Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 431(19): 3690-3705, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31381898

RESUMEN

In response to the stress of infection, Mycobacterium tuberculosis (Mtb) reprograms its metabolism to accommodate nutrient and energetic demands in a changing environment. Pyruvate kinase (PYK) is an essential glycolytic enzyme in the phosphoenolpyruvate-pyruvate-oxaloacetate node that is a central switch point for carbon flux distribution. Here we show that the competitive binding of pentose monophosphate inhibitors or the activator glucose 6-phosphate (G6P) to MtbPYK tightly regulates the metabolic flux. Intriguingly, pentose monophosphates were found to share the same binding site with G6P. The determination of a crystal structure of MtbPYK with bound ribose 5-phosphate (R5P), combined with biochemical analyses and molecular dynamic simulations, revealed that the allosteric inhibitor pentose monophosphate increases PYK structural dynamics, weakens the structural network communication, and impairs substrate binding. G6P, on the other hand, primes and activates the tetramer by decreasing protein flexibility and strengthening allosteric coupling. Therefore, we propose that MtbPYK uses these differences in conformational dynamics to up- and down-regulate enzymic activity. Importantly, metabolome profiling in mycobacteria reveals a significant increase in the levels of pentose monophosphate during hypoxia, which provides insights into how PYK uses dynamics of the tetramer as a competitive allosteric mechanism to retard glycolysis and facilitate metabolic reprogramming toward the pentose-phosphate pathway for achieving redox balance and an anticipatory metabolic response in Mtb.


Asunto(s)
Hipoxia/enzimología , Mycobacterium tuberculosis/enzimología , Vía de Pentosa Fosfato , Piruvato Quinasa/metabolismo , Regulación Alostérica/efectos de los fármacos , Carbono/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Glucosa-6-Fosfato/metabolismo , Cinética , Mycobacterium tuberculosis/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Pentosafosfatos/química , Pentosafosfatos/farmacología , Conformación Proteica , Dominios Proteicos , Piruvato Quinasa/química , Temperatura
2.
J Bacteriol ; 194(24): 6847-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23065974

RESUMEN

AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed a biochemical examination of AMPpase and R15P isomerase from Thermococcus kodakarensis. R15P isomerase was specific for the α-anomer of R15P and did not recognize other sugar compounds. We observed that activity was extremely low with the substrate R15P alone but was dramatically activated in the presence of AMP. Using AMP-activated R15P isomerase, we reevaluated the substrate specificity of AMPpase. AMPpase exhibited phosphorylase activity toward CMP and UMP in addition to AMP. The [S]-v plot (plot of velocity versus substrate concentration) of the enzyme toward AMP was sigmoidal, with an increase in activity observed at concentrations higher than approximately 3 mM. The behavior of the two enzymes toward AMP indicates that the pathway is intrinsically designed to prevent excess degradation of intracellular AMP. We further examined the formation of 3-phosphoglycerate from AMP, CMP, and UMP in T. kodakarensis cell extracts. 3-Phosphoglycerate generation was observed from AMP alone, and from CMP or UMP in the presence of dAMP, which also activates R15P isomerase. 3-Phosphoglycerate was not formed when 2-carboxyarabinitol 1,5-bisphosphate, a Rubisco inhibitor, was added. The results strongly suggest that these enzymes are actually involved in the conversion of nucleoside monophosphates to 3-phosphoglycerate in T. kodakarensis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Proteínas Arqueales/metabolismo , Fosforilasas/metabolismo , Thermococcus/enzimología , Thermococcus/metabolismo , Adenosina Monofosfato/química , Isomerasas Aldosa-Cetosa/química , Proteínas Arqueales/química , Extractos Celulares/química , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Redes y Vías Metabólicas , Pentosafosfatos/química , Pentosafosfatos/farmacología , Fosforilasas/química , Ribulosafosfatos/metabolismo , Especificidad por Sustrato , Alcoholes del Azúcar/química , Alcoholes del Azúcar/farmacología , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
3.
Bioorg Med Chem ; 16(22): 9830-6, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18930408

