RESUMEN
Angiotensin-converting enzyme II (ACE2) is a homologue of angiotensin-converting enzyme discovered in 2000. From the initial discovery, it was recognized that the kidneys were organs very rich on ACE2. Subsequent studies demonstrated the precise localization of ACE2 within the kidney and the importance of this enzyme in the metabolism of Angiotensin II and the formation of Angiotensin 1-7. With the recognition early in 2020 of ACE2 being the main receptor of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the interest in this protein has dramatically increased. In this review, we will focus on kidney ACE2; its localization, its alterations in hypertension, diabetes, the effect of ACE inhibitors and angiotensin type 1 receptor blockers (ARBs) on ACE2 and the potential use of ACE2 recombinant proteins therapeutically for kidney disease. We also describe the emerging kidney manifestations of COVID-19, namely the frequent development of acute kidney injury. The possibility that binding of SARS-CoV-2 to kidney ACE2 plays a role in the kidney manifestations is also briefly discussed.
Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/enzimología , Enfermedades Renales/enzimología , Riñón/enzimología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/enzimología , Receptores Virales/metabolismo , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/virología , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Diabetes Mellitus/enzimología , Diabetes Mellitus/fisiopatología , Historia del Siglo XXI , Interacciones Huésped-Patógeno , Humanos , Hipertensión/enzimología , Hipertensión/fisiopatología , Riñón/fisiopatología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/fisiopatología , Pandemias , Peptidil-Dipeptidasa A/historia , Peptidil-Dipeptidasa A/uso terapéutico , Neumonía Viral/virología , Receptores Virales/historia , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19Asunto(s)
Amidas/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Atropina/farmacología , Sistema Nervioso Central/efectos de los fármacos , Difenoxilato/farmacología , Péptidos/farmacología , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/historia , Combinación de Medicamentos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Péptidos/química , Péptidos/historia , Peptidil-Dipeptidasa A/historiaRESUMEN
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Asunto(s)
Peptidil-Dipeptidasa A/fisiología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Historia del Siglo XX , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/historia , Polimorfismo Genético , Estructura Terciaria de Proteína , Renina/fisiologíaAsunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/historia , Investigación Biomédica/historia , Captopril/historia , Apoyo a la Investigación como Asunto/historia , Animales , Investigación Biomédica/economía , Industria Farmacéutica/historia , Historia del Siglo XX , Caballos , Humanos , National Institutes of Health (U.S.)/historia , Peptidil-Dipeptidasa A/historia , Estados UnidosRESUMEN
The renin angiotensin system (RAS) is now recognized as the body's most powerful hormone system for controlling renal hemodynamics and sodium excretion and, therefore, body fluid volumes and arterial pressure. The discovery of angiotensin converting enzyme inhibitors (ACEi) was a keystone for the understanding of the significance of the RAS since ACEi proved to be effective in controlling hypertension and heart failure and in preventing the development of the vascular injury of chronic diseases like scleroderma and diabetes mellitus. The success of ACEi stimulated the research into inhibitors of other actors of the RAS like renin or angiotensin receptor antagonists. It is not often realized that the discovery of ACEi owes a great deal to basic research in which the venom of a Brazilian viper, Bothrops Jararaca, was instrumental for the discovery of bradykinin by Rocha e Silva and the bradykinin potentiating factor. This article reviews the contribution of the converting enzyme inhibitors for the demonstration of the relevance of the RAS to several human pathologies.