Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Clin Neurophysiol ; 131(4): 816-827, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066100

RESUMEN

OBJECTIVE: Hypokalaemic periodic paralysis (HypoPP) is caused by mutations of Cav1.1, and Nav1.4 which result in an aberrant gating pore current. Hyperkalaemic periodic paralysis (HyperPP) is due to a gain-of-function mutation of the main alpha pore of Nav1.4. This study used muscle velocity recovery cycles (MVRCs) to investigate changes in interictal muscle membrane properties in vivo. METHODS: MVRCs and responses to trains of stimuli were recorded in tibialis anterior and compared in patients with HyperPP(n = 7), HypoPP (n = 10), and normal controls (n = 26). RESULTS: Muscle relative refractory period was increased, and early supernormality reduced in HypoPP, consistent with depolarisation of the interictal resting membrane potential. In HyperPP the mean supernormality and residual supernormality to multiple conditioning stimuli were increased, consistent with increased inward sodium current and delayed repolarisation, predisposing to spontaneous myotonic discharges. CONCLUSIONS: The in vivo findings suggest the interictal resting membrane potential is depolarized in HypoPP, and mostly normal in HyperPP. The MVRC findings in HyperPP are consistent with presence of a window current, previously proposed on the basis of in vitro expression studies. Although clinically similar, HyperPP was electrophysiologically distinct from paramyotonia congenita. SIGNIFICANCE: MVRCs provide important in vivo data that complements expression studies of ion channel mutations.


Asunto(s)
Parálisis Periódica Hipopotasémica/fisiopatología , Potenciales de la Membrana/fisiología , Músculo Esquelético/fisiopatología , Parálisis Periódica Hiperpotasémica/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sarcolema/fisiología , Adulto Joven
2.
Neurosci Lett ; 714: 134579, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669315

RESUMEN

Nondystrophic myotonias are disorders of Na+ (Nav1.4 or SCN4A) and Cl- (CLCN1) channels in skeletal muscles, and frequently show phenotype heterogeneity. The molecular mechanism underlying their pathophysiology and phenotype heterogeneity remains unclear. As zebrafish models have been recently exploited for studies of the pathophysiology and phenotype heterogeneity of various human genetic diseases, a zebrafish model may be useful for delineating nondystrophic myotonias. Here, we generated transgenic zebrafish expressing a human mutant allele of SCN4A, referred to as Tg(mylpfa:N440K), and needle electromyography revealed increased number of myotonic discharges and positive sharp waves in the muscles of Tg(mylpfa:N440K) than in controls. In addition, forced exercise test at a water temperature of 24 °C showed a decrease in the distance moved, time spent in and number of visits to the zone with stronger swimming resistance. Finally, a forced exercise test at a water temperature of 18 °C exhibited a higher number of dive-bombing periods and drifting-down behavior than in controls. These findings indicate that Tg(mylpfa:N440K) is a good vertebrate model of exercise- and cold-induced human nondystrophic myotonias. This zebrafish model may contribute to provide insight into the pathophysiology of myotonia in sodium channelopathy and could be used to explore a new therapeutic avenue.


Asunto(s)
Frío , Modelos Animales de Enfermedad , Músculo Esquelético/fisiopatología , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Esfuerzo Físico , Pez Cebra , Animales , Animales Modificados Genéticamente , Electromiografía , Mutación Missense , Miotonía/genética , Miotonía/fisiopatología , Miotonía Congénita/fisiopatología , Trastornos Miotónicos/genética , Trastornos Miotónicos/fisiopatología , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/fisiopatología
4.
J Gen Physiol ; 146(6): 509-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26621775

RESUMEN

The diaphragm muscle of hyperkalemic periodic paralysis (HyperKPP) patients and of the M1592V HyperKPP mouse model rarely suffers from the myotonic and paralytic symptoms that occur in limb muscles. Enigmatically, HyperKPP diaphragm expresses the mutant NaV1.4 channel and, more importantly, has an abnormally high Na(+) influx similar to that in extensor digitorum longus (EDL) and soleus, two hindlimb muscles suffering from the robust HyperKPP abnormalities. The objective was to uncover the physiological mechanisms that render HyperKPP diaphragm asymptomatic. A first mechanism involves efficient maintenance of resting membrane polarization in HyperKPP diaphragm at various extracellular K(+) concentrations compared with larger membrane depolarizations in HyperKPP EDL and soleus. The improved resting membrane potential (EM) results from significantly increased Na(+) K(+) pump electrogenic activity, and not from an increased protein content. Action potential amplitude was greater in HyperKPP diaphragm than in HyperKPP soleus and EDL, providing a second mechanism for the asymptomatic behavior of the HyperKPP diaphragm. One suggested mechanism for the greater action potential amplitude is lower intracellular Na(+) concentration because of greater Na(+) K(+) pump activity, allowing better Na(+) current during the action potential depolarization phase. Finally, HyperKPP diaphragm had a greater capacity to generate force at depolarized EM compared with wild-type diaphragm. Action potential amplitude was not different between wild-type and HyperKPP diaphragm. There was also no evidence for an increased activity of the Na(+)-Ca(2+) exchanger working in the reverse mode in the HyperKPP diaphragm compared with the wild-type diaphragm. So, a third mechanism remains to be elucidated to fully understand how HyperKPP diaphragm generates more force compared with wild type. Although the mechanism for the greater force at depolarized resting EM remains to be determined, this study provides support for the modulation of the Na(+) K(+) pump as a component of therapy to alleviate weakness in HyperKPP.


Asunto(s)
Diafragma/metabolismo , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódica Hiperpotasémica/metabolismo , Potenciales de Acción , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Potenciales de la Membrana , Ratones , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/fisiopatología , Potasio/metabolismo , Potasio/farmacología , Sodio/metabolismo
7.
J Neurol ; 260(10): 2606-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23884711

RESUMEN

This exploratory study aims to create an evidence-based comprehensive characterization of hyperkalemic periodic paralysis (hyperPP). HyperPP is a rare genetic disorder that causes episodes of flaccid paralysis. Disease descriptions in the literature are based upon isolated clinical encounters and case reports. We describe the experience of a large cohort of genetically diagnosed individuals with hyperPP. We surveyed genetically characterized individuals age 18 and over to assess disease comorbidities, diagnostic testing, management, and quality of life issues relevant to hyperPP. Myotonia was reported by 55.8 % of subjects and paramyotonia by 45.3 %. There is a relative risk of 3.6 (p < 0.0001) for thyroid dysfunction compared to the general population. Twenty-five percent of subjects experienced their sentinel attack in the second decade of life. It took an average of 19.4 years and visits to four physicians to arrive at the diagnosis of hyperPP. In addition to limbs and hands being affected during attacks, 26.1 % of subjects reported their breathing musculature was affected and 62.0 % reported their facial muscles were affected. There was a lifelong trend of increasing attack frequency, which was particularly common during childhood and adolescence. Approximately one-third of individuals experienced progressive myopathy. Permanent muscle weakness was evident and worsened during childhood and after age 40. Those with no chronic treatment regimen have a RR of 2.3 for inadequate disease control compared to those taking long-term medications. This study revealed a multitude of heretofore unidentified characteristics of hyperPP, in addition to providing a different perspective on some previously held notions regarding the condition.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódica Hiperpotasémica/epidemiología , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/fisiopatología , Mutación Puntual/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Electromiografía , Medicina Basada en la Evidencia , Femenino , Encuestas Epidemiológicas , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Parálisis Periódica Hiperpotasémica/psicología , Calidad de Vida , Encuestas y Cuestionarios , Adulto Joven
8.
J Gen Physiol ; 141(3): 323-34, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23401572

RESUMEN

In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in Na(V)1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1-160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of Na(V)1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (~10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX.