RESUMEN

3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyses the condensation reaction between phosphoenolpyruvate and D-arabinose 5-phosphate (D-A5P) in a key step in lipopolysaccharide biosynthesis in Gram-negative bacteria. The KDO8P synthase from Neisseria meningitidis was cloned into Escherichia coli, overexpressed and purified. A variety of D-A5P stereoisomers were tested as substrates, of these only D-A5P and l-X5P were substrates. The Asn59Ala mutant of N. meningitidis KDO8P synthase was constructed and this mutant retained less than 1% of the wild-type activity. These results are consistent with a catalytic mechanism for this enzyme in which the C2 and C3 hydroxyl groups of D-A5P and Asn59 are critical.


Asunto(s)
Aldehído-Liasas/metabolismo , Neisseria meningitidis/enzimología , Pentosafosfatos/química , Aldehído-Liasas/biosíntesis , Aldehído-Liasas/aislamiento & purificación , Cinética , Pentosafosfatos/síntesis química , Pentosafosfatos/farmacología , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Estereoisomerismo
4.
Int J Oncol ; 32(1): 49-57, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18097542

RESUMEN

Protein phosphatase 2A (PP2A), an Akt pathway inhibitor, is considered to be activated by methylation of its catalytic subunit. Also PP2A downregulation was proposed to take part in carcinogenesis. Recently, PP2A activation was shown to be activated in response to DNA damage. To obtain further information on the role of PP2A in tumors and response to DNA damage, we investigated the relationship between PP2A methylation and activity, cell proliferation, Akt activation, c-Myc expression and PTEN activity in B16 melanoma cells untreated and after chloroethylnitrosourea (CENU) treatment. In untreated cells, okadaic acid, an antagonist of PP2A methylation, inhibited PP2A activity, stimulated cell proliferation, increased Akt activation and c-Myc expression. Xylulose-5-phosphate, an agonist of PP2A methylation, increased PP2A activity, decreased cell proliferation, Akt activation and c-Myc expression. However, both PP2A methylation modulators increased PTEN activity. During the response to CENU treatment, PP2A methylation and activity were strongly increased, Akt activation and c-Myc expression were decreased. However PTEN activity was increased. After tumor cell growth recovery, these modifications were moderately decreased. PP2A methylation was quantified and correlated positively with PP2A activity, and negatively with criteria for cell aggressiveness (cell proliferation, Akt activation, c-Myc expression). Based on these data, PP2A methylation status controls PP2A activity and oncoproteins expression and PP2A is strongly activated after CENU treatment thus partly explaining the growth inhibition in response to this agent. It follows that PP2A promethylating agents are potential candidates for anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Compuestos de Nitrosourea/farmacología , Proteína Fosfatasa 2/metabolismo , Animales , Daño del ADN , Melanoma Experimental/patología , Metilación , Ratones , Ratones Endogámicos C57BL , Ácido Ocadaico/farmacología , Fosfohidrolasa PTEN/metabolismo , Pentosafosfatos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-16880541

RESUMEN

Two complexes of the enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa with a slow substrate and with an inhibitor have been characterized by X-ray crystallography. Both ligands induce an interdomain rearrangement in the enzyme that creates a highly buried active site. Comparisons with enzyme-substrate complexes show that the inhibitor xylose 1-phosphate utilizes many of the previously observed enzyme-ligand interactions. In contrast, analysis of the ribose 1-phosphate complex reveals a combination of new and conserved enzyme-ligand interactions for binding. The ability of PMM/PGM to accommodate these two pentose phosphosugars in its active site may be relevant for future efforts towards inhibitor design.


Asunto(s)
Fosfoglucomutasa/química , Fosfotransferasas (Fosfomutasas)/química , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ligandos , Modelos Moleculares , Pentosafosfatos/química , Pentosafosfatos/farmacología , Fosfoglucomutasa/antagonistas & inhibidores , Fosfoglucomutasa/metabolismo , Fosfotransferasas (Fosfomutasas)/antagonistas & inhibidores , Fosfotransferasas (Fosfomutasas)/metabolismo , Conformación Proteica , Ribosamonofosfatos/química , Ribosamonofosfatos/farmacología
6.
Biochem J ; 399(3): 525-34, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16822231

RESUMEN

During catalysis, all Rubisco (D-ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes produce traces of several by-products. Some of these by-products are released slowly from the active site of Rubisco from higher plants, thus progressively inhibiting turnover. Prompted by observations that Form I Rubisco enzymes from cyanobacteria and red algae, and the Form II Rubisco enzyme from bacteria, do not show inhibition over time, the production and binding of catalytic by-products was measured to ascertain the underlying differences. In the present study we show that the Form IB Rubisco from the cyanobacterium Synechococcus PCC6301, the Form ID enzyme from the red alga Galdieria sulfuraria and the low-specificity Form II type from the bacterium Rhodospirillum rubrum all catalyse formation of by-products to varying degrees; however, the by-products are not inhibitory under substrate-saturated conditions. Study of the binding and release of phosphorylated analogues of the substrate or reaction intermediates revealed diverse strategies for avoiding inhibition. Rubisco from Synechococcus and R. rubrum have an increased rate of inhibitor release. G. sulfuraria Rubisco releases inhibitors very slowly, but has an increased binding constant and maintains the enzyme in an activated state. These strategies may provide information about enzyme dynamics, and the degree of enzyme flexibility. Our observations also illustrate the phylogenetic diversity of mechanisms for regulating Rubisco and raise questions about whether an activase-like mechanism should be expected outside the green-algal/higher-plant lineage.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/metabolismo , Rhodophyta/enzimología , Rhodospirillum rubrum/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosafosfatos/metabolismo , Synechococcus/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Catálisis , Ácidos Glicéricos/metabolismo , Ligandos , Organofosfatos/metabolismo , Oxidación-Reducción , Pentosafosfatos/metabolismo , Pentosafosfatos/farmacología , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/aislamiento & purificación , Unión Proteica , Piruvatos/metabolismo , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/clasificación , Ribulosa-Bifosfato Carboxilasa/aislamiento & purificación , Especificidad de la Especie , Spinacia oleracea/enzimología , Alcoholes del Azúcar/metabolismo , Alcoholes del Azúcar/farmacología , Fosfatos de Azúcar/metabolismo
7.
J Enzyme Inhib Med Chem ; 21(2): 187-92, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16791965

RESUMEN

D-Sorbitol-6-phosphate 2-dehydrogenase catalyzes the NADH-dependent conversion of D-fructose 6-phosphate to D-sorbitol 6-phosphate and improved production and purification of the enzyme from Escherichia coli is reported. Preliminary inhibition studies of the enzyme revealed 5-phospho-D-arabinonohydroxamic acid and 5-phospho-D-arabinonate as new substrate analogue inhibitors of the F6P catalyzed reduction with IC50 values of (40 +/- 1) microM and (48 +/- 3) microM and corresponding Km/IC50 ratio values of 14 and 12, respectively. Furthermore, we report here the phosphomannose isomerase substrate D-mannose 6-phosphate as the best inhibitor of E. coli D-sorbitol-6-phosphate 2-dehydrogenase yet reported with an IC50 = 7.5 +/- 0.4 microM and corresponding Km/IC50 ratio = about 76.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Deshidrogenasas del Alcohol de Azúcar/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/metabolismo , Hexosafosfatos/metabolismo , Hexosafosfatos/farmacología , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Cinética , Manosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Manosa-6-Fosfato Isomerasa/metabolismo , Manosafosfatos/metabolismo , Manosafosfatos/farmacología , Pentosafosfatos/metabolismo , Pentosafosfatos/farmacología , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Fosfatos de Azúcar/metabolismo , Fosfatos de Azúcar/farmacología
8.
Biochem Pharmacol ; 71(4): 540-9, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16359641

RESUMEN

With the long-term goal of developing receptor subtype-selective high affinity agonists for the uracil nucleotide-activated P2Y receptors we have carried out a series of structure activity and molecular modeling studies of the human P2Y2 and P2Y4 receptors. UTP analogues with substitutions in the 2'-position of the ribose moiety retained capacity to activate both P2Y2 and P2Y4 receptors. Certain of these analogues were equieffective for activation of both receptors whereas 2'-amino-2'-deoxy-UTP exhibited higher potency for the P2Y2 receptor and 2'-azido-UTP exhibited higher potency for the P2Y4 receptor. 4-Thio substitution of the uracil base resulted in a UTP analogue with increased potency relative to UTP for activation of both the P2Y2 and P2Y4 receptors. In contrast, 2-thio substitution and halo- or alkyl substitution in the 5-position of the uracil base resulted in molecules that were 3-30-fold more potent at the P2Y2 receptor than P2Y4 receptor. 6-Aza-UTP was a P2Y2 receptor agonist that exhibited no activity at the P2Y4 receptor. Stereoisomers of UTPalphaS and 2'-deoxy-UTPalphaS were more potent at the P2Y2 than P2Y4 receptor, and the R-configuration was favored at both receptors. Molecular docking studies revealed that the binding mode of UTP is similar for both the P2Y2 and P2Y4 receptor binding pockets with the most prominent dissimilarities of the two receptors located in the second transmembrane domain (V90 in the P2Y2 receptor and I92 in the P2Y4 receptor) and the second extracellular loop (T182 in the P2Y2 receptor and L184 in the P2Y4 receptor). In summary, this work reveals substitutions in UTP that differentially affect agonist activity at P2Y2 versus P2Y4 receptors and in combination with molecular modeling studies should lead to chemical synthesis of new receptor subtype-selective drugs.


Asunto(s)
Modelos Moleculares , Pentosafosfatos/farmacología , Agonistas del Receptor Purinérgico P2 , Relación Estructura-Actividad , Uridina Trifosfato/farmacología , Unión Competitiva , Humanos , Conformación Molecular , Pentosafosfatos/síntesis química , Pentosafosfatos/química , Receptores Purinérgicos P2 , Receptores Purinérgicos P2Y2 , Estereoisomerismo , Células Tumorales Cultivadas , Uridina Trifosfato/síntesis química , Uridina Trifosfato/química
9.
J Org Chem ; 70(24): 9955-9, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16292827

RESUMEN

[structures: see text] A series of 1-deoxy-D-xylulose 5-phosphate (DXP) analogues were synthesized and evaluated as inhibitors of E. coli methylerythritol phosphate (MEP) synthase. In analogues 1-4, the methyl group in DXP was replaced by hydroxyl, hydroxylamino, methoxy, and amino moieties, respectively. In analogues 5 and 6, the acetyl moiety in DXP was replaced by hydroxymethyl and aminomethyl groups. These compounds were designed to coordinate to the active site divalent metal in MEP synthase. The carboxylate (1), methyl ester (3), amide (4), and alcohol (5) analogues were inhibitors with IC50's ranging from 0.25 to 1.0 mM. The hydroxamic acid (2) and amino (6) analogues did not inhibit the enzyme.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Quelantes/síntesis química , Quelantes/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Pentosafosfatos/síntesis química , Pentosafosfatos/farmacología , Quelantes/química , Inhibidores Enzimáticos/química , Estructura Molecular , Pentosafosfatos/química , Conformación Proteica , Estructura Terciaria de Proteína/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
10.
J Org Chem ; 70(6): 1978-85, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15760175

