Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702792

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Asunto(s)
Neovascularización Patológica , Rabdomiosarcoma , Ribonucleoproteínas , Factores de Transcripción de la Familia Snail , Peptidasa Específica de Ubiquitina 7 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Femenino , Progresión de la Enfermedad , Proliferación Celular , Masculino , Homeostasis , Línea Celular Tumoral , Ratones Desnudos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Clin Transl Med ; 14(4): e1648, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38602256

RESUMEN

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Asunto(s)
Neoplasias , Peptidasa Específica de Ubiquitina 7 , Factor A de Crecimiento Endotelial Vascular , Humanos , Proteínas Potenciadoras de Unión a CCAAT/farmacología , Fibroblastos/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores
3.
J Cancer Res Clin Oncol ; 150(4): 196, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625581

RESUMEN

BACKGROUND: Metadherin (MTDH) and ubiquitin specific protease 7 (USP7) have been identified to involve in the tumorigenesis of cervical cancer (CC). USP7 is one of the deubiquitinating enzymes. Here, this study aimed to explore whether USP7 affected CC progression via interacting with MTDH and regulating its stability via deubiquitination. METHODS: qRT-PCR and western blotting assays detected the levels of genes and proteins. Functional analysis was conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays, respectively. Proteins between USP7 and MTDH were identified by co-immunoprecipitation assay. A mouse xenograft model was established for in vivo analysis. RESULTS: MTDH was highly expressed in CC tissues and cells, silencing of MTDH suppressed CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization. Mechanistically, USP7 directly bound to MTDH, and maintained its stability by removing ubiquitination on MTDH. CC tissues and cells showed high USP7 expression, and USP7 knockdown also inhibited CC cell proliferation, migration, invasion, angiogenesis and macrophage M2 polarization, and these effects mediated by USP7 knockdown were reversed by MTDH overexpression. Moreover, USP7 knockdown impeded CC growth in vivo by regulating MTDH. CONCLUSION: Collectively, USP7 promoted CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization in vitro, as well as tumor growth in vivo by regulating MTDH.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Animales , Ratones , Femenino , Neoplasias del Cuello Uterino/genética , Peptidasa Específica de Ubiquitina 7 , Factores de Transcripción , Transformación Celular Neoplásica , Carcinogénesis , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética
4.
Hepatol Commun ; 8(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573832

RESUMEN

BACKGROUND: Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS: Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS: We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS: These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Sorafenib/farmacología , Peptidasa Específica de Ubiquitina 7/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/farmacología , Transducción de Señal , Línea Celular Tumoral , Receptor Notch1/uso terapéutico
5.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460164

RESUMEN

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Asunto(s)
Ferroptosis , Estearoil-CoA Desaturasa , Neoplasias Gástricas , Peptidasa Específica de Ubiquitina 7 , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Animales , Ratones , Humanos , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad
6.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38555840

RESUMEN

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Asunto(s)
Proteínas Oncogénicas , Peptidasa Específica de Ubiquitina 7 , Humanos , Dominio Catalítico , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Ubiquitina/química , Peptidasa Específica de Ubiquitina 7/genética
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474017

RESUMEN

Ubiquitin-specific protease 7 inhibitors (USP7i) are considered a novel class of anticancer drugs. Cancer cells occasionally become insensitive to anticancer drugs, known as chemoresistance, by acquiring multidrug resistance, resulting in poor clinical outcomes in patients with cancer. However, the chemoresistance of cancer cells to USP7i (P22077 and P5091) and mechanisms to overcome it have not yet been investigated. In the present study, we generated human cancer cells with acquired resistance to USP7i-induced cell death. Gene expression profiling showed that heat stress response (HSR)- and unfolded protein response (UPR)-related genes were largely upregulated in USP7i-resistant cancer cells. Biochemical studies showed that USP7i induced the phosphorylation and activation of heat shock transcription factor 1 (HSF1), mediated by the endoplasmic reticulum (ER) stress protein kinase R-like ER kinase (PERK) signaling pathway. Inhibition of HSF1 and PERK significantly sensitized cancer cells to USP7i-induced cytotoxicity. Our study demonstrated that the ER stress-PERK axis is responsible for chemoresistance to USP7i, and inhibiting PERK is a potential strategy for improving the anticancer efficacy of USP7i.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Peptidasa Específica de Ubiquitina 7/genética , eIF-2 Quinasa/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Antineoplásicos/farmacología
8.
Hypertens Res ; 47(5): 1309-1322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374239

RESUMEN

Atrial fibrillation (AF), the most common cardiac arrhythmia, is an important contributor to mortality and morbidity. Ubquitin-specific protease 7 (USP7), one of the most abundant ubiquitin-specific proteases (USP), participated in many cellular events, such as cell proliferation, apoptosis, and tumourigenesis. However, its role in AF remains unknown. Here, the mice were treated with Ang II infusion to induce the AF model. Echocardiography was used to measure the atrial diameter. Electrical stimulation was programmed to measure the induction and duration of AF. The changes in atrial remodeling were measured using routine histologic analysis. Here, a significant increase in USP7 expression was observed in Ang II-stimulated atrial cardiomyocytes and atrial tissues, as well as in atrial tissues from patients with AF. The administration of p22077, the inhibitor of USP7, attenuated Ang II-induced inducibility and duration of AF, atrial dilatation, connexin dysfunction, atrial fibrosis, atrial inflammation, and atrial oxidase stress, and then inhibited the progression of AF. Mechanistically, the administration of p22077 alleviated Ang II-induced activation of TGF-ß/Smad2, NF-κB/NLRP3, NADPH oxidases (NOX2 and NOX4) signals, the up-regulation of CX43, ox-CaMKII, CaMKII, Kir2.1, and down-regulation of SERCA2a. Together, this study, for the first time, suggests that USP7 is a critical driver of AF and revealing USP7 may present a new target for atrial fibrillation therapeutic strategies.


Asunto(s)
Angiotensina II , Fibrilación Atrial , Peptidasa Específica de Ubiquitina 7 , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/prevención & control , Peptidasa Específica de Ubiquitina 7/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Humanos , Remodelación Atrial/efectos de los fármacos
9.
Int J Biol Macromol ; 263(Pt 1): 130309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382779

RESUMEN

Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.


Asunto(s)
Proteostasis , Ubiquitina , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitina/química , Dominio Catalítico , Ubiquitina Tiolesterasa/química
10.
Biochem Pharmacol ; 222: 116071, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387527

RESUMEN

Inhibition of the human ubiquitin-specific protease 7 (USP7), the key deubiquitylating enzyme in regulating p53 protein levels, has been considered an attractive anticancer strategy. In order to enhance the cellular activity of FT671, scaffold hopping strategy was employed. This endeavor resulted in the discovery of YCH2823, a novel and potent USP7 inhibitor.YCH2823 demonstrated remarkable efficacy in inhibiting the growth of a specific subset of TP53 wild-type, -mutant, and MYCN-amplified cell lines, surpassing the potency of FT671 by approximately 5-fold. The mechanism of action of YCH2823 involves direct interaction with the catalytic domain of USP7, thereby impeding the cleavage of ubiquitinated substrates. An increase in the expression of p53 and p21, accompanied by G1 phase arrest and apoptosis, was observed upon treatment with YCH2823. Subsequently, the knockdown of p53 or p21 in CHP-212 cells exhibited a substantial reduction in sensitivity to YCH2823, as evidenced by a considerable increase in IC50 values up to 690-fold. Furthermore, YCH2823 treatment specifically enhanced the transcriptional and protein levels of BCL6 in sensitive cells. Moreover, a synergistic effect between USP7 inhibitors and mTOR inhibitors was observed, suggesting the possibility of novel therapeutic strategies for cancer treatment. In conclusion, YCH2823 exhibits potential as an anticancer agent for the treatment of both TP53 wild-type and -mutant tumors.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/genética
11.
Cancer Lett ; 586: 216707, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331088

