAMP-SCAPs enhanced mineralized nodule formation and up-regulated the mRNA levels of the osteogenesis-related genes, as well as related transcription factor-2 protein level which were revealed by Alizarin red staining, RT-PCR and WB, respectively. In conclusion, LBL self-assembly loaded with cAMP promoted the osteo/odontogenic differentiation of SCAPs, thereby providing a potential strategy for bioactive molecular delivery in dental regeneration.


Asunto(s)
AMP Cíclico/química , Papila Dental/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Polielectrolitos/química , Células Madre/efectos de los fármacos , Alginatos/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Papila Dental/citología , Gelatina/química , Humanos , Odontogénesis/genética , Osteogénesis/genética , ARN Mensajero/biosíntesis , Regulación hacia Arriba/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Cell Tissue Res ; 383(2): 603-616, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32803323

RESUMEN

The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.


Asunto(s)
Papila Dental/citología , Pulpa Dental/citología , Modelos Genéticos , Células Madre/citología , Animales , Biomarcadores/metabolismo , Ratones , Nicho de Células Madre
14.
BMC Dev Biol ; 20(1): 22, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33203369

RESUMEN

BACKGROUND: Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs' function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research. METHODS: The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo-/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins. RESULTS: Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo-/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2. CONCLUSIONS: Depletion of SNRNP200 repressed osteo-/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Papila Dental/citología , Células Madre Mesenquimatosas/citología , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Senescencia Celular/genética , Papila Dental/crecimiento & desarrollo , Dentinogénesis , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Osteogénesis , Unión Proteica , Ribonucleoproteínas Nucleares Pequeñas/genética
15.
Stem Cell Res Ther ; 11(1): 461, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138854

RESUMEN

BACKGROUND: Osteogenesis is a complex biological process which requires the coordination of multiple molecular mechanisms. This research aimed to explore the biological role and underlying regulatory mechanism of circSIPA1L1 during the osteogenic differentiation of stem cells from apical papilla (SCAPs). METHODS: EdU retention assay, flow cytometry assay, and CCK-8 assay were used to evaluate the proliferation capacity of SCAPs. Western blot assay, alkaline phosphatase (ALP), and alizarin red staining (ARS) were conducted to investigate the biological roles of circSIPA1L1 and miR-204-5p. Fluorescence in situ hybridization was applied for circSIPA1L1 localization. Dual-luciferase reporter assay was performed to prove the interaction of circSIPA1L1 and miR-204-5p. RESULTS: CircSIPA1L1 had no significant effect on the proliferative capacity of SCAPs. CircSIPA1L1 promotes osteogenic differentiation of SCAPs by serving as a miRNA sponge for miR-204-5p. Either knockdown of circSIPA1L1 or overexpression of miR-204-5p significantly suppresses osteogenic differentiation of SCAPs. CONCLUSIONS: CircSIPA1L1 upregulates ALPL through targeting miR-204-5p and promotes the osteogenic differentiation of SCAPs.


Asunto(s)
Diferenciación Celular , MicroARNs , Osteogénesis , ARN Circular/genética , Células Madre/citología , Fosfatasa Alcalina , Células Cultivadas , Papila Dental/citología , Proteínas Activadoras de GTPasa , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , Osteogénesis/genética
16.
Stem Cells Dev ; 29(23): 1479-1496, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32988295

RESUMEN

The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.


Asunto(s)
Papila Dental/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/fisiología , Adolescente , Animales , Diferenciación Celular , Polaridad Celular/efectos de los fármacos , Quimiocinas/metabolismo , Enfermedad Crónica , Constricción Patológica , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Humanos , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interferón gamma/farmacología , Masculino , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/metabolismo , Adulto Joven
17.
Biomed Res Int ; 2020: 4671989, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32461990

RESUMEN

OBJECTIVE: This study is aimed at evaluating the effects of platelet-rich plasma (PRP) on proliferation, viability, and odontogenic differentiation of neural crest stem-like cells (NCSCs) derived from human dental apical papilla. MATERIALS AND METHODS: Cells from apical papillae were obtained and then induced to form neural spheres. The expression of NCSC markers p75NTR and HNK-1 in neural sphere cells was detected by immunofluorescence staining. Human PRP was prepared by a 2-step centrifugation method and activated by CaCl2 and thrombin. The concentrations of PDGF-BB and TGF-ß1 in whole blood and PRP were measured by an ELISA kit. PRP in five different concentrations (0%, 2.5%, 5%, 10%, and 25%) was applied to culture NCSCs. On the 1st, 3rd, 5th, and 7th days, cell proliferation was evaluated by CCK8. Cell viability was tested by a live/dead staining kit. mRNA and protein expression of DSPP and BMP4 were analyzed by RT-qPCR and western blot, respectively. Statistical analysis was performed by a one-way analysis of variance (ANOVA) test or t-test. RESULTS: Dental apical papilla cells formed neural spheres, from which cells displayed positive expression of p75NTR and HNK-1. The concentrations of PDGF-BB and TGF-ß1 in PRP were about 3.5-fold higher than those in whole blood. 5% and 10% PRP significantly promoted proliferation of NCSCs, while 25% and 50% PRP inhibited cell proliferation from Day 3 to Day 7. Low-concentration (2.5%, 5%, and 10%) PRP slightly improved viability of NCSCs on Day 7. On the other hand, high-concentration (25% and 50%) PRP significantly inhibited viability of NCSCs from Day 3 to Day 7. RT-qPCR and western blot results indicated that 10% PRP could promote odontogenic differentiation of NCSCs on Day 7. mRNA and protein expression of DSPP and BMP4 were significantly upregulated in the 10% PRP group compared to those in the control group (P < 0.05). CONCLUSIONS: PRP is a simply acquirable blood derivative which contains high concentration of growth factors like PDGF-BB and TGF-ß1. PRP in a proper concentration could promote proliferation, viability, and odontogenic differentiation of NCSCs derived from human dental apical papilla.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Papila Dental/citología , Células-Madre Neurales/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Plasma Rico en Plaquetas , Productos Biológicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Cresta Neural
18.
Lasers Med Sci ; 35(9): 1981-1988, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32173788

RESUMEN

This study aimed to evaluate the effects of low-energy blue LED irradiation on the osteogenic differentiation of stem cells from the apical papilla (SCAPs). SCAPs were derived from human tooth root tips and were irradiated with 0 (control group), 1 J/cm2, 2 J/cm2, 3 J/cm2, or 4 J/cm2 blue light in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP), alizarin red staining, and real-time polymerase chain reaction (RT-PCR). The results of the MTT assay indicated that SCAPs in the LED groups exhibited a lower proliferation rate than those in the control group, and there were statistically differences between the 2 J/cm2, 3 J/cm2, and 4 J/cm2 groups and the control group (P < 0.05). The results of the ALP and alizarin red analyses showed that blue LED promoted osteogenic differentiation of the SCAPs. And 4 J/cm2 blue light upregulates the expression levels of the osteogenic/dentinogenic genes ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), and osteocalcin (OCN) in SCAPs. Our results confirmed that low-energy blue LED at 1 J/cm2, 2 J/cm2, 3 J/cm2, and 4 J/cm2 could inhibit the proliferation of SCAPs and promotes osteogenic differentiation of SCAPs. Further in vitro studies are required to explore the mechanisms of the effects by low-energy blue LED.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Papila Dental/citología , Osteogénesis/efectos de la radiación , Células Madre/citología , Células Madre/efectos de la radiación , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Células Cultivadas , Dentinogénesis/genética , Dentinogénesis/efectos de la radiación , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
19.
Stem Cells Dev ; 29(12): 795-805, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32178575