RESUMEN

[structure: see text] Four deoxyxylulose phosphate (DXP) analogues were synthesized and evaluated as substrates/inhibitors for methylerythritol phosphate (MEP) synthase. In analogues CF(3)-DXP (1), CF(2)-DXP (2), and CF-DXP (3), the three methyl hydrogens at C1 of DXP were sequentially replaced by fluorine. In the fourth analogue, Et-DXP (4), the methyl group in DXP was replaced by an ethyl moiety. Analogues 1, 2, and 4 were not substrates for MEP synthase under normal catalytic conditions and were instead modest inhibitors with IC(50) values of 2.0, 3.4, and 6.2 mM, respectively. In contrast, 3 was a good substrate (k(cat) = 38 s(-)(1), K(m) = 227 muM) with a turnover rate similar to that of the natural substrate. These results are consistent with a retro-aldol/aldol mechanism rather than an alpha-ketol rearrangement for the enzyme-catalyzed conversion of DXP to MEP.


Asunto(s)
Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/química , Eritritol/análogos & derivados , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Pentosafosfatos/síntesis química , Catálisis , Eritritol/síntesis química , Conformación Molecular , Pentosafosfatos/química , Pentosafosfatos/farmacología , Fosfatos de Azúcar/síntesis química
11.
Oral Microbiol Immunol ; 18(4): 215-9, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12823796

RESUMEN

Xylitol inhibits the glycolysis and growth of Streptococcus mutans. We studied the inhibitory effect of xylitol on the acid production of S. mutans at several pH levels under the strictly anaerobic conditions found in the deep layer of dental plaque. Xylitol inhibited the rate of acid production from glucose and changed the profile of acidic end products to formate-acetate dominance, with a decrease in the intracellular level of fructose 1,6-bisphosphate and an intracellular accumulation of xylitol 5-phosphate (X5P). These results were notable at pH 5.5-7.0, but were not evident at pH 5.0. Since the activity of phosphoenolpyruvate phosphotransferase for xylitol was greater at higher pH, it is suggested that xylitol could be incorporated more efficiently at higher pH and that the resultant accumulation of X5P could inhibit the glycolysis of S. mutans more effectively.


Asunto(s)
Glucólisis/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Xilitol/farmacología , Ácido Acético/metabolismo , Anaerobiosis , Concentración de Iones de Hidrógeno , Pentosafosfatos/farmacología , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Streptococcus mutans/metabolismo
12.
J Biol Chem ; 277(47): 45188-94, 2002 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-12228237

RESUMEN

Gibberellins (GAs) are diterpene plant hormones essential for many developmental processes. Although the GA biosynthesis pathway has been well studied, our knowledge on its early stage is still limited. There are two possible routes for the biosynthesis of isoprenoids leading to GAs, the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in plastids. To distinguish these possibilities, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C-labeling was achieved by blocking the endogenous pathway chemically or genetically during the feed of a (13)C-labeled precursor specific to the MVA or MEP pathways. Gas chromatography-mass spectrometry analyses demonstrated that both MVA and MEP pathways can contribute to the biosyntheses of GAs and campesterol, a cytosolic sterol, in Arabidopsis seedlings. While GAs are predominantly synthesized through the MEP pathway, the MVA pathway plays a major role in the biosynthesis of campesterol. Consistent with some crossover between the two pathways, phenotypic defects caused by the block of the MVA and MEP pathways were partially rescued by exogenous application of the MEP and MVA precursors, respectively. We also provide evidence to suggest that the MVA pathway still contributes to GA biosynthesis when this pathway is limiting.


Asunto(s)
Arabidopsis/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Giberelinas/biosíntesis , Lovastatina/análogos & derivados , Ácido Mevalónico/metabolismo , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Isótopos de Carbono/metabolismo , Eritritol/química , Giberelinas/química , Lovastatina/farmacología , Ácido Mevalónico/química , Estructura Molecular , Pentosafosfatos/química , Pentosafosfatos/farmacología , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Xilulosa/análogos & derivados , Xilulosa/farmacología
13.
J Bacteriol ; 184(18): 5045-51, 2002 09.
Artículo en Inglés | MEDLINE | ID: mdl-12193620