RESUMEN

Cyclic GMP-AMP synthase (cGAS), promotes non-small cell lung cancer (NSCLC) cell proliferation. However, the specific mechanisms of cGAS-mediated NSCLC cell proliferation are largely unknown. In this study, we found asymmetric dimethylation by protein arginine methyltransferase 1 (PRMT1) at R127 of cGAS. This facilitated the binding of deubiquitinase USP7 and contributed to deubiquitination and stabilization of cGAS. PRMT1-and USP7-dependent cGAS stability, which also played a pivotal role in accelerating NSCLC cell proliferation through activating AKT pathway. We validated that the expression of cGAS and PRMT1 were positive correlated in human non-small cell lung cancer samples. Our study demonstrates a unique mechanism for managing cGAS stability by arginine methylation and indicates that PRMT1-cGAS-USP7 axis is a potential therapeutic target for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Arginina , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular , Neoplasias Pulmonares/genética , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
12.
Funct Integr Genomics ; 24(1): 28, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340226

RESUMEN

This study aims to explore the molecular regulation mechanism of ubiquitination-specific protease 7 (USP7) in facilitating the stemness properties of hepatocellular carcinoma (HCC). Gain-of-function and loss-of-function assays were conducted in SK-Hep1 and HepG2 cells transfected with USP7 overexpression/knockdown plasmids and USP7 inhibitor P22077. The proliferation, migration, invasion, and self-renewal capacity of hepatocellular carcinoma cells were detected by CCK-8, colony formation, Transwell, scratch, and tumor sphere formation, respectively. MS was performed to identify the potential substrate of USP7 following P22077 treatment. Co-IP assay was used to verify the interaction between USP7 and basic transcription factor 3 (BTF3) in HCC cells. The overexpression of USP7 could promote the proliferation, migration, invasion, and colony formation capacity of SK-Hep1 and HepG2 cells. Additionally, ectopic UPS7 enhanced the epithelial-mesenchymal transition (EMT) and stem-like characteristics of the HCC cells. In contrast, USP7 depletion by knockdown of USP7 or administrating inhibitor P22077 significantly inhibited these malignant phenotypes of SK-Hep1 and HepG2 cells. Following MS analysis, BTF3 was identified as a potential substrate for USP7. USP7 could interact with BTF3 and upregulate its protein level, while USP7 depletion significantly upregulated the ubiquitination levels. Overexpression of BTF3 partially rescue the inhibitory effects of USP7 depletion on the malignant phenotypes and stemness properties of SK-Hep1 and HepG2 cells. USP7 can promote the stemness and malignant phenotype of HCC by stabilizing BTF3.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peptidasa Específica de Ubiquitina 7 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Tiofenos , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Factores de Transcripción/metabolismo
13.
Cell Death Dis ; 15(2): 171, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402183

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer types, with a low 5-year survival rate of ~20%. Our prior research has suggested that DNA Polymerase iota (Pol ι), a member of Y-family DNA polymerase, plays a crucial role in the invasion and metastasis of ESCC. However, the underlying mechanism is not well understood. In this study, we utilized ChIP-PCR and luciferase reporter assays to investigate the binding of HIF-1α to the promoter of the Pol ι gene. Transwell, wound healing, and mouse models were employed to assess the impact of Pol ι and HIF-1α on the motility of ESCC cells. Co-immunoprecipitation and Western blot were carried out to explore the interaction between Pol ι and HIF-1α, while qRT-PCR and Western blot were conducted to confirm the regulation of Pol ι and HIF-1α on their downstream targets. Our results demonstrate that HIF-1α activates the transcription of the Pol ι gene in ESCC cells under hypoxic conditions. Furthermore, the knockdown of Pol ι impeded HIF-1α-induced invasion and metastasis. Additionally, we found that Pol ι regulates the expression of genes involved in epithelial-mesenchymal transition (EMT) and initiates EMT through the stabilization of HIF-1α. Mechanistically, Pol ι maintains the protein stability of HIF-1α by recruiting USP7 to mediate the deubiquitination of HIF-1α, with the residues 446-578 of Pol being crucial for the interaction between Pol ι and USP7. Collectively, our findings unveil a novel feedforward molecular axis of HIF-1α- Pol ι -USP7 in ESCC that contributes to ESCC metastasis. Hence, our results present an attractive target for intervention in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , ADN Polimerasa iota , Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Peptidasa Específica de Ubiquitina 7/metabolismo
14.
BMC Genomics ; 25(1): 130, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302916

RESUMEN

BACKGROUND: Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS: Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS: Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS: This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.


Asunto(s)
Trastornos Cronobiológicos , Relojes Circadianos , Colitis Ulcerosa , Humanos , Colitis Ulcerosa/genética , Relojes Circadianos/genética , Análisis de la Aleatorización Mendeliana , Comorbilidad , Estudio de Asociación del Genoma Completo , Peptidasa Específica de Ubiquitina 7 , Proteínas Argonautas
15.
mBio ; 15(3): e0321323, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38376239

RESUMEN

DEAD-box helicase (DDX) family members play differential roles in regulating innate antiviral immune response. However, the physiological roles played by DDX4 in antiviral innate immunity remain unclear. In this study, we unveiled that DDX4 acts as a positive regulatory molecule of Type-I interferon (IFN-I)-mediated antiviral activity. Our findings demonstrate that IFN-I upregulates DDX4 protein levels, and subsequently, overexpression of DDX4 enhances the IFN-I-mediated signaling pathway. This creates a positive feedback loop that amplifies the antiviral response. DDX4 was found to bind with deubiquitinase ubiquitin-specific protease 7 (USP7), leading to the disruption of the interaction between USP7 and suppressor of cytokine signaling 1 (SOCS1) and the subsequent degradation of SOCS1. This process enhances the antiviral function of IFN-I. Our findings provide new insights into the regulatory role of DDX4 in the IFN-I response.IMPORTANCEDDX4, identified as a putative RNA helicase that modulates RNA secondary structure through RNA binding, is primarily acknowledged for its role in regulating mRNA translation within the germline. Nevertheless, the extent of DDX4's involvement in the antiviral innate immune response remains largely unexplored. This study presents evidence of a previously unrecognized positive feedback loop between DDX4 and the antiviral response, suggesting that disruption of this loop may serve as a novel mechanism for viral evasion. Furthermore, our findings elucidate a positive regulatory mechanism by which the DDX4/USP7/SOCS1 axis mediates the antiviral activity of Type-I interferon, which provides new insight into strategies for improving the efficacy of IFN-based antiviral therapy.


Asunto(s)
Interferón Tipo I , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Inmunidad Innata , ARN
16.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38355287

RESUMEN

The ubiquitin-specific protease (USP) family of deubiquitinases (DUBs) controls cellular ubiquitin-dependent signaling events. This generates therapeutic potential, with active-site inhibitors in preclinical and clinical studies. Understanding of the USP active site is primarily guided by USP7 data, where the catalytic triad consists of cysteine, histidine, and a third residue (third critical residue), which polarizes the histidine through a hydrogen bond. A conserved aspartate (fourth critical residue) is directly adjacent to this third critical residue. Although both critical residues accommodate catalysis in USP2, these residues have not been comprehensively investigated in other USPs. Here, we quantitatively investigate their roles in five USPs. Although USP7 relies on the third critical residue for catalysis, this residue is dispensable in USP1, USP15, USP40, and USP48, where the fourth critical residue is vital instead. Furthermore, these residues vary in importance for nucleophilic attack. The diverging catalytic mechanisms of USP1 and USP7 are independent of substrate and retained in cells for USP1. This unexpected variety of catalytic mechanisms in this well-conserved protein family may generate opportunities for selective targeting of individual USPs.