Asunto(s)
Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/metabolismo , Animales , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Mutagénesis Sitio-Dirigida/métodos , Oocitos/metabolismo , Oocitos/fisiología , Parálisis Periódica Hiperpotasémica/fisiopatología , Xenopus laevis
9.
Recent Pat Biotechnol ; 6(3): 184-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23092434

RESUMEN

Hyperkalemic periodic paralysis (HyperKPP) is a disease characterized by periods of myotonic discharges and paralytic attacks causing weakness, the latter associated with increases in plasma [K(+)]. The myotonic discharge is due to increased Na(+) influx through defective Na(+) channels that triggers generation of several action potentials. The subsequent increase in extracellular K(+) concentration causes excessive membrane depolarization that inactivates Na(+) channels triggering the paralysis. None of the available treatments is fully effective. This paper reviews the capacity of Na(+) K(+)ATPase pumps, KATP and ClC-1 Cl(-) channels in improving membrane excitability during muscle activity and how using these three membrane components we can study future and more effective treatments for HyperKPP patients. The review of current patents related to HyperKPP reinforces the need of novel approaches for the treatment of this channelopathy.


Asunto(s)
Fatiga Muscular/fisiología , Parálisis Periódica Hiperpotasémica/fisiopatología , Parálisis Periódica Hiperpotasémica/terapia , Humanos , Mutación Missense/genética , Patentes como Asunto , Canales de Potasio/metabolismo , Canales de Sodio/genética
10.
Ann Card Anaesth ; 15(4): 302-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23041689

RESUMEN

Hyperkalemic periodic paralysis (HPP) is an autosomal-dominant inherited muscle disease characterized by episodes of flaccid weakness and intermittent myotonia. There are no previous reports in the literature about anesthesia for cardiac surgery with cardiopulmonary bypass in this disorder. We describe perioperative anesthetic management for on-pump coronary artery bypass grafting in a 75-year-old man with a history of hyperkalemic periodic paralysis. This case report outlines our management strategy and the issues encountered during the perioperative period.


Asunto(s)
Puente de Arteria Coronaria , Parálisis Periódica Hiperpotasémica/fisiopatología , Anciano , Puente Cardiopulmonar , Humanos , Masculino , Atención Perioperativa
11.
Neurology ; 79(10): 1033-40, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22914841

RESUMEN

OBJECTIVE: To electrophysiologically characterize the Na(v)1.4 mutant N440K found in a Korean family with a syndrome combining symptoms of paramyotonia congenita, hyperkalemic periodic paralysis, and potassium-aggravated myotonia. METHODS: We characterized transiently expressed wild-type and mutant Na(v)1.4 using whole-cell voltage-clamp analysis. RESULTS: N440K produced a significant depolarizing shift in the voltage dependence of fast inactivation and increased persistent current and acceleration in fast inactivation recovery, which gave rise to a 2-fold elevation in the dynamic availability of the mutant channels. In addition, the mutant channels required substantially longer and stronger depolarization to enter the slow-inactivated state. CONCLUSIONS: N440K causes a gain of function consistent with skeletal muscle hyperexcitability as observed in individuals with the mutation. How the same mutation results in distinct phenotypes in the 2 kindreds remains to be determined.


Asunto(s)
Activación del Canal Iónico/genética , Potenciales de la Membrana/genética , Trastornos Miotónicos/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódica Hiperpotasémica/fisiopatología , Adolescente , Adulto , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Mutación , Trastornos Miotónicos/genética , Parálisis Periódica Hiperpotasémica/genética
12.
Curr Neurol Neurosci Rep ; 12(1): 62-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22083238

RESUMEN

The nondystrophic myotonias and primary periodic paralyses are an important group of genetic muscle diseases characterized by dysfunction of ion channels that regulate membrane excitability. Clinical manifestations vary and include myotonia, hyperkalemic and hypokalemic periodic paralysis, progressive myopathy, and cardiac arrhythmias. The severity of myotonia ranges from severe neonatal presentation causing respiratory compromise through to mild later-onset disease. It remains unclear why the frequency of attacks of paralysis varies greatly or why many patients develop a severe permanent fixed myopathy. Recent detailed characterizations of human genetic mutations in voltage-gated muscle sodium (gene: SCN4A), chloride (gene: CLCN1), calcium (gene: CACNA1S), and inward rectifier potassium (genes: KCNJ2, KCNJ18) channels have resulted in new insights into disease mechanisms, clinical phenotypic variation, and therapeutic options.


Asunto(s)
Canalopatías/fisiopatología , Canales Iónicos/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Animales , Arritmias Cardíacas/fisiopatología , Humanos , Parálisis Periódica Hipopotasémica/fisiopatología , Canales Iónicos/genética , Mutación , Trastornos Miotónicos/fisiopatología , Parálisis Periódica Hiperpotasémica/fisiopatología
13.
J Gen Physiol ; 138(1): 117-30, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21708955

RESUMEN

In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with ß(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K(+)](o). In resting mutant soleus, tetrodotoxin (TTX)-suppressible (22)Na uptake and [Na(+)](i) were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na(+),K(+) pump-mediated (86)Rb uptake was 83% larger than in WT. Salbutamol stimulated (86)Rb uptake and reduced [Na(+)](i) both in mutant and WT soleus. Stimulating Na(+),K(+) pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na(+)](i) with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na(+),K(+) pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na(+)](i) on the synthesis of Na(+),K(+) pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na(+) influx and show that contractility can be restored by acute stimulation of the Na(+),K(+) pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in (86)Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These observations may explain how mild exercise helps locally to prevent severe weakness during an attack of HyperKPP.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Parálisis Periódica Hiperpotasémica/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Albuterol/farmacología , Animales , Capsaicina/farmacología , Estimulación Eléctrica , Ratones , Monensina/farmacología , Parálisis Periódica Hiperpotasémica/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética
14.
Pflugers Arch ; 460(2): 239-48, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20237798

RESUMEN

Five hereditary sodium channelopathies of skeletal muscle have been identified. Prominent symptoms are either myotonia or weakness caused by an increase or decrease of muscle fiber excitability. The voltage-gated sodium channel NaV1.4, initiator of the muscle action potential, is mutated in all five disorders. Pathogenetically, both loss and gain of function mutations have been described, the latter being the more frequent mechanism and involving not just the ion-conducting pore, but aberrant pores as well. The type of channel malfunction is decisive for therapy which consists either of exerting a direct effect on the sodium channel, i.e., by blocking the pore, or of restoring skeletal muscle membrane potential to reduce the fraction of inactivated channels.


Asunto(s)
Canalopatías/genética , Trastornos Miotónicos/genética , Canales de Sodio/genética , Potenciales de Acción/fisiología , Humanos , Parálisis Periódica Hipopotasémica/fisiopatología , Potenciales de la Membrana/fisiología , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Trastornos Miotónicos/tratamiento farmacológico , Trastornos Miotónicos/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4 , Parálisis Periódica Hiperpotasémica/fisiopatología , Potasio/efectos adversos , Canales de Sodio/química , Canales de Sodio/fisiología
16.
J Cardiovasc Med (Hagerstown) ; 10(1): 68-71, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19708131

RESUMEN

Familial hypokalemic periodic paralysis is an autosomal dominant muscle disorder characterized by episodic attacks of muscle weakness, accompanied by a decrease in blood potassium levels. It is based on genetic mutations in the genes CACNA1S (most frequent, encoding the skeletal muscle calcium channel) and SCN4A (10% of cases, encoding the sodium channel). Few cases have been reported with cardiac dysrhythmia. We report a rare case of a patient with a novel SCN4A mutation who presented, on ECG, extreme bradycardia and syncopal sinus arrest that required a temporary pacemaker implant


Asunto(s)
Bradicardia/genética , Frecuencia Cardíaca/genética , Mutación , Parálisis Periódica Hiperpotasémica/genética , Paro Sinusal Cardíaco/genética , Canales de Sodio/genética , Adulto , Bradicardia/fisiopatología , Bradicardia/terapia , Estimulación Cardíaca Artificial , Análisis Mutacional de ADN , Electrocardiografía , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.4 , Marcapaso Artificial , Parálisis Periódica Hiperpotasémica/complicaciones , Parálisis Periódica Hiperpotasémica/fisiopatología , Parálisis Periódica Hiperpotasémica/terapia , Compuestos de Potasio/administración & dosificación , Paro Sinusal Cardíaco/fisiopatología , Paro Sinusal Cardíaco/terapia , Síncope/genética , Resultado del Tratamiento
17.
Neurology ; 72(18): 1544-7, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19118277

RESUMEN

BACKGROUND: Several missense mutations of CACNA1S and SCN4A genes occur in hypokalemic periodic paralysis. These mutations affect arginine residues in the S4 voltage sensors of the channel. Approximately 20% of cases remain genetically undefined. METHODS: We undertook direct automated DNA sequencing of the S4 regions of CACNA1S and SCN4A in 83 cases of hypokalemic periodic paralysis. RESULTS: We identified reported CACNA1S mutations in 64 cases. In the remaining 19 cases, mutations in SCN4A or other CACNA1S S4 segments were found in 10, including three novel changes and the first mutations in channel domains I (SCN4A) and III (CACNA1S). CONCLUSIONS: All mutations affected arginine residues, consistent with the gating pore cation leak hypothesis of hypokalemic periodic paralysis. Arginine mutations in S4 segments underlie 90% of hypokalemic periodic paralysis cases.


Asunto(s)
Canales de Calcio/genética , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/fisiopatología , Canales de Sodio/genética , Adolescente , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Arginina/genética , Canales de Calcio/química , Canales de Calcio Tipo L , Análisis Mutacional de ADN , Frecuencia de los Genes/genética , Pruebas Genéticas , Genotipo , Humanos , Patrón de Herencia/genética , Activación del Canal Iónico/genética , Potenciales de la Membrana/genética , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4 , Parálisis Periódica Hiperpotasémica/metabolismo , Estructura Terciaria de Proteína/genética , Canales de Sodio/química , Adulto Joven
18.
Neurologia ; 23(7): 427-35, 2008 Sep.
Artículo en Español | MEDLINE | ID: mdl-18726720

RESUMEN

INTRODUCTION: Hyperkalemic periodic paralysis (HYPP) is an autosomal dominant disease characterized by recurrent episodes of muscular weakness with increased blood potassium levels. Here we present the clinical, analytical, neurophysiological and genetic findings of family with eight affected individuals, five of which were available for study. PATIENTS AND METHODS: The five patients were subjected to complete anamnesis, neurological examination, routine blood analysis and genetic study. Two of the patients were also examined both at the clinical and neurophysiological levels. In one case, the potassium levels were determined during a crisis. RESULTS: Almost all patients presented 2 to 3 episodes of muscle weakness of the limbs per day of 30-45 min, and showed calf hypertrophy. During the observed episodes, the paralysis was massive in the lower limbs and the patients showed generalized osteotendinous areflexia. The potassium levels of the probandus measured during one of the episodes were elevated. The genetic analysis showed that all the affected individuals carried the p.Thr704Met mutation in the a subunit of the skeletal muscle sodium channel, encoded by the SCN4A gene. CONCLUSIONS: Our findings correlate well with those reported previously in HYPP, although the frequency of the episodes is exceptionally high in our family. HYPP is a channelopathy caused by mutations in the SCN4A gene, although molecular alterations have only been identified in 70 % of the patients. The affected members of the studied family bear a frequent mutation, p.Thr704Met, associated with a severe presentation of the disease.


Asunto(s)
Parálisis Periódica Hiperpotasémica/genética , Mutación Puntual , Canales de Sodio/genética , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Familia , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.4 , Parálisis Periódica Hiperpotasémica/fisiopatología , Linaje , Fenotipo , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...