RESUMEN

The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate, an initial substrate of the MEP pathway in Escherichia coli, or by deoxyxylulose-5-phosphate, the first pathway intermediate in E. coli. However, high rates of IPP incorporation were obtained with addition of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA3P), as well as a variety of pentose phosphate cycle compounds. Fosmidomycin (at 1 micro M and 1 mM), an inhibitor of deoxyxylulose-5-phosphate reductoisomerase, did not significantly inhibit phototrophic growth of the cyanobacterium, nor did it affect [(14)C]IPP incorporation stimulated by DHAP plus GA3P. To date, it has not been possible to unequivocally demonstrate IPP isomerase activity in this cyanobacterium. The combined results suggest that the MEP pathway, as described for E. coli, is not the primary path by which isoprenoids are synthesized under photosynthetic conditions in Synechocystis sp. strain PCC6803. Our data support alternative routes of entry of pentose phosphate cycle substrates derived from photosynthesis.


Asunto(s)
Cianobacterias/metabolismo , Fosfomicina/análogos & derivados , Hemiterpenos , Compuestos Organofosforados/metabolismo , Vía de Pentosa Fosfato/fisiología , Pentosafosfatos/farmacología , Ácido Pirúvico/farmacología , Radioisótopos de Carbono/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Medios de Cultivo , Cianobacterias/crecimiento & desarrollo , Fosfomicina/farmacología , Fotosíntesis
14.
J Enzyme Inhib ; 15(5): 509-15, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11030090

RESUMEN

We report four new strong high energy intermediate analog competitive inhibitors of fructose-6-phosphate isomerization catalyzed by purified Trypanosoma brucei phosphoglucose isomerase: D-arabinonhydroxamic acid-5-phosphate, D-arabinonate-5-phosphate, D-arabinonamide-5-phosphate and D-arabinonhydrazide-5-phosphate. For comparison, the inhibitory properties of the corresponding non-phosphorylated analogues D-arabinonhydroxamic acid, D-arabinonate, D-arabinonamide and D-arabinonhydrazide were also evaluated. D-Arabinonhydroxamic acid-5-phosphate appears as the most potent competitive inhibitor ever evaluated on a phosphoglucose isomerase with an inhibition constant value of 50 nM and a Michaelis constant over inhibition constant ratio of about 2000. Our results show that anionic high energy intermediate analogues, and more particularly D-arabinonhydroxamic acid-5-phosphate, display a weak but significant specificity for Trypanosoma brucei phosphoglucose isomerase versus yeast phosphoglucose isomerase, while neutral high energy intermediate analogues are not selective at all. This would indicate the presence of more positively charged residues in the active site for Trypanosoma brucei phosphoglucose isomerase as compared to that of yeast phosphoglucose isomerase.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Pentosafosfatos/farmacología , Trypanosoma brucei brucei/enzimología , Animales , Unión Competitiva , Inhibidores Enzimáticos/síntesis química , Cinética , Pentosafosfatos/síntesis química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/química
15.
Biochem Biophys Res Commun ; 275(3): 968-72, 2000 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-10973829

RESUMEN

Dynamics stimulation of the holotransketolase molecule revealed that the enzyme's conformation in crystal was different from that in solution. It was shown also that dissolved holotransketolase can bind aldose (the acceptor substrate) even in the absence of ketose (the donor substrate). The holotransketolase conformation did not change upon aldose binding unlike in the case of ketose binding/cleavage. Therefore the conformation of a catalytic complex of holotransketolase with an intermediate-i.e., a glycolaldehyde residue formed upon binding and subsequent cleavage of ketose-differed, at least in solution, from the conformation of both the free and aldose-complexed holotransketolase. Some structural peculiarities of the holotransketolase with the intermediate were established by means of molecular dynamics stimulation.


Asunto(s)
Cetosas/metabolismo , Transcetolasa/química , Transcetolasa/metabolismo , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Sitios de Unión , Dicroismo Circular , Simulación por Computador , Cristalografía por Rayos X , Holoenzimas/química , Holoenzimas/metabolismo , Cetosas/química , Modelos Moleculares , Pentosafosfatos/farmacología , Unión Proteica , Conformación Proteica/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribosamonofosfatos/farmacología , Tiamina Pirofosfato/análogos & derivados , Tiamina Pirofosfato/metabolismo , Transcetolasa/antagonistas & inhibidores
16.
Comp Biochem Physiol B Biochem Mol Biol ; 125(1): 97-102, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10840645

RESUMEN

Fructose-1,6-bisphosphatase is one of the regulatory enzymes of gluconeogenesis in kidney cortex. The effect of ribose 1,5-bisphosphate on fructose-1,6-bisphosphatase purified from rat kidney cortex was studied. Rat kidney cortex, fructose-1,6-bisphosphatase exhibited hyperbolic kinetics with regard to its substrate, but the activity was inhibited by ribose 1,5-bisphosphate at nanomolar concentrations. The inhibitory effect of ribose 1,5-bisphosphate on the fructose-1,6-bisphosphatase was enhanced in the presence of AMP, one of the inhibitors of fructose-1,6-bisphosphatase. Fructose-2,6-bisphosphate, which is an inhibitor of fructose-1,6-bisphosphatase, inhibited rat kidney cortex fructose-1,6-bisphosphatase activities at a low concentration of fructose-1,6-bisphosphate but a high concentration of fructose-1,6-bisphosphate relieved fructose-1,6-bisphosphatase from fructose-2,6-bisphosphate-dependent inhibition. On the contrary, fructose-1,6-bisphosphate was not effective for the recovery of fructose-1,6-bisphosphatase from ribose 1,5-bisphosphate-dependent inhibition. These results suggest that ribose 1,5-bisphosphate is a potent inhibitor and is involved in the regulation of fructose-1,6-bisphosphatase in rat kidney cortex.


Asunto(s)
Fructosa-Bifosfatasa/antagonistas & inhibidores , Corteza Renal/enzimología , Pentosafosfatos/farmacología , Animales , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Fructosa-Bifosfatasa/metabolismo , Pentosafosfatos/metabolismo , Ratas , Especificidad por Sustrato
17.
Eur J Biochem ; 266(3): 840-7, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10583377

RESUMEN

Trypsin-catalysed cleavage of purified ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the resultant irreversible loss of carboxylase activity were prevented by prior incubation with the naturally occurring nocturnal Rubisco inhibitor 2'-carboxy-D-arabitinol 1-phosphate (CA1P), as well as with ribulose 1,5-bisphosphate (RuBP), Mg2+ and CO2. CA1P also protected Rubisco from loss of activity caused by carboxypeptidase A. When similar experiments were carried out using soluble chloroplast proteases, CA1P was again able to protect Rubisco against proteolytic degradation and the consequent irreversible loss of catalytic activity. Thus, CA1P prevents the proteolytic breakdown of Rubisco by endogenous and exogenous proteases. In this way, CA1P may affect the amounts of Rubisco protein available for photosynthetic CO2 assimilation. Rubisco turnover (in the presence of RuBP, Mg2+ and CO2) may confer similar protection against proteases in the light.


Asunto(s)
Pentosafosfatos/farmacología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Carboxipeptidasas/metabolismo , Carboxipeptidasas A , Dominio Catalítico , Cloroplastos/enzimología , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/farmacología , Cinética , Pentosafosfatos/metabolismo , Plantas Medicinales , Plantas Tóxicas , Rhamnus/enzimología , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Triticum/enzimología , Tripsina/farmacología
18.
Comp Biochem Physiol B Biochem Mol Biol ; 124(3): 327-32, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10631808

RESUMEN

Phosphofructokinase (EC 2.7.1.11) is a major enzyme of the glycolytic pathway, catalyzing the conversion of fructose 6-phosphate to fructose 1,6-bisphosphate. In this study, we demonstrated the effect of ribose 1,5-bisphosphate on phosphofructokinase purified from rat kidney cortex. Ribose 1,5-bisphosphate relieved the phosphofructokinase from ATP inhibition and increased the affinity for fructose 6-phosphate at nanomolar concentrations. These activating effects of ribose 1,5-bisphosphate were enhanced in the presence of AMP. Ribose 1,5-bisphosphate reduced the inhibition of the phosphofructokinase induced by citrate. These results suggest that ribose 1,5-bisphosphate is an activator of rat kidney cortex phosphofructokinase and synergistically regulates the enzyme activity with AMP.


Asunto(s)
Corteza Renal/enzimología , Pentosafosfatos/metabolismo , Fosfofructoquinasa-1/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/metabolismo , Animales , Ácido Cítrico/farmacología , Relación Dosis-Respuesta a Droga , Fructosadifosfatos/metabolismo , Fructosadifosfatos/farmacología , Fructosafosfatos/metabolismo , Pentosafosfatos/farmacología , Fosfofructoquinasa-1/efectos de los fármacos , Fosfofructoquinasa-1/aislamiento & purificación , Ratas
19.
Plant Physiol ; 114(2): 549-55, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9193088

RESUMEN

Adenylosuccinate synthetase (AdSS) is the site of action hydantocidin, a potent microbial phytotoxin. A kinetic analysis of the mode of inhibition of a plant adenylosuccinate synthetase by the active metabolite 5'-phosphohydantocidin (5'-PH) was the objective of the present study. AdSS was purified 5800-fold from maize (Zea mays), to our knowledge the first purification of the enzyme from a plant source. N-terminal sequencing established the cleavage site of the previously published deduced sequence of the initial transcript. The subunit molecular mass was determined to be 48 kD and the isoelectric point was at pH 6.1. Values of the Michaelis constant for the three substrates IMP, GTP, and aspartate were 21, 16, and 335 microM, respectively. Inhibition of AdSS by 5'-PH was measurably time-dependent. The trace of the inactivation curve could not be altered by preincubating the enzyme and inhibitor in the absence of substrates but could be linearized by preincubating the enzyme with inhibitor, aspartate, GTP (or GDP), and inorganic phosphate. Inhibition of AdSS by 5'-PH was competitive with IMP, with an apparent Ki of 22 nM. Apparently, 5'-PH inhibits the enzyme by binding to the IMP site and forming a tight, dead-end complex.


Asunto(s)
Adenilosuccinato Sintasa/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Zea mays/enzimología , Adenilosuccinato Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Hidantoínas/farmacología , Cinética , Datos de Secuencia Molecular , Pentosafosfatos/farmacología , Análisis de Secuencia
20.
J Biol Chem ; 271(51): 32894-9, 1996 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-8955130

RESUMEN

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the carboxylation of ribulose 1,5-bisphosphate. The reaction catalyzed by Rubisco involves several steps, some of which can occur as partial reactions, forming intermediates that can be isolated. Analogues of these intermediates are potent inhibitors of the enzyme. We have studied the interactions with the enzyme of two inhibitors, xylulose 1,5-bisphosphate and 4-carboxyarabinitol 1,5-bisphosphate, by x-ray crystallography. Crystals of the complexes were formed by cocrystallization under activating conditions. In addition, 4-carboxyarabinitol 1,5-bisphosphate was soaked into preformed activated crystals of the enzyme. The result of these experiments was the release of the activating CO2 molecule as well as the metal ion from the active site when the inhibitors bound to the enzyme. Comparison with the structure of an activated complex of the enzyme indicates that the structural basis for the release of the activator groups is a distortion of the metal binding site due to the different geometry of the C-3 hydroxyl of the inhibitors. Both inhibitors induce closure of active site loops despite the inactivated state of the enzyme. Xylulose 1,5-bisphosphate binds in a hydrated form at the active site.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Pentosafosfatos/farmacología , Ribulosa-Bifosfato Carboxilasa/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Metales/química , Modelos Moleculares , Conformación Proteica , Spinacia oleracea , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA