Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.759
Filtrar
1.
Sci Rep ; 14(1): 14291, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906953

RESUMEN

Parabens (PBs) are used as preservatives in various products. They pollute the environment and penetrate living organisms, showing endocrine disrupting activity. Till now studies on long-term exposure of farm animals to PBs have not been performed. Among matrices using in PBs biomonitoring hair samples are becoming more and more important. During this study concentration levels of methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) butyl paraben (BuP) and benzyl paraben (BeP) were evaluated using liquid chromatography-mass spectrometry (LC-MS) in hair samples collected from dairy cows bred in the Kyrgyz Republic. MeP was noted in 93.8% of samples (with mean concentration levels 62.2 ± 61.8 pg/mg), PrP in 16.7% of samples (12.4 ± 6.5 pg/mg) and EtP in 8.3% of samples (21.4 ± 11.9 pg/mg). BuP was found only in one sample (2.1%) and BeP was not detected in any sample included in the study. Some differences in MeP concentration levels in the hair samples depending on district, where cows were bred were noted. This study has shown that among PBs, dairy cows are exposed mainly to MeP, and hair samples may be a suitable matrix for research on PBs levels in farm animals.


Asunto(s)
Cabello , Parabenos , Animales , Bovinos , Parabenos/análisis , Cabello/química , Femenino , Cromatografía Liquida/métodos , Análisis de Cabello/métodos , Industria Lechera , Exposición a Riesgos Ambientales/análisis , Monitoreo Biológico/métodos
2.
J Hazard Mater ; 474: 134821, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850927

RESUMEN

Butylparaben, a common preservative, is widely used in food, pharmaceuticals and personal care products. Epidemiological studies have revealed the close relationship between butylparaben and diabetes; however the mechanisms of action remain unclear. In this study, we administered butylparaben orally to mice and observed that exposure to butylparaben induced glucose intolerance and hyperlipidemia. RNA sequencing results demonstrated that the enrichment of differentially expressed genes was associated with lipid metabolism, bile acid metabolism, and inflammatory response. Western blot results further validated that butylparaben promoted hepatic lipogenesis, inflammation, gluconeogenesis, and insulin resistance through the inhibition of the farnesoid X receptor (FXR) pathway. The FXR agonists alleviated the butylparaben-induced metabolic disorders. Moreover, 16 S rRNA sequencing showed that butylparaben reduced the abundance of Bacteroidetes, S24-7, Lactobacillus, and Streptococcus, and elevated the Firmicutes/Bacteroidetes ratio. The gut microbiota dysbiosis caused by butylparaben led to decreased bile acids (BAs) production and increased inflammatory response, which further induced hepatic glycolipid metabolic disorders. Our results also demonstrated that probiotics attenuated butylparaben-induced disturbances of the gut microbiota and hepatic metabolism. Taken collectively, the findings reveal that butylparaben induced gut microbiota dysbiosis and decreased BAs production, which further inhibited FXR signaling, ultimately contributing to glycolipid metabolic disorders in the liver.


Asunto(s)
Microbioma Gastrointestinal , Parabenos , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Parabenos/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Glucolípidos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/metabolismo , Ratones , Disbiosis/inducido químicamente , Conservadores Farmacéuticos/toxicidad , Ácidos y Sales Biliares/metabolismo
3.
Sci Total Environ ; 944: 173823, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38851341

RESUMEN

Parabens are widely used as broad-spectrum anti-microbials and preservatives in food, cosmetics, pharmaceuticals, and personal care products. Studies suggest that the utilization of parabens has substantially increased over the past years, particularly during the global pandemic of coronavirus disease 2019 (COVID-19). Although parabens are generally recognized as safe by the U.S. FDA, some concerns have been raised regarding the potential health effects of parabens associated with immunotoxicity. Herein, we comprehensively investigated several key characteristics of immunotoxicants of five commonly used parabens (methyl-, ethyl-, propyl-, butyl-, and benzyl parabens) in human THP-1 derived macrophages, which are effector cells serving as a first line of host defense against pathogens and tumor immunosurveillance. The results indicate parabens, at concentrations found in humans and biota, significantly dampened macrophage chemotaxis and secretion of major pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10), corroborating the mRNA expression profile. Furthermore, some parabens were found to markedly alter macrophage adhesion and cell surface expression of costimulatory molecules, CD80+ and CD86+, and significantly increase macrophage phagocytosis. Collectively, these findings heighten awareness of potential immunotoxicity posed by paraben exposure at biologically relevant concentrations, providing implications for human health and ecological risks associated with immune dysfunctions.