RESUMEN

Stem cells derived from dental apical papilla (SCAPs) can secrete various soluble factors, which may stimulate tissue repair and regeneration in vivo. The aim of this study was to elucidate the effect of the soluble factors released by SCAPs on the proliferation and differentiation of dental pulp cells (DPCs). We compared the osteo/odontogenic, angiogenic, and neurogenic effects of soluble factors released from SCAPs and bone marrow mesenchymal stem cells (BMSCs) in vitro. Conditioned media (CM) were collected from human SCAPs and BMSCs cultures, and their effects on human DPCs proliferation and differentiation were evaluated. Cellular proliferation was unaffected by SCAPs-CM and was inhibited by BMSCs-CM. Cells treated with osteo/odontogenic inducing medium (OM) plus SCAPs-CM showed higher alkaline phosphatase activity than did cells in the OM group. The expression level of osteo/odontogenic markers were higher in the SCAPs-CM plus OM group than in the BMSCs-CM plus OM and OM groups. SCAPs-CM and BMSCs-CM significantly promoted DPCs migration. DPCs angiogenic differentiation was not affected by SCAPs-CM but was significantly enhanced by BMSCs-CM. In DPCs cultured in media optimized for neural stem cell growth for 2 weeks, the expression levels of neurogenic markers were significantly enhanced by the addition of SCAPs-CM. Neuronal markers expression was significantly reduced, while neurotrophic marker expression significantly increased by the addition of BMSCs-CM. In conclusion, SCAPs-CM significantly enhanced osteo/odontogenic differentiation, migration, and neurogenic differentiation potential of DPCs, but have no effect on DPCs proliferation and angiogenic differentiation in vitro. CM released from SCAPs have a greater osteo/odontogenic and neurogenic inductive effect on DPCs than BMSCs-CM. It indicates that SCAPs-CM can serve as additive to improve pulp tissue repair and regeneration.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Papila Dental/citología , Pulpa Dental/citología , Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Células-Madre Neurales/citología , Osteoblastos/citología , Adolescente , Adulto , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Células-Madre Neurales/metabolismo , Osteoblastos/metabolismo , Osteogénesis
20.
Acta Biomater ; 107: 178-193, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32105834

RESUMEN

It is recognized that the interaction between cells and their physical microenvironment plays a fundamental role in controlling cell behaviors and even in determining cell fate. Any change in the physical properties of the extracellular matrix (ECM), such as its topography, geometry, and stiffness, controls this interaction. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication that is mediated by interface stiffness, and elucidated this process in stem cells from human apical papilla (hSCAPs) in terms of mechanosensing, mechanotransduction, and gap junction-mediated cell-cell communication. We first fabricated polydimethylsiloxane (PDMS) substrates with the same topography and geometry but different stiffnesses and found that the cell morphology of the hSCAPs actively changed to adapt to the difference in substrate stiffness. We also found that the hSCAPs secreted more fibronectin in response to the stiff substrate. The focal adhesion plaques were changed by altering the expression of focal adhesion kinase (FAK) and paxillin. The FAK and paxillin bound to connexin 43 and, as a result, altered the gap junction formation. By performing a Lucifer yellow transfer assay, we further confirmed that the interface stiffness mediated cell-cell communication in living hSCAPs through changes in gap junction tunnels. The intrinsic mechanism that mediated cell-cell communication by extracellular stiffness show the great influence of the interaction between cells and their external physical microenvironment and stress the importance of microenvironmental mechanics in organ development and diseases. STATEMENT OF SIGNIFICANCE: Biochemical factors could direct cell behaviors such as cell proliferation, migration, differentiation, cell cycling and apoptosis. Likewise, biophysical factors could also determine cell behaviors in all biological processes. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication by elucidating the whole process from cell mechanosensing, mechanotransduction to gap junction-mediated cell-cell communication. This process occurs in a collective of cells but not in that of a single cell. Biophysical properties of ECM induced cell-to-cell communication indicates the importance of microenvironmental mechanics in organ development and diseases. These findings should be of great interest in all biological fields, especially in biomaterials - cell/molecular biology involved in the interactions between the cell and its matrix.


Asunto(s)
Comunicación Celular/fisiología , Papila Dental/citología , Dimetilpolisiloxanos/química , Uniones Comunicantes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Actinas/metabolismo , Adolescente , Forma de la Célula/efectos de los fármacos , Módulo de Elasticidad , Fibronectinas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Paxillin/metabolismo , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA