Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Nature ; 631(8019): 150-163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898272

RESUMEN

Here, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord1. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice. We leveraged the Tabulae Paralytica to develop a rejuvenative gene therapy that re-established this tripartite barrier, and restored the natural recovery of walking after paralysis in old mice. The Tabulae Paralytica provides a window into the pathobiology of SCI, while establishing a framework for integrating multimodal, genome-scale measurements in four dimensions to study biology and medicine.


Asunto(s)
Núcleo Celular , Epigenómica , Multiómica , Neuronas , Análisis de la Célula Individual , Traumatismos de la Médula Espinal , Transcriptoma , Animales , Femenino , Masculino , Ratones , Atlas como Asunto , Núcleo Celular/metabolismo , Neuronas/patología , Neuronas/metabolismo , Parálisis/genética , Parálisis/patología , Parálisis/rehabilitación , Parálisis/terapia , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/terapia , Caminata , Anatomía Artística , Vías Nerviosas , Terapia Genética
2.
Biomolecules ; 14(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786006

RESUMEN

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


Asunto(s)
Ácido 3-Hidroxiantranílico , Péptidos beta-Amiloides , Caenorhabditis elegans , Parálisis , Péptidos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Péptidos/farmacología , Ácido 3-Hidroxiantranílico/metabolismo , Parálisis/inducido químicamente , Parálisis/metabolismo , Parálisis/genética , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Dioxigenasas/metabolismo , Dioxigenasas/genética
3.
Acta Neuropathol ; 147(1): 61, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526616

RESUMEN

TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Tauopatías , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Parálisis/genética , Polimorfismo de Nucleótido Simple , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/patología
4.
Redox Biol ; 59: 102550, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470129

RESUMEN

Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neurodegenerativas , Ratones , Animales , Mitocondrias , Superóxido Dismutasa/genética , Neuronas Motoras , Superóxido Dismutasa-1/genética , Fenotipo , Parálisis/genética , Inflamación/genética
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(10): 1572-1582, 2023 Oct 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38432886

RESUMEN

OBJECTIVES: Hereditary neuropathy with liability to pressure palsy (HNPP) is a rare autosomal dominant peripheral neuropathy, usually caused by heterozygous deletion mutations in the peripheral myelin protein 22 (PMP22) gene. This study aims to investigate the clinical and molecular genetic characteristics of HNPP. METHODS: HNPP patients in the Department of Neurology at Third Xiangya Hospital of Central South University from 2009 to 2023 were included in this study. The general clinical data, nervous electrophysiological and molecular genetic examination results were collected and analyzed. Molecular genetic examination was to screen for deletion of PMP22 gene using multiplex ligation-dependent probe amplification (MLPA) after extracting genomic DNA from peripheral blood; and if no PMP22 deletion mutation was detected, next-generation sequencing was used to screen for PMP22 point mutations. The related literatures of HNPP were reviewed, and the clinical and molecular genetic characteristics of HNPP patients were analyzed. RESULTS: A total of 34 HNPP patients from 24 unrelated Chinese Han families were included in this study, including 25 males and 9 females. The average age at illness onset was 22.0 years. Sixty-two point five percent of the families had a positive family history. Among them, 30 patients had symptoms of peripheral nerve paralysis. Patients often presented with paroxysmal single limb weakness with (or) numbness (25/30), and some patients had paroxysmal unilateral recurrent laryngeal nerve (vagus nerve) paralysis (2/30). Physical examination revealed muscle weakness (23/29), hypoesthesia (9/29), weakened or absent ankle reflexes (20/29), distal limb muscle atrophy (8/29) and high arched feet (5/29). Most patients (26/30) could fully recover to normal after an acute attack. Thirty-one patients in our group underwent nervous electrophysiological examination, and showed multiple demyelinating peripheral neuropathies with both motor and sensory nerves involved. Most patients showed significantly prolonged distal motor latency (DML), mild to moderate nerve conduction velocity slowing, decreased amplitude of compound muscle action potential (CMAP) and sensory nerve action potential (SNAP), and sometimes with conduction block. Nerve motor conduction velocity was (48.5±5.5) m/s, and the CMAP amplitude was (8.4±5.1) mV. Nerve sensory conduction velocity was (37.4±10.5) m/s, and the SNAP amplitude was (14.4±15.2) µV. There were 24 families, 23 of whom had the classical PMP22 deletion, the last one had a heterozygous pathogenic variant in the PMP22 gene sequence (c.434delT). By reviewing clinical data and genetic testing results of reported 1 734 HNPP families, we found that heterozygous deletion mutation of PMP22 was the most common pathogenic mutation of HNPP (93.4%). Other patients were caused by PMP22 small mutations (4.0%), PMP22 heterozygous gross deletions (0.6%), and PMP22 complex rearrangements (0.1%). Thirty-eight sorts of HNPP-related PMP22 small mutations was reported, including missense mutations (10/38), nonsense mutations (4/38), base deletion mutations (13/38), base insertion mutations (3/38), and shear site mutations (8/38). HNPP patients most often presented with episodic painless single nerve palsy. Common peroneal nerve, ulnar nerve, and brachial plexus nerve were the most common involved nerves, accounting for about 75%. Only eighteen patients with cranial nerve involved was reported. CONCLUSIONS: Heterozygous deletion mutation of PMP22 is the most common pathogenic mutation of HNPP. Patients is characterized by episodic and painless peripheral nerve paralysis, mainly involving common peroneal nerve, ulnar nerve, and other peripheral nerves. Nervous electrophysiological examination has high sensitivity and specificity for the diagnosis of HNPP, which is manifested by extensive demyelinating changes. For patients with suspected HNPP, nervous electrophysiological examination and PMP22-MLPA detection are preferred. Sanger sequencing or next generation sequencing can be considered to detect other mutations of PMP22.


Asunto(s)
Artrogriposis , Neuropatía Hereditaria Motora y Sensorial , Enfermedades del Sistema Nervioso Periférico , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Parálisis/genética , Pruebas Genéticas , Biología Molecular
6.
Nature ; 611(7936): 540-547, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352232

RESUMEN

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Asunto(s)
Neuronas , Parálisis , Traumatismos de la Médula Espinal , Médula Espinal , Caminata , Animales , Humanos , Ratones , Neuronas/fisiología , Parálisis/genética , Parálisis/fisiopatología , Parálisis/terapia , Médula Espinal/citología , Médula Espinal/fisiología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Caminata/fisiología , Estimulación Eléctrica , Región Lumbosacra/inervación , Rehabilitación Neurológica , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
7.
Hum Mol Genet ; 31(22): 3886-3896, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35766879

RESUMEN

The D620N mutation in vacuolar protein sorting protein 35 (VPS35) gene has been identified to be linked to late onset familial Parkinson disease (PD). However, the pathophysiological roles of VPS35-D620N in PD remain unclear. Here, we generated the transgenic Caenorhabditis elegans overexpressing either human wild type or PD-linked mutant VPS35-D620N in neurons. C. elegans expressing VPS35-D620N, compared with non-transgenic controls, showed movement disorders and dopaminergic neuron loss. VPS35-D620N worms displayed more swimming induced paralysis but showed no defects in BSR assays, thus indicating the disruption of dopamine (DA) recycling back inside neurons. Moreover, VPS35 formed a protein interaction complex with DA transporter (DAT), RAB5, RAB11 and FAM21. In contrast, the VPS35-D620N mutant destabilized these interactions, thus disrupting DAT transport from early endosomes to recycling endosomes, and decreasing DAT at the cell surface. These effects together increased DA in synaptic clefts, and led to dopaminergic neuron degeneration and motor dysfunction. Treatment with reserpine significantly decreased the swimming induced paralysis in VPS35-D620N worms, as compared with vehicle treated VPS35-D620N worms. Our studies not only provide novel insights into the mechanisms of VPS35-D620N-induced dopaminergic neuron degeneration and motor dysfunction via disruption of DAT function and the DA signaling pathway but also indicate a potential strategy to treat VPS35-D620N-related PD and other disorders.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Animales , Humanos , Dopamina/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Transporte de Proteínas , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Degeneración Nerviosa/patología , Parálisis/genética , Parálisis/metabolismo , Parálisis/patología
8.
Neurologia (Engl Ed) ; 37(4): 243-249, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35595399

RESUMEN

INTRODUCTION: Hereditary neuropathy with liability to pressure palsy (HNPP) is an autosomal dominant disorder, typically presenting with recurrent episodes of mononeuropathy in nerves susceptible to compression, with similar neurophysiological characteristics. However, other clinical and neurophysiological presentations have been reported. METHODS: We retrospectively analysed the clinical and neurophysiological characteristics of 20 patients with genetically confirmed HNPP. Sixteen patients were studied in our department between 1996 and 2016. RESULTS: In addition to the typical characteristics of HNPP, we found atypical forms including recurrent positional sensory symptoms in 3 patients, chronic sensorimotor polyneuropathy in one, and non-progressive mononeuropathy in one. Onset was early in 2 patients: one at the age of 7 years, with common peroneal nerve injury, and another at birth, with brachial plexus involvement. By frequency, the main pathological findings in the nerve conduction study were: decreased sensory nerve conduction velocity in the sural (84%) and the median and superficial peroneal nerves (94%); decreased motor nerve conduction velocity in the ulnar nerve through the elbow (97%), and increased motor distal latency of the median and deep peroneal nerves (74%). CONCLUSION: Our results confirm the clinical variability of HNPP, with the most frequent nerve conduction study findings being the generalised decrease in sensory nerve conduction velocity, in addition to motor involvement, mainly in locations susceptible to nerve compression. The nerve conduction study can detect typical, atypical, and asymptomatic cases of HNPP.


Asunto(s)
Artrogriposis , Neuropatía Hereditaria Motora y Sensorial , Artrogriposis/genética , Niño , Deleción Cromosómica , Cromosomas , Neuropatía Hereditaria Motora y Sensorial/genética , Humanos , Recién Nacido , Parálisis/genética , Parálisis/patología , Estudios Retrospectivos
9.
Virus Res ; 315: 198770, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35413373

RESUMEN

Viral metagenomic analysis of wisteria leaf sample in Iran detected one dicistrovirus: aphid lethal paralysis virus (ALPV). The complete genome sequence of ALPV-Ir-Wi was 9824 nucleotides (nt) in length (excluding the 3'-poly(A) tail), and contained two ORFs, an intergenic untranslated region of 197 nt flanked by a 538 nt 5' UTR and a 576 nt 3' UTR. Comparison with 21 other ALPV genomic sequences from different parts of the world revealed that it most closely resembled the Turkish and Israeli isolates. Pairwise identity analysis showed significant variability in genome sequences among ALPV isolates with genomic nucleotide identities of 78.35-99.15%. In addition to codon mutations, insertions/deletions and recombination also contributed to genetic variability. To explore the genetic variation and molecular evolution of ALPV, ORF2 gene sequences of 18 non-recombinant isolates were analyzed. The isolates belonged to two principal clades (FST=0.614) and showed a considerable genetic diversity (0.140±0.01). Most populations were polyphyletic, indicating that they had not been isolated long enough to reach reciprocal monophyly. There was no significant correlation between genetic and geographical distances or host origins. Pairwise FST and Nm values showed a meaningful differentiation and relatively infrequent gene flow between two compared populations (the Middle East vs. East Asia, the Middle East vs. Africa), and moderate gene flow for East Asian and African populations. Genes in the ALPV genome were subject to strong purifying selection during evolution, and most codons were under negative selection or neutral evolution. The results indicated a relatively stable and conserved genomic composition with a low codon usage bias in all of the assayed ALPV coding sequences. Recombination, natural selection, gene flow, and founder effects were found to be the main evolutionary factors that can affect the genetic structure of ALPV populations.


Asunto(s)
Áfidos , Dicistroviridae , Wisteria , Animales , Genoma Viral , Irán , Parálisis/genética , Filogenia , Transcriptoma , Wisteria/genética
11.
Molecules ; 26(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920352

RESUMEN

The pathological finding of amyloid-ß (Aß) aggregates is thought to be a leading cause of untreated Alzheimer's disease (AD). In this study, we isolated 2-butoxytetrahydrofuran (2-BTHF), a small cyclic ether, from Holothuria scabra and demonstrated its therapeutic potential against AD through the attenuation of Aß aggregation in a transgenic Caenorhabditis elegans model. Our results revealed that amongst the five H. scabra isolated compounds, 2-BTHF was shown to be the most effective in suppressing worm paralysis caused by Aß toxicity and in expressing strong neuroprotection in CL4176 and CL2355 strains, respectively. An immunoblot analysis showed that CL4176 and CL2006 treated with 2-BTHF showed no effect on the level of Aß monomers but significantly reduced the toxic oligomeric form and the amount of 1,4-bis(3-carboxy-hydroxy-phenylethenyl)-benzene (X-34)-positive fibril deposits. This concurrently occurred with a reduction of reactive oxygen species (ROS) in the treated CL4176 worms. Mechanistically, heat shock factor 1 (HSF-1) (at residues histidine 63 (HIS63) and glutamine 72 (GLN72)) was shown to be 2-BTHF's potential target that might contribute to an increased expression of autophagy-related genes required for the breakdown of the Aß aggregate, thus attenuating its toxicity. In conclusion, 2-BTHF from H. scabra could protect C. elegans from Aß toxicity by suppressing its aggregation via an HSF-1-regulated autophagic pathway and has been implicated as a potential drug for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Furanos/farmacología , Holothuria/química , Fármacos Neuroprotectores/farmacología , Parálisis/prevención & control , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Furanos/química , Furanos/aislamiento & purificación , Regulación de la Expresión Génica , Humanos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Parálisis/genética , Parálisis/metabolismo , Parálisis/patología , Agregado de Proteínas/efectos de los fármacos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Clin Neurosci ; 81: 90-91, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33222977

RESUMEN

Hereditary spastic paraplegias (HSP) are phenotypically and genotypically diverse. We describe a unique case of autosomal recessive HSP (ARHSP) diagnosed at age 44 in a patient previously described as having "spinal muscular ataxia" [sic]. Predominant lower motor neuron findings and lack of clinical spasticity reduced suspicion for HSP in early life. The identified SPG11 mutation was novel and the presentation was atypical for HSP in general and SPG11 disease specifically.


Asunto(s)
Ataxia/genética , Trastornos de Deglución/genética , Mutación del Sistema de Lectura/genética , Hipotonía Muscular/genética , Parálisis/genética , Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Adulto , Ataxia/diagnóstico por imagen , Ataxia/etiología , Trastornos de Deglución/diagnóstico por imagen , Trastornos de Deglución/etiología , Progresión de la Enfermedad , Homocigoto , Humanos , Masculino , Hipotonía Muscular/diagnóstico por imagen , Hipotonía Muscular/etiología , Parálisis/etiología , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/diagnóstico por imagen
13.
Sci Rep ; 10(1): 6759, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317760

RESUMEN

Using a metagenomics approach, we have determined the first full-length genome sequence of a human parechovirus type 15 (HPeV15) strain, isolated from a child with acute flaccid paralysis and co-infected with EV-A71. HPeV15 is a rarely reported type. To date, no full-length genome sequence of HPeV15 is available in the GenBank database, where only limited VP1 sequences of this virus are available. Pairwise comparisons of the complete VP1 nucleotide and deduced amino acid sequences revealed that the study strain belongs to type 15 as it displayed 79.6% nucleotide and 93.4% amino acid identity with the HPeV15 prototype strain. Comparative analysis of available genomic regions and phylogenetic analysis using the P2 and P3 coding regions revealed low nucleotide identity to HPeV reference genomes. Phylogenetic and similarity plot analyses showed that genomic recombination events might have occurred in the UTRs and nonstructural region during HPeV15 evolution. The study strain has high similarity features with different variants of HPeV3 suggesting intertypic recombination. Our data contributes to the scarce data available on HPeVs in Africa and provides valuable information for future studies that aim to understand the evolutionary history, molecular epidemiology or biological and pathogenic properties of HPeV15.


Asunto(s)
Genoma Viral/genética , Parálisis/genética , Parechovirus/genética , Secuenciación Completa del Genoma , Genómica , Humanos , Metagenómica/métodos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Parálisis/virología , Parechovirus/aislamiento & purificación , Parechovirus/patogenicidad , Análisis de Secuencia de ADN
14.
Dysphagia ; 35(2): 343-359, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31300881

RESUMEN

The goal of this study was to compare dysphagia phenotypes in low and high copy number (LCN and HCN) transgenic superoxide dismutase 1 (SOD1) mouse models of ALS to accelerate the discovery of novel and effective treatments for dysphagia and early amyotrophic lateral sclerosis (ALS) diagnosis. Clinicopathological features of dysphagia were characterized in individual transgenic mice and age-matched controls utilizing videofluoroscopy in conjunction with postmortem assays of the tongue and hypoglossal nucleus. Quantitative PCR accurately differentiated HCN-SOD1 and LCN-SOD1 mice and nontransgenic controls. All HCN-SOD1 mice developed stereotypical paralysis in both hindlimbs. In contrast, LCN-SOD1 mice displayed wide variability in fore- and hindlimb involvement. Lick rate, swallow rate, inter-swallow interval, and pharyngeal transit time were significantly altered in both HCN-SOD1 and LCN-SOD1 mice compared to controls. Tongue weight, tongue dorsum surface area, total tongue length, and caudal tongue length were significantly reduced only in the LCN-SOD1 mice compared to age-matched controls. LCN-SOD1 mice with lower body weights had smaller/lighter weight tongues, and those with forelimb paralysis and slower lick rates died at a younger age. LCN-SOD1 mice had a 32% loss of hypoglossal neurons, which differed significantly when compared to age-matched control mice. These novel findings for LCN-SOD1 mice are congruent with reported dysphagia and associated tongue atrophy and hypoglossal nucleus pathology in human ALS patients, thus highlighting the translational potential of this mouse model in ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Trastornos de Deglución/genética , Deglución/genética , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Autopsia , Cinerradiografía , Trastornos de Deglución/fisiopatología , Modelos Animales de Enfermedad , Femenino , Miembro Anterior/fisiopatología , Tránsito Gastrointestinal , Dosificación de Gen , Miembro Posterior/fisiopatología , Humanos , Nervio Hipogloso/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Parálisis/genética , Parálisis/fisiopatología , Faringe/fisiopatología , Lengua/fisiopatología , Investigación Biomédica Traslacional
15.
Muscle Nerve ; 60(6): 752-757, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509255

RESUMEN

INTRODUCTION: Andersen-Tawil syndrome (ATS) is characterized by a triad of periodic paralysis, ventricular arrhythmias, and dysmorphism. However, patients often lack one or more of these features. METHODS: Clinical and neurophysiological features were reviewed of five members in two families with heterozygous mutations in KCNJ2 (R218Q and R67W). RESULTS: Only one patient had all features of the triad of ATS. One patient had low-set ears, and the others had minor anomalies. Bidirectional ventricular tachycardias were seen in two patients. Two patients (R67W) never had episodes of paralysis. The long exercise test was abnormal in three patients with episodes of paralysis, but normal in two without paralytic episodes. DISCUSSION: ATS patients without skeletal muscle symptoms can have normal neurophysiological examinations. They can show variability in phenotype or the severity of arrhythmias. Such variability among patients who share the same gene mutations may result in underdiagnosis of ATS.


Asunto(s)
Síndrome de Andersen/fisiopatología , Adolescente , Síndrome de Andersen/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Electrocardiografía , Electromiografía , Prueba de Esfuerzo , Femenino , Dedos/anomalías , Humanos , Masculino , Persona de Mediana Edad , Parálisis/genética , Parálisis/fisiopatología , Fenotipo , Canales de Potasio de Rectificación Interna/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatología , Complejos Prematuros Ventriculares/genética , Complejos Prematuros Ventriculares/fisiopatología , Adulto Joven
16.
J Clin Neuromuscul Dis ; 21(1): 42-46, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31453854

RESUMEN

Skeletal sodium channel mutations have been known to demonstrate a multitude of clinical manifestations of which one such commonly known entity is paramyotonia congenita. We describe the clinical features of proband in our case report and the various phenotypic manifestations described with the mentioned mutation from different centres. Our case serves to highlight the heterogeneity that exists in SCN4A mutations and the possible effect of other genetic/environmental factors in determining the final phenotype.


Asunto(s)
Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Niño , Estudios de Asociación Genética , Humanos , Masculino , Mutación Missense , Trastornos Miotónicos/complicaciones , Parálisis/genética
17.
Neuropediatrics ; 50(5): 318-321, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31319425

RESUMEN

Metachromatic leukodystrophy (MLD) is a rare sphingolipid storage disorder caused by arylsulfatase A (ARSA) deficiency, resulting in central and peripheral demyelination. However, an uncommon form of MLD caused by saposin B deficiency is also described (around 10 mutations reported till date). MLD is a systemic disorder affecting the central and peripheral nervous system, gall bladder, and kidneys. Acute flaccid paralysis as the initial clinical presentation is previously known in ARSA-deficient MLD. Hereby, we report a child with acute flaccid paralysis with brain magnetic resonance imaging showing nonspecific periventricular leukodystrophy. He had progressive cognitive decline with gall bladder polyposis. ARSA levels were within normal limits. Leukodystrophy gene panel revealed a homozygous pathogenic deletion (Lys227del variant) in prosaposin (PSAP) gene. Hence, a final diagnosis of saposin B-deficient MLD was established. The index case highlights the importance of clinical and electrophysiological clues in the diagnosis of such atypical presentations of MLD.


Asunto(s)
Leucodistrofia Metacromática/diagnóstico , Parálisis/diagnóstico , Saposinas/deficiencia , Abdomen/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Preescolar , Diagnóstico Diferencial , Humanos , Leucodistrofia Metacromática/complicaciones , Leucodistrofia Metacromática/genética , Masculino , Mutación , Parálisis/complicaciones , Parálisis/genética , Saposinas/genética
18.
FEBS Lett ; 593(16): 2139-2150, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31211853

RESUMEN

The abnormal accumulation of ß-amyloid peptide (Aß) is recognized as a central component in the pathogenesis of Alzheimer disease. While many aspects of Aß-mediated neurotoxicity remain elusive, Aß has been associated with numerous underlying pathologies, including oxidative and nitrosative stress, inflammation, metal ion imbalance, mitochondrial dysfunction, and even tau pathology. Ergothioneine (ET), a naturally occurring thiol/thione-derivative of histidine, has demonstrated antioxidant and neuroprotective properties against various oxidative and neurotoxic stressors. This study investigates ET's potential to counteract Aß-toxicity in transgenic Caenorhabditis elegans overexpressing a human Aß peptide. The accumulation of Aß in this model leads to paralysis and premature death. We show that ET dose-dependently reduces Aß-oligomerization and extends the lifespan and healthspan of the nematodes.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Antioxidantes/administración & dosificación , Caenorhabditis elegans/genética , Ergotioneína/administración & dosificación , Parálisis/prevención & control , Péptidos beta-Amiloides/genética , Animales , Animales Modificados Genéticamente , Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ergotioneína/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Parálisis/genética , Resultado del Tratamiento
19.
PLoS One ; 14(5): e0216417, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31083672

RESUMEN

Dopamine (DA) is a neurotransmitter with actions across phylogeny that modulate core behaviors such as motor activity, reward, attention, and cognition. Perturbed DA signaling in humans is associated with multiple disorders, including addiction, ADHD, schizophrenia, and Parkinson's disease. The presynaptic DA transporter exerts powerful control on DA signaling by efficient clearance of the neurotransmitter following release. As in vertebrates, Caenorhabditis elegans DAT (DAT-1) constrains DA signaling and loss of function mutations in the dat-1 gene result in slowed crawling on solid media and swimming-induced paralysis (Swip) in water. Previously, we identified a mutant line, vt34, that exhibits robust DA-dependent Swip. vt34 exhibits biochemical and behavioral phenotypes consistent with reduced DAT-1 function though vt34; dat-1 double mutants exhibit an enhanced Swip phenotype, suggesting contributions of the vt34-associated mutation to additional mechanisms that lead to excess DA signaling. SNP mapping and whole genome sequencing of vt34 identified the site of the molecular lesion in the gene B0412.2 that encodes the Runx transcription factor ortholog RNT-1. Unlike dat-1 animals, but similar to other loss of function rnt-1 mutants, vt34 exhibits altered male tail morphology and reduced body size. Deletion mutations in both rnt-1 and the bro-1 gene, which encodes a RNT-1 binding partner also exhibit Swip. Both vt34 and rnt-1 mutations exhibit reduced levels of dat-1 mRNA as well as the tyrosine hydroxylase ortholog cat-2. Although reporter studies indicate that rnt-1 is expressed in DA neurons, its re-expression in DA neurons of vt34 animals fails to fully rescue Swip. Moreover, as shown for vt34, rnt-1 mutation exhibits additivity with dat-1 in generating Swip, as do rnt-1 and bro-1 mutations, and vt34 exhibits altered capacity for acetylcholine signaling at the neuromuscular junction. Together, these findings identify a novel role for rnt-1 in limiting DA neurotransmission and suggest that loss of RNT-1 may disrupt function of both DA neurons and body wall muscle to drive Swip.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Dopamina/metabolismo , Mutación con Pérdida de Función , Parálisis , Natación , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Parálisis/genética , Parálisis/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
20.
JAMA Netw Open ; 2(5): e193348, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31050781

RESUMEN

Importance: Thyrotoxic periodic paralysis (TPP) is a potentially lethal complication of hyperthyroidism. However, only 1 specific susceptibility locus for TPP has been identified. Additional genetic determinants should be detected so that a prediction model can be constructed. Objective: To investigate the genetic architecture of TPP and distinguish TPP from Graves disease cohorts. Design, Setting, and Participants: This population-based case-control study used a 2-stage genome-wide association study to investigate the risk loci of TPP and weighted genetic risk score to construct a TPP prediction model with data from a Chinese Han population recruited in hospitals in China from March 2003 to December 2015. The analysis was conducted from November 2014 to August 2016. Main Outcomes and Measures: Loci specifically associated with TPP risk and those shared with Graves disease and prediction model of joint effects of TPP-specific loci. Results: A total of 537 patients with TPP (mean [SD] age, 35 [11] years; 458 male) 1519 patients with Graves disease and no history of TPP (mean [SD] age, 38 [13] years; 366 male), and 3249 healthy participants (mean [SD] age, 46 [10] years; 1648 male) were recruited from the Han population by hospitals throughout China. Two new TPP-specific susceptibility loci were identified: DCHS2 on 4q31.3 (rs1352714: odds ratio [OR], 1.58; 95% CI, 1.35-1.85; P = 1.24 × 10-8) and C11orf67 on 11q14.1 (rs2186564: OR, 1.50; 95% CI, 1.29-1.74; P = 2.80 × 10-7). One previously reported specific locus was confirmed on 17q24.3 near KCNJ2 (rs312729: OR, 2.08; 95% CI, 1.83-2.38; P = 8.02 × 10-29). Meanwhile, 2 risk loci (MHC and Xq21.1) were shared by Graves disease and TPP. After 2 years of treatment, the ratio of persistent thyrotropin receptor antibody positivity was higher in patients with TPP than in patients with Graves disease and no history of TPP (OR, 3.82; 95% CI, 2.04-7.16; P = 7.05 × 10-6). The prediction model using a weighted genetic risk score and 11 candidate TPP-specific single-nucleotide polymorphisms had an area under the curve of 0.80. Conclusions and Relevance: These findings provide evidence that TPP is a novel molecular subtype of Graves disease. The newly identified loci, along with other previously reported loci, demonstrate the growing complexity of the heritable contribution to TPP pathogenesis. A complete genetic architecture will be helpful to understand the pathophysiology of TPP, and a useful prediction model could prevent the onset of TPP.


Asunto(s)
Enfermedad de Graves/genética , Crisis Tiroidea/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Estudios Transversales , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Parálisis/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...