Asunto(s)
Macrófagos , Parabenos , Parabenos/toxicidad , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células THP-1 , Factores Inmunológicos/toxicidad , Citocinas/metabolismo , COVID-19 , Conservadores Farmacéuticos/toxicidad
4.
Chemosphere ; 361: 142570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852636

RESUMEN

Various contaminants of emerging concern (CECs) including pharmaceuticals and personal care products (PPCPs) have been known to threaten the aquatic ecosystem and human health even at low levels in surface water. Among them, the wide variety use of parabens as preservatives may pose potential threat to human because parabens may present estrogenic activity. Various advanced oxidation processes have been attempted to reduce parabens, but challenges using cold plasma (CP) are very rare. CP is worth paying attention to in reducing parabens because it has the advantage of generating radical ions, including reactive oxygen/nitrogen species and various ions. Accordingly, this study demonstrates how CP can be utilized and how CP competes with other advanced oxidation processes in energy requirements. Quantified ethyl-, propyl-, and butyl-paraben indicate that CP can effectively degrade them up to 99.1% within 3 h. Regression reveals that the kinetic coefficients of degradation can be increased to as high as 0.0328 min-1, comparable to other advanced oxidation processes. Many by-products generated from the oxidation of parabens provide evidence of the potential degradation pathway through CP treatment. In addition, we found that the electrical energy consumption per order of CP (39-95 kWh/m3/order) is superior to other advanced oxidation processes (69∼31,716 kWh/m3/order). Overall, these results suggest that CP may be a viable option to prevent adverse health-related consequences associated with parabens in receiving water.


Asunto(s)
Oxidación-Reducción , Parabenos , Contaminantes Químicos del Agua , Parabenos/química , Contaminantes Químicos del Agua/química , Gases em Plasma/química , Cinética , Conservadores Farmacéuticos/química
5.
Environ Int ; 188: 108671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749119

RESUMEN

OBJECTIVE: Parabens are a group of substances commonly employed as antimicrobial preservatives. The effect of parabens on the development of neurotoxicity in children is still controversial. This study aimed to explore the associations between parabens exposure and children's neurodevelopmental performance, emphasizing potential sex differences and the combined effects of parabens. METHODS: We used the long-term follow-up study of Taiwanese generation, Taiwan Birth Panel Study II (TBPS II). We recruited the group of children at 6-8 years old. And, we measured parabens in children urine, including methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP). Children's attention-related performance was evaluated using the Conners Kiddie Continuous Performance Test 2nd Edition (K-CPT 2). The study employed both linear regression and mixture analysis quantile g-computation (QGC) methods to discern associations. A stratified analysis by sex and QGC was implemented to delve deeper into the cumulative effects of parabens. RESULTS: A total of 446 subjects completed both the parabens analysis and the K-CPT 2 survey. The overall association between parabens and neurodevelopmental performance was not pronounced, but discernible sex differences emerged. In the single pollutant analysis, elevated PP concentrations were associated with higher K-CPT 2 scores particularly in detectability (d') (ß = 0.92 [95 % CI = 0.15 to 1.69]) and commissions (ß = 0.95 [95 % CI = 0.12 to 1.78]), among girls. Further, in the mixture analysis, a significant association between PP and detectability (d') was observed in girls (ß = 1.68 [95 % CI = 0.11 to 3.26]). CONCLUSIONS: This study identified sex-specific associations between parabens and attention performance. Consistent outcomes across single and mixture analysis methods. Further research is crucial to clarify these causal associations.


Asunto(s)
Parabenos , Parabenos/análisis , Humanos , Niño , Femenino , Masculino , Taiwán , Exposición a Riesgos Ambientales , Estudios de Seguimiento , Conservadores Farmacéuticos , Desarrollo Infantil/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente
6.
J Microbiol Methods ; 222: 106958, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777183

RESUMEN

A novel method for the quantification of antifungal activity of fungicides and painted surfaces, mycelial invasion distance (MID) method, was developed and applied to the quantification of activities of parabens and an antifungal paint. In this method, the MID of aerial mycelia on a test paper or a panel placed on a nutrient agar plate was measured with a stereoscopic microscope and a micro-ruler. The antifungal activities of the parabens and painted surfaces were expressed as the MID. The higher the hydrophobicity of parabens, the longer the MID, that is the lower the antifungal activity, were observed. Conversely, relatively polar parabens, such as methyl and ethyl parabens, exhibited stronger antifungal activity, that is shorter MID. The most hydrophobic paraben, benzyl paraben, showed the weakest antifungal activity. Furthermore, it was confirmed that the MID method was effective for the evaluation of the painted surfaces.


Asunto(s)
Antifúngicos , Hongos , Micelio , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Parabenos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Pintura/microbiología , Interacciones Hidrofóbicas e Hidrofílicas
7.
Chemosphere ; 361: 142442, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810806

RESUMEN

BACKGROUND: Studies have shown an association between hair product use and adverse health outcomes. Scientists have hypothesized that exposure to endocrine-disrupting chemicals (EDCs) drives these associations, but few studies have directly evaluated associations between hair product use and biomarkers of EDCs. Even more limited are studies of Black women, who frequently use EDC-containing products (e.g., hair relaxers). OBJECTIVE: We estimated associations between hair product use and EDC biomarker concentrations. METHODS: We leveraged cross-sectional data from the Study of Environment, Lifestyle, and Fibroids, a cohort of females aged 23-34 years who self-identified as Black/African American from the Detroit-metropolitan area (USA; n = 425). On structured questionnaires, participants reported their past 24-h and past 12-month use of hair products, including relaxers/straighteners/perms, styling products, moisturizers, oils, and hair food. We quantified urinary concentrations of 19 phthalate/phthalate alternative metabolites, 7 phenols, and 4 parabens using high performance liquid chromatography isotope dilution tandem mass spectrometry. EDC biomarker concentrations were creatinine-adjusted and natural log-transformed. We used multivariable linear regression to estimate mean percent differences in EDC biomarker concentrations and 95% confidence intervals (CIs) associated with hair product use, adjusting for sociodemographic confounders. RESULTS: Hair product use was associated with greater concentrations of multiple EDC biomarkers. Notably, use of hair products in the previous 24 h (compared with non-use) was associated with 16.2% (95% CI = 0.7%, 35.9%), 35.0% (95% CI = 2.6%, 77.6%), and 32.3% (95% CI = 8.8%, 92.0%) higher concentrations of mono-isobutyl phthalate, methyl paraben, and ethyl paraben, respectively. Use of hair relaxers/straighteners/perms, styling products, moisturizers, oils, and hair food in the past 12 months was also associated with higher concentrations of multiple phthalate, phenol, and paraben biomarkers. CONCLUSION: Hair product use was associated with higher biomarker concentrations of multiple phthalates, phenols, and parabens. These findings suggest that hair products are potentially important exposure sources for hormonally-active chemicals among Black women.


Asunto(s)
Biomarcadores , Negro o Afroamericano , Disruptores Endocrinos , Humanos , Femenino , Adulto , Biomarcadores/orina , Disruptores Endocrinos/orina , Disruptores Endocrinos/análisis , Negro o Afroamericano/estadística & datos numéricos , Adulto Joven , Estudios Transversales , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Preparaciones para el Cabello , Fenoles/orina , Fenoles/análisis , Ácidos Ftálicos/orina , Contaminantes Ambientales/orina , Contaminantes Ambientales/análisis , Cabello/química , Parabenos/análisis , Encuestas y Cuestionarios
8.
Sci Total Environ ; 939: 173540, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38806129

RESUMEN

Considering the widespread presence of pharmaceutical and personal care products (PPCPs) in the environment and their adverse health effects, human exposure to PPCPs has caused worldwide concern. However, there remains insufficient information on the exposure assessment of the Chinese population. Based on this, the exposure levels of 13 PPCPs in the urine samples of 986 Chinese adults were measured, aiming to provide information on the prevalence of PPCP occurrence and investigate potential correlations between PPCP exposure and obesity. Results showed that the detection rates of these compounds in urine ranged from 28.12 % to 98.58 %, with median concentrations ranging below the limit of detection to 10.58 ng mL-1. Methyl-paraben (MeP) was the most dominant paraben and had the highest urinary concentration (median = 10.12 ng mL-1), while 4-hydroxy-benzophenone (4-OH-BP) was the dominant benzophenone derivative (median = 0.22 ng mL-1). In antibacterials, the urinary concentration of triclosan (mean = 42.00 ng mL-1) was much higher than that of triclocarban (mean = 0.63 ng mL-1). PPCP concentrations were significantly associated with sex, age, body mass index, education level, and annual household income (p < 0.050). Regression analysis of dietary habits showed that seafood and tea consumption may be significant exposure sources of PPCP exposure (p < 0.050). Furthermore, individual exposure to MeP (odds ratio (OR) < 1, p = 0.002) and 4-OH-BP (OR < 1, p = 0.009) exhibited a significantly negative association with obesity in females. Also, analysis results from quantile g-computation and Bayesian kernel machine regression models demonstrated that an inverse correlation between PPCP mixture exposure and obesity was significant in females. This study reports the extensive prevalence of PPCP exposure among adults from China, and may provide crucial insights into PPCP exposure dynamics. More epidemiological studies are need in the future, with a thorough knowledge of PPCP exposure.


Asunto(s)
Cosméticos , Exposición a Riesgos Ambientales , Humanos , Adulto , Femenino , Masculino , China , Preparaciones Farmacéuticas/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Conducta Alimentaria , Persona de Mediana Edad , Contaminantes Ambientales/orina , Parabenos/análisis , Adulto Joven , Obesidad/epidemiología
9.
Cell Rep ; 43(5): 114148, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697100

RESUMEN

Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Mitocondriales , Parabenos , Ubiquinona , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Parabenos/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Ratones Endogámicos C57BL , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Ataxia/tratamiento farmacológico , Ataxia/patología , Ataxia/metabolismo
10.
PLoS One ; 19(5): e0302691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709735

RESUMEN

Parabens are being used as preservatives due to their antifungal and antimicrobial effects. They are emerging as aquatic pollutants due to their excessive use in many products. The purpose of this study was to determine the toxic effect of ethyl paraben (C9H10O3) on the hematobiochemical, histological, oxidative, and anti-oxidant enzymatic and non-enzymatic activity; the study also evaluates the potential of ethyl paraben to cause genotoxicity in Rohu Labeo rohita. A number of 15 fish with an average weight of 35.45±1.34g were placed in each group and exposed to ethyl paraben for 21 days. Three different concentrations of ethyl paraben, i.e., T1 (2000µg/L), T2 (4000 µg/L), andT3 (6000 µg/L) on which fish were exposed as compared to the control T0 (0.00 µg/L). Blood was used for hematobiochemical and comet assay. Gills, kidneys, and liver were removed for histological alterations. The results showed a significant rise in all hemato-biochemical parameters such as RBCs, WBCs, PLT count, blood sugar, albumin, globulin, and cholesterol. An increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels directed the hepatocytic damage. Histological alterations in the liver, gills and kidneys of fish were found. Ethylparaben induces oxidative stress by suppressing antioxidant enzyme activity such as SOD, GSH, CAT and POD. Based on the comet assay, DNA damage was also observed in blood cells, resulting in genotoxicity. Findings from the present study indicate that ethyl paraben induces hemato-biochemical alterations, tissue damage, oxidative stress, and genotoxicity.


Asunto(s)
Antioxidantes , Biomarcadores , Daño del ADN , Animales , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Daño del ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/patología , Branquias/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Parabenos/toxicidad , Ensayo Cometa , Cyprinidae/metabolismo , Oxidantes/metabolismo , Oxidantes/toxicidad
11.
Environ Int ; 188: 108778, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38815467

RESUMEN

With the discovery of evidence that many endocrine-disrupting chemicals (EDCs) in the environment influence human health, their toxic effects and mechanisms have become a hot topic of research. However, investigations into their endocrine-disrupting toxicity under combined binary exposure, especially the molecular mechanism of combined effects, have rarely been documented. In this study, two typical EDCs, perfluorooctanoic acid (PFOA) and 4-hydroxybenzophenone (4-HBP), were selected to examine their combined effects and molecular mechanism on MCF-7 cell proliferation at environmentally relevant exposure concentrations. We have successfully established a model to evaluate the binary combined toxic effects of endocrine disruptors, presenting combined effects in a simple and direct way. Results indicated that the combined effect changed from additive to synergistic from 1.25 × 10-8 M to 4 × 10-7 M. Metabolomics analyses suggested that exposure to PFOA and 4-HBP caused significant alterations in purine metabolism, arginine, and proline metabolism and had superimposed influences on metabolism. Enhanced combined effects were observed in glycine, serine, and threonine metabolic pathways compared to exposure to PFOS and 4-HBP alone. Additionally, the differentially expressed genes (DEGs) are primarily involved in Biological Processes, especially protein targeting the endoplasmic reticulum, and significantly impact the oxidative phosphorylation and thermogenesis-related KEGG pathway. By integrating metabolome and transcriptome analyses, PFOA and 4-HBP regulate purine metabolism, the TCA cycle, and endoplasmic reticulum protein synthesis in MCF-7 cells via mTORC1, which provides genetic material, protein, and energy for cell proliferation. Furthermore, molecular docking confirmed the ability of PFOA and 4-HBP to stably bind the estrogen receptor, indicating that they have different binding pockets. Collectively, these findings will offer new insights into understanding the mechanisms by which EDCs produce combined toxicity.


Asunto(s)
Caprilatos , Disruptores Endocrinos , Fluorocarburos , Humanos , Caprilatos/toxicidad , Células MCF-7 , Disruptores Endocrinos/toxicidad , Fluorocarburos/toxicidad , Proliferación Celular/efectos de los fármacos , Parabenos/toxicidad , Metabolómica , Multiómica
12.
Environ Sci Pollut Res Int ; 31(25): 37050-37059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758445

RESUMEN

Products used in daily life can contain chemicals such as parabens, benzophenones, triclosan, and triclocarban that have potential endocrine-disrupting effects. Little is known about the temporal trends of exposure levels to some of these chemicals in Japan. Our study assessed the intake and risk associated with exposure to commonly used chemicals. We measured the concentrations of five parabens, four benzophenones, and triclosan and triclocarban in 133 single spot urine samples. The urine samples were collected in 1993, 2000, 2003, 2009, 2011, and 2016 from healthy female residents in Kyoto, Japan. With the exception of methylparaben, ethylparaben, and butylparaben, there were no significant fluctuations in the concentrations of target chemicals over the study period; however, methylparaben, ethylparaben, and butylparaben showed temporal changes in concentrations. Methylparaben concentrations peaked in 2003 with a median value of 309 µg/g creatinine, ethylparaben concentrations peaked in 1993 with a median value of 17.3 µg/g creatinine, and butylparaben showed a decline, with the median values becoming non-detectable in 2009 and 2016. We calculated estimated daily intakes and hazard quotients for each chemical. In the analysis of total samples, 2.3% (3 samples) for butylparaben and 0.8% (1 sample) for propylparaben were found to surpass a hazard quotient of 1. Overall, 3% (n = 4) of the study participants exceeded a hazard index of 1. The potential health risks associated with exposure to butylparaben and propylparaben emphasize the need for further monitoring and research.


Asunto(s)
Benzofenonas , Carbanilidas , Parabenos , Triclosán , Parabenos/análisis , Femenino , Japón , Humanos , Triclosán/orina , Carbanilidas/análisis , Adulto , Benzofenonas/orina , Exposición a Riesgos Ambientales , Persona de Mediana Edad
13.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728218

RESUMEN

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Asunto(s)
Disruptores Endocrinos , Parabenos , Fenoles , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Humanos , Ácidos Ftálicos/orina , Fenoles/orina , Fenoles/toxicidad , Femenino , Lactante , Embarazo , Disruptores Endocrinos/orina , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/orina , Masculino , Exposición Materna/estadística & datos numéricos , Exposición Materna/efectos adversos , Estudios Longitudinales , Preescolar , Antropometría
14.
Anal Chim Acta ; 1309: 342676, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772658

RESUMEN

BACKGROUND: Methylparaben (MP), a commonly used antibacterial preservative, is widely used in personal care products, foods, and pharmaceuticals. MP and its metabolites are easy to enter the water environment, and their exposure and accumulation have negative effects on the ecological environment and human health, and have endocrine disrupting activity and potential physiological toxicity. It is still the primary issue of environmental analysis and ecological risk assessment to develop simple and reliable methods for simultaneous sensitive detection of these compounds in environmental water. RESULTS: In this paper, a flexible molecularly imprinted fiber array strategy is proposed for simultaneous enrichment and detection of trace MP and its four main metabolites. The experimental results showed that the three-fiber imprinted fiber array constructed by MP imprinted fiber had the best effect on the simultaneous enrichment of these five target analytes. The enrichment capacity of the imprinted fiber array was 214-456 times, 314-1201 times and 38-685 times that of commercial PA, PDMS and PDMS/DVB fiber arrays, respectively. The limit of detection (LOD) of this method was 0.033 µg L-1. The spiked recovery rate was 86.78-113.96 %, and RSD was less than 9.17 %. In addition, this molecularly imprinted SPME fiber array has good stability, long service life and can be used repeatedly at least 100 times. SIGNIFICANCE: This molecularly imprinted fiber array strategy can flexibly assemble different molecularly imprinted SPME fibers together, effectively improve the enrichment ability and detection sensitivity, and achieve simultaneous selective enrichment and detection of several analytes. This is an easy, efficient and reliable method for monitoring several trace analytes simultaneously in intricate environmental matrices.


Asunto(s)
Límite de Detección , Impresión Molecular , Parabenos , Microextracción en Fase Sólida , Parabenos/análisis , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis
15.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792074

RESUMEN

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Asunto(s)
Hidrazonas , Lacasa , Hidrazonas/farmacología , Hidrazonas/química , Lacasa/metabolismo , Productos Agrícolas/microbiología , Antifúngicos/farmacología , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Animales , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/química , Botrytis/efectos de los fármacos , Humanos , Ratones , Parabenos
16.
J Hazard Mater ; 472: 134460, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718505

RESUMEN

Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.


Asunto(s)
Biopelículas , Parabenos , Parabenos/química , Parabenos/toxicidad , Biopelículas/efectos de los fármacos , Bacterias/efectos de los fármacos , Teoría Funcional de la Densidad , Percepción de Quorum/efectos de los fármacos
17.
Sci Total Environ ; 932: 173130, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734109

RESUMEN

Parabens (PBs) and triclosan (TCS) are commonly found in pharmaceuticals and personal care products (PPCPs). As a result, they have been extensively found in the environment, particularly in aquaculture operations. Red swamp crayfish (Procambarus clarkii) consumption has significantly risen in China. Nevertheless, the levels of PBs and TCS in this species and the associated risk to human dietary intake remain undisclosed. This study assessed the amounts of five PBs, i.e., methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP) and benzyl-paraben (BzP), as well as TCS in crayfish taken from five provinces of the middle-lower Yangtze River. MeP, PrP and TCS showed the highest detection rates (hepatopancreas: 46-86 %; muscle: 63-77 %) since they are commonly used in PPCPs. Significantly higher levels of ∑5PBs (median: 3.69 ng/g) and TCS (median: 7.27 ng/g) were significantly found in the hepatopancreas compared to the muscle (median: 0.39 ng/g for ∑5PBs and 0.16 ng/g for TCS) (p < 0.05), indicating bioaccumulation of these chemicals in the hepatopancreas. The estimated daily intake values of ∑5PBs and TCS calculated from the median concentrations of crayfish were 6.44-7.94 ng/kg bw/day and 11.4-14.0 ng/kg bw/day, respectively. Although no health risk was predicted from consuming crayfish (HQ <1), consumption of the hepatopancreas is not recommended.