Asunto(s)
Histidina , Proteasas Ubiquitina-Específicas , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Catálisis
17.
Medicine (Baltimore) ; 103(7): e36976, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363891

RESUMEN

BACKGROUND: Williams-Beuren syndrome (WBS) is a rare genetic disorder caused by hemizygous microdeletion of contiguous genes on chromosome 7q11.23. Although the phenotype features extensive heterogeneity in severity and performance, WBS is not considered to be a predisposing factor for cancer development. Currently, hematologic cancers, mainly Burkitt lymphoma, are rarely reported in patients with WBS. Here in, we report a unique case of T-cell acute lymphoblastic leukemia in a male child with WBS. METHODS: This retrospective study analyzed the clinical data of this case receiving chemotherapy were analyzed. This is a retrospective study. RESULTS: The patient, who exhibited a typical WBS phenotype and presented with hemorrhagic spots. Chromosomal genome-wide chip analysis (CMA) revealed abnormalities on chromosomes 7 and 9. The fusion gene STIL-TAL1 and mutations in BCL11B, NOTCH1, and USP7 have also been found and all been associated with the occurrence of T-cell leukemia. The patient responded well to the chemotherapy. CONCLUSION: To the best of our knowledge, this is the first reported case of WBS in T-cell acute lymphoblastic leukemia. We want to emphasize that the occurrence of leukemia in this patient might be related to the loss of 7q11.23 and microdeletion of 9p21.3 (including 3 TSGs), but the relationship between WBS and malignancy remains unclear. Further studies are required to clarify the relationship between WBS and malignancy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Síndrome de Williams , Niño , Humanos , Masculino , Síndrome de Williams/complicaciones , Síndrome de Williams/genética , Estudios Retrospectivos , Deleción Cromosómica , Fenotipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T , Peptidasa Específica de Ubiquitina 7/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética
18.
J Exp Clin Cancer Res ; 43(1): 28, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254206

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Peptidasa Específica de Ubiquitina 7 , beta Carioferinas , Humanos , Apoptosis , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
19.
Cell Death Differ ; 31(3): 309-321, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38287116

RESUMEN

Cisplatin-based chemotherapy improves the control of distant metastases in patients with nasopharyngeal carcinoma (NPC); however, around 30% of patients fail treatment due to acquired drug resistance. Epigenetic regulation is known to contribute to cisplatin resistance; nevertheless, the underlying mechanisms remain poorly understood. Here, we showed that lysine-specific demethylase 5B (KDM5B) was overexpressed and correlates with tumor progression and cisplatin resistance in patients with NPC. We also showed that specific inhibition of KDM5B impaired the progression of NPC and reverses cisplatin resistance, both in vitro and in vivo. Moreover, we found that KDM5B inhibited the expression of ZBTB16 by directly reducing H3K4me3 at the ZBTB16 promoter, which subsequently increased the expression of Topoisomerase II- α (TOP2A) to confer cisplatin resistance in NPC. In addition, we showed that the deubiquitinase USP7 was critical for deubiquitinating and stabilizing KDM5B. More importantly, the deletion of USP7 increased sensitivity to cisplatin by disrupting the stability of KDM5B in NPC cells. Therefore, our findings demonstrated that USP7 stabilized KDM5B and promoted cisplatin resistance through the ZBTB16/TOP2A axis, suggesting that targeting KDM5B may be a promising cisplatin-sensitization strategy in the treatment of NPC.


Asunto(s)
Cisplatino , Neoplasias Nasofaríngeas , Humanos , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteínas Nucleares , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Proteínas Represoras , Peptidasa Específica de Ubiquitina 7/genética
20.
Clin Transl Med ; 14(1): e1563, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38279869

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS: The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS: High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS: Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Peptidasa Específica de Ubiquitina 7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA