Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.868
Filtrar
1.
Sci Rep ; 14(1): 17870, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090215

RESUMEN

The study of species groups in which the presence of interspecific hybridization or introgression phenomena is known or suspected involves analysing shared bi-parentally inherited molecular markers. Current methods are based on different categories of markers among which the classical microsatellites or the more recent genome wide approaches for the analyses of thousands of SNPs or hundreds of microhaplotypes through high throughput sequencing. Our approach utilizes intron-targeted amplicon sequencing to characterise multi-locus intron polymorphisms (MIPs) and assess genetic diversity. These highly variable intron regions, combined with inter-specific transferable loci, serve as powerful multiple-SNP markers potentially suitable for various applications, from species and hybrid identification to population comparisons, without prior species knowledge. We developed the first panel of MIPs highly transferable across fish genomes, effectively distinguishing between species, even those closely related, and populations with different structures. MIPs offer versatile, hypervariable nuclear markers and promise to be especially useful when multiple nuclear loci must be genotyped across different species, such as for the monitoring of interspecific hybridization. Moreover, the relatively long sequences obtained ease the development of single-locus PCR-based diagnostic markers. This method, here demonstrated in teleost fishes, can be readily applied to other taxa, unlocking a new source of genetic variation.


Asunto(s)
Peces , Intrones , Animales , Intrones/genética , Peces/genética , Peces/clasificación , Polimorfismo de Nucleótido Simple , Genética de Población , Especificidad de la Especie , Metagenómica/métodos , Genómica/métodos
2.
Sci Rep ; 14(1): 18034, 2024 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098967

RESUMEN

The greater amberjack Seriola dumerili is a promising candidate for aquaculture production. This study compares the ovary transcriptome of greater amberjack sampled in the wild (WILD) with hatchery-produced breeders reared in aquaculture sea cages in the Mediterranean Sea. Among the seven sampled cultured fish, three were classified as reproductively dysfunctional (DysF group), while four showed no signs of reproductive alteration (NormalF group). The DysF fish showed 1,166 differentially expressed genes (DEGs) compared to WILD females, and 755 DEGs compared to the NormalF. According to gene ontology (GO) analysis, DysF females exhibited enrichment of genes belonging to the biological categories classified as Secreted, ECM-receptor interaction, and Focal adhesion. Protein-protein interaction analysis revealed proteins involved in the biological categories of ECM-receptor interaction, Enzyme-linked receptor protein signaling, Wnt signal transduction pathways, and Ovulation cycle. KEGG pathway analysis showed DEGs involved in 111 pathways, including Neuroactive ligand-receptor interaction, Steroid hormone biosynthesis, Cell cycle, Oocyte meiosis, Necroptosis, Ferroptosis, Apoptosis, Autophagy, Progesterone-mediated oocyte maturation, Endocytosis and Phagosome, as well as Hedgehog, Apelin, PPAR, Notch, and GnRH signalling pathways. Additionally, DysF females exhibited factors encoded by upregulated genes associated with hypogonadism and polycystic ovary syndrome in mammals. This study -which is part of a broader research effort examining the transcriptome of the entire reproductive axis in greater amberjack of both sexes-, enhances our comprehension of the mechanisms underlying the appearance of reproductive dysfunctions when fish are reared under aquaculture conditions.


Asunto(s)
Ovario , Transcriptoma , Animales , Femenino , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Acuicultura , Peces/genética , Perfilación de la Expresión Génica , Ontología de Genes
3.
Transl Vis Sci Technol ; 13(8): 14, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39115837

RESUMEN

Purpose: Emerging research indicates a link between the intake of fatty fish and age-related macular degeneration (AMD). However, observational studies fall short in establishing a direct causal link between oily fish intake and AMD. We wanted to determine whether causal association lies between oily fish intake and age-related macular degeneration (AMD) risk in human beings. Methods: This two-sample mendelian randomization (MR) study used the MR method to probe the genetic causality in the relationship between oily fish intake and AMD. The genome-wide association study (GWAS) data for AMD were acquired from a Finnish database, whereas the data on fish oil intake came from the UK Biobank. The analysis used several approaches such as inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode MR. In addition, the Cochran's Q test was used to evaluate heterogeneity in the MR data. The MR-Egger intercept and MR-pleiotropy residual sum and outlier (MR-PRESSO) tests were used to assess the presence of horizontal pleiotropy. A leave-one-out sensitivity analysis was conducted to determine the reliability of the association. Results: The IVW method revealed that the intake of oily fish is an independent risk factor for AMD (P = 0.034). It also suggested a minimal likelihood of horizontal pleiotropy affecting the causality (P > 0.05), with no substantial heterogeneity detected in the genetic variants (P > 0.05). The leave-one-out analysis confirmed the reliability and stability of this correlation. Conclusions: This research used a two-sample MR analysis to provide evidence of a genetic causal relationship between the eating of oily fish and AMD. This discovery held potential significance in AMD prevention.


Asunto(s)
Aceites de Pescado , Estudio de Asociación del Genoma Completo , Degeneración Macular , Análisis de la Aleatorización Mendeliana , Análisis de la Aleatorización Mendeliana/métodos , Degeneración Macular/genética , Degeneración Macular/epidemiología , Degeneración Macular/etiología , Humanos , Aceites de Pescado/administración & dosificación , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Animales , Predisposición Genética a la Enfermedad , Peces/genética , Finlandia/epidemiología
4.
Front Immunol ; 15: 1452609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091499

RESUMEN

Galectins (Gals) are a type of S-type lectin that are widespread and evolutionarily conserved among metazoans, and can act as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). In this study, 10 Gals (ToGals) were identified in the Golden pompano (Trachinotus ovatus), and their conserved domains, motifs, and collinearity relationships were analyzed. The expression of ToGals was regulated following infection to Cryptocaryon irritans and Streptococcus agalactiae, indicating that ToGals participate in immune responses against microbial pathogens. Further analysis was conducted on one important member, Galectin-3, subcellular localization showing that ToGal-3like protein is expressed both in the nucleus and cytoplasm. Recombinant protein obtained through prokaryotic expression showed that rToGal-3like can agglutinate red blood cells of rabbit, carp and golden pompano and also agglutinate and kill Staphylococcus aureus, Bacillus subtilis, Vibrio vulnificus, S. agalactiae, Pseudomonas aeruginosa, and Aeromonas hydrophila. This study lays the foundation for further research on the immune roles of Gals in teleosts.


Asunto(s)
Galectinas , Filogenia , Animales , Galectinas/genética , Galectinas/inmunología , Galectinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Familia de Multigenes , Streptococcus agalactiae/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Peces/inmunología , Peces/genética , Perciformes/inmunología , Perciformes/genética , Perfilación de la Expresión Génica
5.
Open Biol ; 14(7): 240092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39043226

RESUMEN

Magnetoreceptive biology as a field remains relatively obscure; compared with the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homologue of Brachyhypopomus gauderio (B.g.) is inserted into EPG-EPG(B.g.)-the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.


Asunto(s)
Secuencias de Aminoácidos , Peces , Fenilalanina , Filogenia , Animales , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina/química , Peces/genética , Secuencia Conservada , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/química , Secuencia de Aminoácidos , Campos Electromagnéticos
6.
PeerJ ; 12: e17791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071121

RESUMEN

Knowledge on species composition is the first step necessary for the proper conservation and management of biological resources and ecologically relevant species. High species diversity and a lack of diagnostic characters for some groups can impose difficulties for taxonomic identification through traditional methodologies, and ichthyoplankton (fish larvae and eggs) are a good example of such a scenario. With more than 35.000 valid species of fishes worldwide and overall similar anatomies in early developmental stages in closely related groups, fish larvae are often hard to be identified at the species or even more encompassing taxonomic levels. To overcome this situation, molecular techniques have been applied, with different markers tested over the years. Cytochrome c oxidase I (COI) is the most commonly used marker and now has the broadest public reference libraries, providing consistent results for species identification in different metazoan studies. Here we sequenced the mitochondrial COI-5P fragment of 89 fish larvae collected in the Campos Basin, coastal southeastern Brazil, and compared these sequences with references deposited in public databases to obtain taxonomic identifications. Most specimens identified are species of the Blenniiformes, with Parablennius and Labrisomus the most frequently identified genera. Parablennius included two species (P. marmoreus and P. pilicornis), while Labrisomus included three species (L. cricota, L. conditus and L. nuchipinnis). Anatomy of these molecularly identified specimens were then analyzed with the intention of finding anatomical characters that might be diagnostically informative amongst the early development stage (pre-flexion) larvae. Ventral pigmentation patterns are proposed as useful markers to identify Labrisomus species. However, additional specimens are needed to confirm if the character holds stability through the geographic distribution of the species.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Peces , Larva , Animales , Código de Barras del ADN Taxonómico/métodos , Larva/anatomía & histología , Larva/genética , Larva/crecimiento & desarrollo , Peces/anatomía & histología , Peces/genética , Brasil , Complejo IV de Transporte de Electrones/genética , Filogenia , Océano Atlántico , Especificidad de la Especie
7.
Mol Biol Rep ; 51(1): 875, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080149

RESUMEN

BACKGROUD: The Northeast India, being part of two global biodiversity hotspot namely the Indo-Burma and Eastern Himalayan Hotspots supports a wide variety of rich aquatic biodiversity including fishes. The family Danionidae is a widely diverse group inhabiting the upper colder stretches of river although few are abundant in the lower stretches. The persisting similarity in the morphological appearance and body colouration within the members of this family seeks an integrated method to identify the species correctly. METHODS AND RESULTS: In the present study, the mt-DNA barcode was generated for correct identification and confirmation of the species. A total of nine mitochondrial cytochrome c oxidase subunit I gene sequences were generated for each species under the study. The pairwise distance values ranged from 0.09 to 9.11% within species and 9.06-32.71% between species. A neighbour-joining tree was constructed based on the Kimura 2 parameter model. Two major groups were observed where Danioninae formed a sister group to the Chedrinae and Rasborinae. CONCLUSION: The present study is a preliminary work to document and identify the species under the family Danionidae from Brahmaputra basin, Assam, using molecular tools and establish the phylogenetic relationship.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Filogenia , Animales , India , Complejo IV de Transporte de Electrones/genética , Código de Barras del ADN Taxonómico/métodos , Peces/genética , Peces/clasificación , ADN Mitocondrial/genética , Biodiversidad
8.
Mol Ecol Resour ; 24(6): e13989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946220

RESUMEN

Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.


Asunto(s)
Evolución Molecular , Animales , Peces/genética , Peces/clasificación , Peces/fisiología , Adaptación Fisiológica/genética , Genoma/genética , Adaptación Biológica/genética , Filogenia , Análisis de Secuencia de ADN/métodos
9.
Compr Rev Food Sci Food Saf ; 23(4): e13401, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39073284

RESUMEN

Seafood is a prime target for fraudulent activities due to the complexity of its supply chain, high demand, and difficult discrimination among species once morphological characteristics are removed. Instances of seafood fraud are expected to increase due to growing demand. This manuscript reviews the application of DNA-based methods for commercial fish authentication and identification from 2000 to 2023. It explores (1) the most common types of commercial fish used in assay development, (2) the type of method used, (3) the gene region most often targeted, (4) provides a case study of currently published assays or primer-probe pairs used for DNA amplification, for specificity, and (5) makes recommendations for ensuring standardized assay-based reporting for future studies. A total of 313 original assays for the detection and authentication of commercial fish species from 191 primary articles published over the last 23 years were examined. The most explored DNA-based method was real-time polymerase chain reaction (qPCR), followed by DNA sequencing. The most targeted gene regions were cytb (cytochrome b) and COI (cytochrome c oxidase 1). Tuna was the most targeted commercial fish species. A case study of published tuna assays (n = 19) targeting the cytb region found that most assays were not species-specific through in silico testing. This was conducted by examining the primer mismatch for each assay using multiple sequence alignment. Therefore, there is need for more standardized DNA-based assay reporting in the literature to ensure specificity, reproducibility, and reliability of results. Factors, such as cost, sensitivity, quality of the DNA, and species, should be considered when designing assays.


Asunto(s)
Peces , Alimentos Marinos , Alimentos Marinos/análisis , Animales , Peces/genética , Contaminación de Alimentos/análisis , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN/análisis
10.
BMC Genomics ; 25(1): 725, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060996

RESUMEN

BACKGROUND: Daphnia galeata is a suitable model organism for investigating predator-induced defense. Genes and pathways exhibiting differential expression between fish kairomone-treated and untreated groups in D. galeata have been identified. However, understanding of the significance of alternative splicing, a crucial process of the regulation of gene expression in eukaryotes, to this mechanism remains limited. This study measured life-history traits and conducted short-read RNA sequencing and long-read isoform sequencing of two Korean D. galeata genotypes (KB1 and KE2) to uncover the genetic mechanism underlying their phenotypic plasticity under predation stress. RESULTS: KB1 exhibited strategies to enhance fertility and decrease body length when exposed to fish kairomones, while KE2 deployed an adaptive strategy to increase body length. Full-length transcriptomes from KB1 and KE2 yielded 65,736 and 57,437 transcripts, respectively, of which 32 differentially expressed transcripts (DETs) were shared under predation stress across both genotypes. Prominent DETs common to both genotypes were related to energy metabolism and the immune system. Additionally, differential alternative splicing (DAS) events were detected in both genotypes in response to fish kairomones. DAS genes shared between both genotypes may indicate their significant role in the post-transcriptional stress response to fish predation. Calpain-3, involved in digestion and nutrient absorption, was identified as a DAS gene in both genotypes when exposed to fish kairomones. In addition, the gene encoding thymosin beta, which is related to growth, was found to be a statistically significant DAS only in KB1, while that encoding ultraspiracle protein, also associated with growth, was only identified in KE2. Moreover, transcripts encoding proteins such as EGF-like domain-containing protein, vitellogenin fused with superoxide dismutase, and others were identified overlapping between DAS events and DETs and potentially elucidating their association with the observed phenotypic variation in each genotype. CONCLUSIONS: Our findings highlight the crucial role of alternative splicing in modulating transcriptome landscape under predation stress in D. galeata, emphasizing the requirement for integrating gene expression and splicing analyses in evolutionary adaptation studies.


Asunto(s)
Empalme Alternativo , Daphnia , Genotipo , Animales , Daphnia/genética , Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de los fármacos , Feromonas/farmacología , Peces/genética , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica
11.
Sci Rep ; 14(1): 15727, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977738

RESUMEN

The Maipo River catchment is one of Chile's most polluted basins. In recent decades, discharges of untreated sewage and organic matter have caused eutrophication and water quality degradation. We employed the indigenous silverfish species Basilichthys microlepidotus as a model organism to investigate the process of adaptation and selection on genes influenced by pollution. Using variation at single nucleotide polymorphisms (SNPs), we determined the temporal stability of the population structure patterns previously identified in this species by varying SNPs. We also examined local adaptation to pollution-selected genes. Using the genotypes of 7684 loci in 180 individuals, we identified 429 and 700 loci that may be undergoing selection. We detected these loci using the FSTHET and ARLEQUIN outlier detection software, respectively. Both software packages simultaneously identified a total of 250 loci. B. microlepidotus' population structure did not change over time at contaminated or unpolluted sites. In addition, our analysis found: (i) selection of genes associated with pollution, consistent with observations in other organisms; (ii) identification of candidate genes that are functionally linked to the same biological processes, molecular functions and/or cellular components that previously showed differential expression in the same populations; and (iii) a candidate gene with differential expression and a non-synonymous substitution.


Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Chile , Selección Genética , Genoma , Genética de Población , Peces/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1908): 20230178, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39005032

RESUMEN

Environmental DNA metabarcoding (eDNA metaB) is fundamental for monitoring marine biodiversity and its spread in coastal ecosystems. We applied eDNA metaB to seawater samples to investigate the spatiotemporal variability of plankton and small pelagic fish, comparing sites with different environmental conditions across a coast-to-offshore gradient at river mouths along the Campania coast (Italy) over 2 years (2020-2021). We found a marked seasonality in the planktonic community at the regional scale, likely owing to the hydrodynamic connection among sampling sites, which was derived from numerical simulations. Nonetheless, spatial variability among plankton communities was detected during summer. Overall, slight changes in plankton and fish composition resulted in the potential reorganization of the pelagic food web at the local scale. This work supports the utility of eDNA metaB in combination with hydrodynamic modelling to study marine biodiversity in the water column of coastal systems. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , ADN Ambiental , Peces , Cadena Alimentaria , Plancton , Animales , Peces/genética , Peces/fisiología , Italia , ADN Ambiental/análisis , Plancton/genética , Plancton/fisiología , Agua de Mar , Análisis Espacio-Temporal , Estaciones del Año
13.
Dokl Biol Sci ; 517(1): 63-68, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955884

RESUMEN

The Abrau sprat (tyulka or sardelka) Clupeonella abrau (Maliatsky, 1930) is an endemic fish of the Lake Abrau (Krasnodar Krai, Russia). The full C. abrau mitochondrial genome (16 650 bp) showed a gene arrangement conserved in Clupeidae and 98.8% similarity with the mitochondrial genome of the related species Black and Caspian Sea sprat C. cultriventris from the Black Sea. The COX1 gene sequence was additionally studied in a museum specimen collected in the Lake Abrau in 1938. Variability in modern Abrau sprat COX1 gene locus was estimated at approximately 0.15%, the difference between C. abrau and C. cultriventris was 1.2%, and the difference between the museum and modern C. abrau specimens from the Lake Abrau was 0.92%. The study confirmed that the Abrau sprat is present in the fish community and is capable of reproducing in the lake. Various scenarios were proposed to explain colonization of the Lake Abrau by C. abrau.


Asunto(s)
Peces , Genoma Mitocondrial , Lagos , Animales , Federación de Rusia , Peces/genética , Peces/clasificación , Filogenia
14.
Dev Comp Immunol ; 159: 105225, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992732

RESUMEN

Members of the myxovirus resistance (Mx) protein family play an essential role in antiviral immunity. They are Dynamin-like GTPases, induced by interferons. In the current study, we have characterized two predicted MX genes (MX1 and MX2) from lumpfish (Cyclopterus lumpus L.), having 12 and 13 exons, respectively. Mx2 has two isoforms (Mx2-X1 and Mx2-X2) which differ in exon 1. The lumpfish Mx proteins contain an N-terminal Dynamin-like GTPase domain, the middle domain (MD) and GTPase effector domain (GED) characteristic for Mx proteins. Phylogenetic analyses grouped all the lumpfish Mx sequences in group 1, and synteny analyses showed that both genes were localized at chromosome 5 in proximity to the genes Tohc7, Atxn7 and Psmd6. In vitro stimulation experiment showed that both MX1 and MX2-X2 were highly upregulated upon exposure to poly(I:C), but not bacteria, 24 h post exposure, indicating their role in antiviral immunity.


Asunto(s)
Proteínas de Peces , Proteínas de Resistencia a Mixovirus , Filogenia , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Poli I-C/inmunología , Inmunidad Innata/genética , Perciformes/inmunología , Perciformes/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Peces/inmunología , Peces/genética , Sintenía , Familia de Multigenes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
Sci Rep ; 14(1): 16748, 2024 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033159

RESUMEN

The integration of eDNA metabarcoding into monitoring programs provides valuable information about fish community structures. Despite the growing body of evidence supporting the method's effectiveness in distinguishing fine-scale eDNA signals, there is a limited understanding of eDNA distribution in shallow, well-mixed environments, especially related to sampling depth. We analyzed 167 samples collected from the surface and bottom water at 17 locations of the Belgian Part of the North Sea (BPNS), where the deepest sampling point was 31 m, and compared this to beam trawl catch data collected simultaneously at the same locations. eDNA metabarcoding identified an additional 22 species compared to beam trawl catch data. Diversity measures and patterns were very similar between surface and bottom samples and revealed community patterns that were previously described by long-term beam trawl catch data. Surface and bottom samples had 39 fish species in common, while six and eight rare species were uniquely detected, respectively. Our results demonstrate that eDNA metabarcoding effectively identifies spatial community patterns of fishes in the highly dynamic environment of the BPNS regardless of sampling depth. Out of the six most common species tested, eDNA metabarcoding read abundances correlated strongly with catch-based abundance data for one species, but moderately for two others, indicating that inferring fish abundance and biomass via eDNA metabarcoding remains challenging.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , ADN Ambiental , Peces , Animales , Peces/genética , Peces/clasificación , Mar del Norte , ADN Ambiental/genética , ADN Ambiental/análisis , Código de Barras del ADN Taxonómico/métodos , Ecosistema
16.
Proc Biol Sci ; 291(2024): 20232847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864338

RESUMEN

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


Asunto(s)
Vertebrados , Animales , Vertebrados/genética , Vertebrados/fisiología , Selección Genética , Eliminación de Gen , Peces/genética , Peces/fisiología , Filogenia , Evolución Biológica , Luz , Evolución Molecular
17.
Fish Physiol Biochem ; 50(4): 1791-1809, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38904727

RESUMEN

Golden pompano is an important aquaculture product in the coastal regions of southern China, which is highly dependent on insulin-like growth factor (IGF) for various biological processes. The cDNAs of ToIGF1, ToIGF2, and ToIGF3 are 1718 bp, 1658 bp, and 2272 bp in length, respectively, with corresponding amino acid sequences of 185 aa, 215 aa, and 194 aa. These sequences consist of 5 parts, including the signal peptide, the B domain, the C domain, the A domain, the D domain, and the E domain, which are also found in other species. While ToIGF1 has no SSR polymorphism, ToIGF2 and ToIGF3 have 3 and 1 SSR polymorphism sites, respectively. In terms of tissue expression, ToIGF1 is predominantly expressed in the liver, ToIGF2 shows its highest expression in the gills, and ToIGF3 also shows its highest expression in the gills, but no expression in the liver and spleen. These tissue distribution results suggest that ToIGFs are not only present in growth-related tissues such as the brain, muscle, and liver, but also in reproductive tissues, tissues that regulate osmotic pressure, and tissues related to food intake. This observation is consistent with other bony fish species and highlights the extensive biological functions of ToIGFs that need to be further explored and exploited. In addition, the expression levels of ToIGFs were found to be different in the different dietary groups, including the pelleted food group, the frozen squid group, and the frozen fish group. In the pelleted diet group, ToIGF1 and ToIGF2 were highly expressed in the liver and intestinal tissues, followed by the frozen fish group. These results suggest that the type of diet can affect the body's energy metabolism by influencing tissue expression of growth-related genes, which in turn affects individual growth.


Asunto(s)
Alimentación Animal , Animales , Alimentación Animal/análisis , Peces/genética , Peces/metabolismo , Somatomedinas/metabolismo , Somatomedinas/genética , Dieta/veterinaria , Secuencia de Aminoácidos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Filogenia , Péptidos Similares a la Insulina
18.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927038

RESUMEN

The Actinopterygian and specifically the Teleostean peroxisome proliferator-activated receptors (PPARs) present an impressive variability and complexity in their structures, both at the gene and protein levels. These structural differences may also reflect functional divergence from their mammalian homologs, or even between fish species. This review, taking advantage of the data generated from the whole-genome sequencing of several fish species, highlights the differences in the primary structure of the receptors, while discussing results from the literature pertaining to the functions of fish PPARs and their activation by natural and synthetic compounds.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma , Animales , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Peces/genética , Peces/metabolismo
19.
Genes (Basel) ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927679

RESUMEN

Hypoxia is a globally pressing environmental problem in aquatic ecosystems. In the present study, a comprehensive analysis was performed to evaluate the effects of hypoxia on physiological responses (hematology, cortisol, biochemistry, hif gene expression and the HIF pathway) of hybrid sturgeons (Acipenser schrenckii ♂ × Acipenser baerii ♀). A total of 180 hybrid sturgeon adults were exposed to dissolved oxygen (DO) levels of 7.00 ± 0.2 mg/L (control, N), 3.5 ± 0.2 mg/L (moderate hypoxia, MH) or 1.00 ± 0.1 mg/L (severe hypoxia, SH) and were sampled at 1 h, 6 h and 24 h after hypoxia. The results showed that the red blood cell (RBC) counts and the hemoglobin (HGB) concentration were significantly increased 6 h and 24 h after hypoxia in the SH group. The serum cortisol concentrations gradually increased with the decrease in the DO levels. Moreover, several serum biochemical parameters (AST, AKP, HBDB, LDH, GLU, TP and T-Bil) were significantly altered at 24 h in the SH group. The HIFs are transcription activators that function as master regulators in hypoxia. In this study, a complete set of six hif genes were identified and characterized in hybrid sturgeon for the first time. After hypoxia, five out of six sturgeon hif genes were significantly differentially expressed in gills, especially hif-1α and hif-3α, with more than 20-fold changes, suggesting their important roles in adaptation to hypoxia in hybrid sturgeon. A meta-analysis indicated that the HIF pathway, a major pathway for adaptation to hypoxic environments, was activated in the liver of the hybrid sturgeon 24 h after the hypoxia challenge. Our study demonstrated that hypoxia, particularly severe hypoxia (1.00 ± 0.1 mg/L), could cause considerable stress for the hybrid sturgeon. These results shed light on their adaptive mechanisms and potential biomarkers for hypoxia tolerance, aiding in aquaculture and conservation efforts.


Asunto(s)
Peces , Animales , Peces/genética , Peces/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Hidrocortisona/sangre , Oxígeno/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Hemoglobinas/metabolismo , Hemoglobinas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/genética
20.
Mar Environ Res ; 199: 106602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870557

RESUMEN

The assessment of fish diversity is crucial for effective conservation and management strategies, especially in ecologically sensitive regions such as marine protected areas. This study contrasts the effectiveness of environmental DNA (eDNA) metabarcoding analysis employing Nanopore technology with compare beam trawl surveys at the Sylt Outer Reef, a Natura 2000 site in the North Sea, Germany. Out of the 17 fish species caught in a bottom trawl (using a 3m beam trawl), 14 were also identified through eDNA extracted from water samples. The three species not detected in the eDNA results were absent because they lacked representation in public DNA databases. The eDNA method detected twice as many fish species as the beam trawl, totalling 36 species, of which 14 were also detected by the trawl. Additionally, the selection of primers (Mifish) facilitated the identification of one marine mammal species, the harbour porpoise. In conclusion, the findings underscore the potential of eDNA coupled with MinION sequencing (Long read technology) as a robust tool for biodiversity assessment, surpassing traditional methods in detecting species richness.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Código de Barras del ADN Taxonómico , ADN Ambiental , Peces , Animales , Peces/genética , Código de Barras del ADN Taxonómico/métodos , ADN Ambiental/análisis , Secuenciación de Nanoporos/métodos , Alemania , Mar del Norte , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...