Asunto(s)
Astacoidea , Exposición Dietética , Parabenos , Triclosán , Contaminantes Químicos del Agua , Animales , Triclosán/análisis , China , Contaminantes Químicos del Agua/análisis , Parabenos/análisis , Exposición Dietética/estadística & datos numéricos , Exposición Dietética/análisis , Humanos , Medición de Riesgo , Distribución Tisular , Monitoreo del Ambiente , Contaminación de Alimentos/análisis
18.
Biofouling ; 40(3-4): 245-261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38639133

RESUMEN

Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.


Asunto(s)
Bacterias , Biopelículas , Incrustaciones Biológicas , Agua Dulce , Membranas Artificiales , Purificación del Agua , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Incrustaciones Biológicas/prevención & control , Purificación del Agua/métodos , Agua Dulce/microbiología , Bacterias/efectos de los fármacos , Sustancias Húmicas/análisis , Filtración/métodos , Parabenos/química , Sulfonas/química , Polímeros/química
19.
Arch Toxicol ; 98(7): 2231-2246, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619594

RESUMEN

Parabens have historically served as antimicrobial preservatives in a range of consumables such as food, beverages, medications, and personal care products due to their broad-spectrum antibacterial and antifungal properties. Traditionally, these compounds were believed to exhibit low toxicity, causing minimal irritation, and possessing limited sensitization potential. However, recent evidence suggests that parabens might function as endocrine-disrupting chemicals (EDCs). Consequently, extensive research is underway to elucidate potential human health implications arising from exposure to these substances. Among these parabens, particular concerns have been raised regarding the potential adverse effects of iso-butylparaben (IBP). Studies have specifically highlighted its potential for inducing hormonal disruption, significant ocular damage, and allergic skin reactions. This study aimed to evaluate the prolonged systemic toxicity, semen quality, and estrus cycle in relation to endocrine disruption endpoints, alongside assessing the toxicokinetic behavior of IBP in Sprague-Dawley rats following a 13-week repeated subcutaneous administration. The rats were administered either the vehicle (4% Tween 80) or IBP at dosage levels of 2, 10, and 50 mg/kg/day for 13 weeks. Blood collection for toxicokinetic study was conducted on three specified days: day 1 (1st), day 30 (2nd), and day 91 (3rd). Systemic toxicity assessment and potential endocrine effects were based on various parameters including mortality rates, clinical signs, body weights, food and water consumption, ophthalmological findings, urinalysis, hematological and clinical biochemistry tests, organ weights, necropsy and histopathological findings, estrus cycle regularity, semen quality, and toxicokinetic behavior. The findings revealed that IBP induced local irritation at the injection site in males at doses ≥ 10 mg/kg/day and in females at 50 mg/kg/day; however, systemic toxicity was not observed. Consequently, the no-observed-adverse-effect level (NOAEL) for IBP was determined to be 50 mg/kg/day in rats of both sexes, indicating no impact on the endocrine system. The toxicokinetics of IBP exhibited dose-dependent systemic exposure, reaching a maximum dose of 50 mg/kg/day, and repeated administration over 13 weeks showed no signs of accumulation.


Asunto(s)
Disruptores Endocrinos , Ciclo Estral , Parabenos , Ratas Sprague-Dawley , Toxicocinética , Animales , Parabenos/toxicidad , Parabenos/farmacocinética , Parabenos/administración & dosificación , Masculino , Femenino , Ciclo Estral/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/farmacocinética , Relación Dosis-Respuesta a Droga , Ratas , Nivel sin Efectos Adversos Observados , Conservadores Farmacéuticos/toxicidad , Conservadores Farmacéuticos/farmacocinética , Conservadores Farmacéuticos/administración & dosificación , Inyecciones Subcutáneas
20.
Chemosphere ; 357: 141984, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614392

RESUMEN

Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 µg L-1 BIT, 64.5 µg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17ß-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.


Asunto(s)
Parabenos , Conservadores Farmacéuticos , Pez Cebra , Animales , Femenino , Parabenos/toxicidad , Conservadores Farmacéuticos/toxicidad , Masculino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/efectos de los fármacos , Hormona del Crecimiento , Reproducción/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...