Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
PLoS One ; 19(9): e0310565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39283902

RESUMEN

RNA-binding proteins (RBPs) are a major class of proteins that interact with RNAs to change their fate or function. RBPs and the ribonucleoprotein complexes they constitute are involved in many essential cellular processes. In many cases, the molecular details of RBP:RNA interactions differ between viruses, prokaryotes and eukaryotes, making prokaryotic and viral RBPs good potential drug targets. However, targeting RBPs with small molecules has so far been met with limited success as RNA-binding sites tend to be extended, shallow and dynamic with a mixture of charged, polar and hydrophobic interactions. Here, we show that peptide nucleic acids (PNAs) with nucleic acid-like binding properties and a highly stable peptide-like backbone can be used to target some RBPs. We have designed PNAs to mimic the short RNA stem-loop sequence required for the initiation of prokaryotic signal recognition particle (SRP) assembly, a target for antibiotics development. Using a range of biophysical and biochemical assays, the designed PNAs were demonstrated to fold into a hairpin structure, bind the targeted protein and compete with the native RNA hairpin to inhibit SRP formation. To show the applicability of PNAs against other RBPs, a PNA was also shown to bind Nsp9 from SARS-CoV-2, a protein that exhibits non-sequence-specific RNA binding but preferentially binds hairpin structures. Taken together, our results support that PNAs can be a promising class of compounds for targeting RNA-binding activities in RBPs.


Asunto(s)
Ácidos Nucleicos de Péptidos , Unión Proteica , Proteínas de Unión al ARN , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Conformación de Ácido Nucleico , SARS-CoV-2/metabolismo , ARN/metabolismo , ARN/química , Sitios de Unión , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química
2.
Nat Commun ; 15(1): 5797, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987236

RESUMEN

The basal structure of the bacterial flagellum includes a membrane embedded MS-ring (formed by multiple copies of FliF) and a cytoplasmic C-ring (composed of proteins FliG, FliM and FliN). The SRP-type GTPase FlhF is required for directing the initial flagellar protein FliF to the cell pole, but the mechanisms are unclear. Here, we show that FlhF anchors developing flagellar structures to the polar landmark protein HubP/FimV, thereby restricting their formation to the cell pole. Specifically, the GTPase domain of FlhF interacts with HubP, while a structured domain at the N-terminus of FlhF binds to FliG. FlhF-bound FliG subsequently engages with the MS-ring protein FliF. Thus, the interaction of FlhF with HubP and FliG recruits a FliF-FliG complex to the cell pole. In addition, the modulation of FlhF activity by the MinD-type ATPase FlhG controls the interaction of FliG with FliM-FliN, thereby regulating the progression of flagellar assembly at the pole.


Asunto(s)
Proteínas Bacterianas , Flagelos , Flagelos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de la Membrana
3.
Methods Mol Biol ; 2726: 315-346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780737

RESUMEN

Although RNA molecules are synthesized via transcription, little is known about the general impact of cotranscriptional folding in vivo. We present different computational approaches for the simulation of changing structure ensembles during transcription, including interpretations with respect to experimental data from literature. Specifically, we analyze different mutations of the E. coli SRP RNA, which has been studied comparatively well in previous literature, yet the details of which specific metastable structures form as well as when they form are still under debate. Here, we combine thermodynamic and kinetic, deterministic, and stochastic models with automated and visual inspection of those systems to derive the most likely scenario of which substructures form at which point during transcription. The simulations do not only provide explanations for present experimental observations but also suggest previously unnoticed conformations that may be verified through future experimental studies.


Asunto(s)
Escherichia coli , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Bacteriano , Termodinámica , Transcripción Genética , ARN Bacteriano/química , ARN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/genética , Cinética , Biología Computacional/métodos , Mutación , Modelos Moleculares
4.
Chembiochem ; 25(11): e202400029, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38595046

RESUMEN

Peptide nucleic acid (PNA) based antisense strategy is a promising therapeutic approach to specifically inhibit target gene expression. However, unlike protein coding genes, identification of an ideal PNA binding site for non-coding RNA is not straightforward. Here, we compare the inhibitory activities of PNA molecules that bind a non-coding 4.5S RNA called SRP RNA, a key component of the bacterial signal recognition particle (SRP). A 9-mer PNA (PNA9) complementary to the tetraloop region of the RNA was more potent in inhibiting its interaction with the SRP protein, compared to an 8-mer PNA (PNA8) targeting a stem-loop. PNA9, which contained a homo-pyrimidine sequence could form a triplex with the complementary stretch of RNA in vitro as confirmed using a fluorescent derivative of PNA9 (F-PNA13). The RNA-PNA complex formation resulted in inhibition of SRP function with PNA9 and F-PNA13, but not PNA8 highlighting the importance of target site selection. Surprisingly, F-PNA13 which was more potent in inhibiting SRP function in vitro, showed weaker antibacterial activity compared to PNA9 likely due to poor cell penetration of the longer PNA. Our results underscore the importance of suitable target site selection and optimum PNA length to develop better antisense molecules against non-coding RNA.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Sitios de Unión , ARN no Traducido/genética , ARN no Traducido/química , ARN no Traducido/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico
5.
Nucleic Acids Res ; 52(9): 5285-5300, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38366771

RESUMEN

The signal recognition particle (SRP) is a critical component in protein sorting pathways in all domains of life. Human SRP contains six proteins bound to the 7S RNA and their structures and functions have been mostly elucidated. The SRP68/72 dimer is the largest SRP component and is essential for SRP function. Although the structures of the SRP68/72 RNA binding and dimerization domains have been previously reported, the structure and function of large portions of the SRP68/72 dimer remain unknown. Here, we analyse full-length SRP68/72 using cryo-EM and report that SRP68/72 depend on each other for stability and form an extended dimerization domain. This newly observed dimerization domain is both a protein- and RNA-binding domain. Comparative analysis with current structural models suggests that this dimerization domain undergoes dramatic translocation upon SRP docking onto SRP receptor and eventually comes close to the Alu domain. We propose that the SRP68/72 dimerization domain functions by binding and detaching the Alu domain and SRP9/14 from the ribosomal surface, thus releasing elongation arrest upon docking onto the ER membrane.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Multimerización de Proteína , Partícula de Reconocimiento de Señal , Humanos , Sitios de Unión , Unión Proteica , Dominios Proteicos , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo
6.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 53-58, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376823

RESUMEN

The GTPase FlhF, a signal recognition particle (SRP)-type enzyme, is pivotal for spatial-numerical control and bacterial flagella assembly across diverse species, including pathogens. This study presents the X-ray structure of FlhF in its GDP-bound state at a resolution of 2.28 Å. The structure exhibits the classical N- and G-domain fold, consistent with related SRP GTPases such as Ffh and FtsY. Comparative analysis with GTP-loaded FlhF elucidates the conformational changes associated with GTP hydrolysis. These topological reconfigurations are similarly evident in Ffh and FtsY, and play a pivotal role in regulating the functions of these hydrolases.


Asunto(s)
GTP Fosfohidrolasas , Partícula de Reconocimiento de Señal , GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Guanosina Trifosfato/química
7.
FEBS J ; 291(1): 158-176, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37786925

RESUMEN

Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aß) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aß aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aß aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aß aggregation effectively. Using of thioflavin T dye, we obtained the aggregation kinetics of Aß aggregation and determined that the chaperone prevents Aß aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aß in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aß aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride concentration is higher than 25 mm, the Aß aggregation rate increases drastically to form tightly associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aß peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.


Asunto(s)
Péptidos beta-Amiloides , Proteínas de Cloroplastos , Proteínas de la Membrana , Chaperonas Moleculares , Agregado de Proteínas , Partícula de Reconocimiento de Señal , Chaperonas Moleculares/química , Proteínas de la Membrana/química , Péptidos beta-Amiloides/química , Cloruro de Sodio/química , Partícula de Reconocimiento de Señal/química , Proteínas de Cloroplastos/química , Microscopía Electrónica , Cinética , Humanos
8.
Protein Expr Purif ; 198: 106121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640773

RESUMEN

The Signal Recognition Particle (SRP) and the SRP receptor (SR) are responsible for protein targeting to the plasma membrane and the protein secretory pathway. Eukaryotic SRα, one of the two proteins that form the SR, is composed of the NG, MoRF and X domains. The SRα-NG domain is responsible for binding to SRP proteins such as SRP54, interacting with RNA, binding and hydrolysing GTP. The ability to produce folded SRα-NG is a prerequisite for structural studies directed towards a better understanding of its molecular mechanism and function, as well as in (counter-)screening assays for potential binders in the drug development pipeline. However, previously reported SRα-NG constructs and purification methods only used a truncated version, lacking the first N-terminal helix. This helix in other NG domains (e.g., SRP54) has been shown to be important for protein:protein interactions but its importance in SRα remains unknown. Here, we present the cloning as well as optimised expression and purification protocols of the whole SRα-NG domain including the first N-terminal helix. We have also expressed and purified isotopically labelled SRα-NG to facilitate Nuclear Magnetic Resonance (NMR) studies.


Asunto(s)
GTP Fosfohidrolasas , Partícula de Reconocimiento de Señal , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Humanos , Unión Proteica , Receptores Citoplasmáticos y Nucleares , Receptores de Péptidos/química , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
9.
Science ; 375(6583): 839-844, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35201867

RESUMEN

The nascent polypeptide-associated complex (NAC) interacts with newly synthesized proteins at the ribosomal tunnel exit and competes with the signal recognition particle (SRP) to prevent mistargeting of cytosolic and mitochondrial polypeptides to the endoplasmic reticulum (ER). How NAC antagonizes SRP and how this is overcome by ER targeting signals are unknown. Here, we found that NAC uses two domains with opposing effects to control SRP access. The core globular domain prevented SRP from binding to signal-less ribosomes, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. The emergence of an ER-targeting signal destabilized NAC's globular domain and facilitated SRP access to the nascent chain. These findings elucidate how NAC hands over the signal sequence to SRP and imparts specificity of protein localization.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Señales de Clasificación de Proteína , Partícula de Reconocimiento de Señal/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Ubiquitina/metabolismo
10.
J Mol Biol ; 434(5): 167459, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065991

RESUMEN

Many integral membrane proteins are produced by translocon-associated ribosomes. The assembly of ribosomes translating membrane proteins on the translocons is mediated by a conserved system, composed of the signal recognition particle and its receptor (FtsY in Escherichia coli). FtsY is a peripheral membrane protein, and its role late during membrane protein targeting involves interactions with the translocon. However, earlier stages in the pathway have remained obscure, namely, how FtsY targets the membrane in vivo and where it initially docks. Our previous studies have demonstrated co-translational membrane-targeting of FtsY translation intermediates and identified a nascent FtsY targeting-peptide. Here, in a set of in vivo experiments, we utilized tightly stalled FtsY translation intermediates, pull-down assays and site-directed cross-linking, which revealed FtsY-nascent chain-associated proteins in the cytosol and on the membrane. Our results demonstrate interactions between the FtsY-translating ribosomes and cytosolic chaperones, which are followed by directly docking on the translocon. In support of this conclusion, we show that translocon over-expression increases dramatically the amount of membrane associated FtsY-translating ribosomes. The co-translational contacts of the FtsY nascent chains with the translocon differ from its post-translational contacts, suggesting a major structural maturation process. The identified interactions led us to propose a model for how FtsY may target the membrane co-translationally. On top of our past observations, the current results may add another tier to the hypothesis that FtsY acts stoichiometrically in targeting ribosomes to the membrane in a constitutive manner.


Asunto(s)
Proteínas Bacterianas , Membrana Celular , Proteínas de Escherichia coli , Chaperonas Moleculares , Receptores Citoplasmáticos y Nucleares , Ribosomas , Partícula de Reconocimiento de Señal , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/biosíntesis , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética
11.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208095

RESUMEN

Signal recognition particle (SRP) is an RNA and protein complex that exists in all domains of life. It consists of one protein and one noncoding RNA in some bacteria. It is more complex in eukaryotes and consists of six proteins and one noncoding RNA in mammals. In the eukaryotic cytoplasm, SRP co-translationally targets proteins to the endoplasmic reticulum and prevents misfolding and aggregation of the secretory proteins in the cytoplasm. It was demonstrated recently that SRP also possesses an earlier unknown function, the protection of mRNAs of secretory proteins from degradation. In this review, we analyze the progress in studies of SRPs from different organisms, SRP biogenesis, its structure, and function in protein targeting and mRNA protection.


Asunto(s)
Biosíntesis de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Animales , Evolución Molecular , Humanos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Partícula de Reconocimiento de Señal/química
12.
Cell Rep ; 36(2): 109350, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260909

RESUMEN

Co-translational protein targeting to membranes by the signal recognition particle (SRP) is a universally conserved pathway from bacteria to humans. In mammals, SRP and its receptor (SR) have many additional RNA features and protein components compared to the bacterial system, which were recently shown to play regulatory roles. Due to its complexity, the mammalian SRP targeting process is mechanistically not well understood. In particular, it is not clear how SRP recognizes translating ribosomes with exposed signal sequences and how the GTPase activity of SRP and SR is regulated. Here, we present electron cryo-microscopy structures of SRP and SRP·SR in complex with the translating ribosome. The structures reveal the specific molecular interactions between SRP and the emerging signal sequence and the elements that regulate GTPase activity of SRP·SR. Our results suggest the molecular mechanism of how eukaryote-specific elements regulate the early and late stages of SRP-dependent protein targeting.


Asunto(s)
Mamíferos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Animales , Bacterias/metabolismo , Microscopía por Crioelectrón , GTP Fosfohidrolasas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Dominios Proteicos , Transporte de Proteínas , ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/ultraestructura , Receptores de Péptidos/química , Receptores de Péptidos/metabolismo , Receptores de Péptidos/ultraestructura , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/ultraestructura
13.
Commun Biol ; 4(1): 600, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017052

RESUMEN

The eukaryotic signal recognition particle (SRP) contains an Alu domain, which docks into the factor binding site of translating ribosomes and confers translation retardation. The canonical Alu domain consists of the SRP9/14 protein heterodimer and a tRNA-like folded Alu RNA that adopts a strictly 'closed' conformation involving a loop-loop pseudoknot. Here, we study the structure of the Alu domain from Plasmodium falciparum (PfAlu), a divergent apicomplexan protozoan that causes human malaria. Using NMR, SAXS and cryo-EM analyses, we show that, in contrast to its prokaryotic and eukaryotic counterparts, the PfAlu domain adopts an 'open' Y-shaped conformation. We show that cytoplasmic P. falciparum ribosomes are non-discriminative and recognize both the open PfAlu and closed human Alu domains with nanomolar affinity. In contrast, human ribosomes do not provide high affinity binding sites for either of the Alu domains. Our analyses extend the structural database of Alu domains to the protozoan species and reveal species-specific differences in the recognition of SRP Alu domains by ribosomes.


Asunto(s)
Elementos Alu , Plasmodium falciparum/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Ribosomas/genética , Dispersión del Ángulo Pequeño
14.
J Comput Biol ; 28(9): 892-908, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33902324

RESUMEN

Computational prediction of ribonucleic acid (RNA) structures is an important problem in computational structural biology. Studies of RNA structure formation often assume that the process starts from a fully synthesized sequence. Experimental evidence, however, has shown that RNA folds concurrently with its elongation. We investigate RNA secondary structure formation, including pseudoknots, that takes into account the cotranscriptional effects. We propose a single-nucleotide resolution kinetic model of the folding process of RNA molecules, where the polymerase-driven elongation of an RNA strand by a new nucleotide is included as a primitive operation, together with a stochastic simulation method that implements this folding concurrently with the transcriptional synthesis. Numerical case studies show that our cotranscriptional RNA folding model can predict the formation of conformations that are favored in actual biological systems. Our new computational tool can thus provide quantitative predictions and offer useful insights into the kinetics of RNA folding.


Asunto(s)
Pliegue del ARN , ARN/química , Algoritmos , Biología Computacional/métodos , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Virus de Plantas/genética , ARN/genética , ARN/metabolismo , Virus ARN/genética , ARN Viral/química , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Transcripción Genética
15.
Int J Biol Macromol ; 171: 59-73, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33412199

RESUMEN

Mycobacterium tuberculosis (M. tuberculosis H37Rv) utilizes the signal recognition particle pathway (SRP pathway) system for secretion of various proteins from ribosomes to the extracellular surface which plays an important role in the machinery running inside the bacterium. This system comprises of three major components FtsY, FfH and 4.5S rRNA. This manuscript highlights essential factors responsible for the optimized enzymatic activity of FtsY. Kinetic parameters include Vmax and Km for the hydrolysis of GTP by ftsY which were 20.25±5.16 µM/min/mg and 39.95±7.7 µM respectively. kcat and catalytic efficiency of the reaction were 0.012±0.003 s-1 and 0.00047±0.0001 µM/s-1 respectively. These values were affected upon changing the standard conditions. Cations (Mg2+ and Mn2+) play important role in FtsY enzymatic activity as increasing Mg2+ decrease the activity. Mn2+on the other hand is required at higher concentration around 60 mM for carrying optimum GTPase activity. FtsY is hydrolyzing ATP and GDP as well and GDP acts as an inhibitor of the reaction. MD simulation shows effective binding and stabilization of the FtsY complexed structure with GTP, GDP and ATP. Mutational analysis was done at two important residues of GTP binding motif of FtsY, namely, GXXXXGK (K236) and DXXG (D367) and showed that these mutations significantly decrease FtsY GTPase activity. FtsY is comprised of α helices, but this structural pattern was shown to change with increasing concentrations of GTP and ATP which symbolize that these ligands cause significant conformational change by variating the secondary structure to transduce signals required by downstream effectors. This binding favors the functional stabilization of FtsY by destabilization of α-helix integrity. Revealing the hidden aspects of the functioning of FtsY might be an essential part for the understanding of the SRP pathway which is one of the important contributors of M. tuberculosis virulence.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Mycobacterium tuberculosis/genética , Receptores Citoplasmáticos y Nucleares/química , Partícula de Reconocimiento de Señal/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Cationes Bivalentes , Expresión Génica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Magnesio/química , Magnesio/metabolismo , Manganeso/química , Manganeso/metabolismo , Simulación de Dinámica Molecular , Mutación , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Transducción de Señal , Especificidad por Sustrato , Termodinámica
16.
Mol Cell ; 81(4): 870-883.e10, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453165

RESUMEN

The series of RNA folding events that occur during transcription can critically influence cellular RNA function. Here, we present reconstructing RNA dynamics from data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model the folding of the Escherichia coli signal recognition particle (SRP) RNA and show that it requires specific local structural fluctuations within a key hairpin to engender efficient cotranscriptional conformational rearrangement into the functional structure. All-atom molecular dynamics simulations suggest that this rearrangement proceeds through an internal toehold-mediated strand-displacement mechanism, which can be disrupted with a point mutation that limits local structural fluctuations and rescued with compensating mutations that restore these fluctuations. Moreover, a cotranscriptional folding intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting potential cotranscriptional processing. These results from experiment-guided multi-scale modeling demonstrate that even an RNA with a simple functional structure can undergo complex folding and processing during synthesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue del ARN , ARN Bacteriano/química , Ribonucleasa P/química , Partícula de Reconocimiento de Señal/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Ribonucleasa P/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
17.
Structure ; 29(1): 15-28.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33053321

RESUMEN

The SRP54 GTPase is a key component of co-translational protein targeting by the signal recognition particle (SRP). Point mutations in SRP54 have been recently shown to lead to a form of severe congenital neutropenia displaying symptoms overlapping with those of Shwachman-Diamond syndrome. The phenotype includes severe neutropenia, exocrine pancreatic deficiency, and neurodevelopmental as well as skeletal disorders. Using a combination of X-ray crystallography, hydrogen-deuterium exchange coupled to mass spectrometry and complementary biochemical and biophysical methods, we reveal extensive structural defects in three disease-causing SRP54 variants resulting in critical protein destabilization. GTP binding is mostly abolished as a consequence of an altered GTPase core. The mutations located in conserved sequence fingerprints of SRP54 eliminate targeting complex formation with the SRP receptor as demonstrated in yeast and human cells. These specific defects critically influence the entire SRP pathway, thereby causing this life-threatening disease.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Mutación , Neutropenia/congénito , Partícula de Reconocimiento de Señal/química , Sitios de Unión , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Neutropenia/genética , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
18.
Mol Cell ; 81(2): 304-322.e16, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357414

RESUMEN

Protein synthesis must be finely tuned in the developing nervous system as the final essential step of gene expression. This study investigates the architecture of ribosomes from the neocortex during neurogenesis, revealing Ebp1 as a high-occupancy 60S peptide tunnel exit (TE) factor during protein synthesis at near-atomic resolution by cryoelectron microscopy (cryo-EM). Ribosome profiling demonstrated Ebp1-60S binding is highest during start codon initiation and N-terminal peptide elongation, regulating ribosome occupancy of these codons. Membrane-targeting domains emerging from the 60S tunnel, which recruit SRP/Sec61 to the shared binding site, displace Ebp1. Ebp1 is particularly abundant in the early-born neural stem cell (NSC) lineage and regulates neuronal morphology. Ebp1 especially impacts the synthesis of membrane-targeted cell adhesion molecules (CAMs), measured by pulsed stable isotope labeling by amino acids in cell culture (pSILAC)/bioorthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry (MS). Therefore, Ebp1 is a central component of protein synthesis, and the ribosome TE is a focal point of gene expression control in the molecular specification of neuronal morphology during development.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Neocórtex/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas , Proteostasis/genética , Proteínas de Unión al ARN/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Animales , Animales Recién Nacidos , Sitios de Unión , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Femenino , Masculino , Ratones , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Cultivo Primario de Células , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo
19.
Nat Commun ; 11(1): 5840, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203865

RESUMEN

Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.


Asunto(s)
Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Microscopía Fluorescente , Modelos Teóricos , Chaperonas Moleculares/genética , Biosíntesis de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Partícula de Reconocimiento de Señal/química , Imagen Individual de Molécula
20.
J Bacteriol ; 203(1)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33020223

RESUMEN

During their synthesis, the C-tailed membrane proteins expose the membrane-spanning segment late from the ribosome and consequently can insert into the membrane only posttranslationally. However, the C-tailed type 6 secretion system (T6SS) component SciP uses the bacterial signal recognition particle (SRP) system for membrane targeting, which operates cotranslationally. Analysis of possible sequence regions in the amino-terminal part of the protein revealed two candidates that were then tested for whether they function as SRP signal peptides. Both sequences were tested positive as synthetic peptides for binding to SRP. In addition, purified ribosomes with stalled nascent chains exposing either sequence were capable of binding to SRP and SRP-FtsY complexes with high affinity. Together, the data suggest that both peptides can serve as an SRP signal sequence promoting an early membrane targeting of SciP during its synthesis. Like observed for multispanning membrane proteins, the two cytoplasmic SRP signal sequences of SciP may also facilitate a retargeting event, making the targeting more efficient.IMPORTANCE C-tail proteins are anchored in the inner membrane with a transmembrane segment at the C terminus in an N-in/C-out topology. Due to this topology, membrane insertion occurs only posttranslationally. Nevertheless, the C-tail-anchored protein SciP is targeted cotranslationally by SRP. We report here that two amino-terminal hydrophobic stretches in SciP are individually recognized by SRP and target the nascent protein to FtsY. The presence of two signal sequences may enable a retargeting mechanism, as already observed for multispanning membrane proteins, to make the posttranslational insertion of SciP by YidC more efficient.


Asunto(s)
Factor 6 de Transcripción de Unión a Octámeros/química , Partícula de Reconocimiento de Señal/química , Secuencia de Aminoácidos , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Partícula de Reconocimiento de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...