Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Drug Discov Ther ; 18(3): 194-198, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38925960

RESUMEN

Staphylococcus aureus, a Gram-positive bacterium, causes inflammatory skin diseases, such as atopic dermatitis, and serious systemic diseases, such as sepsis. In the skin and nasal environment, peptidoglycan (PGN)-degrading enzymes, including lysozyme and lysostaphin, affects S. aureus PGN. However, the effects of PGN-degrading enzymes on the acute innate immune-inducing activity of S. aureus have not yet been investigated. In this study, we demonstrated that PGN-degrading enzymes induce acute silkworm hemolymph melanization by S. aureus. Insoluble fractions of S. aureus treated with lysozyme, lysostaphin, or both enzymes, were prepared. Melanization of the silkworm hemolymph caused by the injection of these insoluble fractions was higher than that of S. aureus without enzyme treatment. These results suggest that structural changes in S. aureus PGN caused by PGN-degrading enzymes affect the acute innate immune response in silkworms.


Asunto(s)
Bombyx , Hemolinfa , Inmunidad Innata , Muramidasa , Peptidoglicano , Staphylococcus aureus , Animales , Staphylococcus aureus/efectos de los fármacos , Hemolinfa/metabolismo , Peptidoglicano/farmacología , Muramidasa/metabolismo , Inmunidad Innata/efectos de los fármacos , Melaninas/metabolismo
2.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888759

RESUMEN

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Inflamasomas , Animales , Cíclidos/inmunología , Cíclidos/genética , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Línea Celular , Peptidoglicano/farmacología , Hígado/virología , Hígado/inmunología , Lipopolisacáridos/farmacología , Inmunidad Innata , Proteínas de Peces/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Ligandos , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología
3.
Pestic Biochem Physiol ; 202: 105935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879327

RESUMEN

Imidacloprid (IMI) is a contaminant widespread in surface water, causing serious intestinal damage in the common carp. Melatonin (MT), an endogenous indoleamine hormone, plays a crucial role in mitigating pesticide-induced toxicity. Our previous research has demonstrated that MT effectively reduces the production of intestinal microbial-derived signal peptidoglycan (PGN) induced by IMI, thereby alleviating intestinal tight junction injuries in the common carp. In this study, we performed a transcriptomic analysis to explore the effect of MT on the IMI exposure-induced gut damage of the common carp. The results elucidated that the ferroptosis, mitogen-activated protein kinases (MAPKs), and nucleotide oligomerization domain (NOD)-like signaling pathways were significantly associated with IMI exposure and MT treatment. Meanwhile, the exposure to IMI resulted in the formation of pyroptotic bodies and distinct morphological features of ferroptosis, both mitigated with the addition of MT. Immunofluorescence double staining demonstrated that MT abolished the elevated expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin D (GSDMD) induced by IMI, as well as reduced expression of ferritin heavy chains (FTH) and glutathione peroxidase 4 (GPX4) in gut tissues. Subsequently, we found that the exposure to IMI or PGN enhanced the expression of toll-like receptors (TLR) 2 (a direct recognition receptor of PGN) triggering the P38MAPK signaling pathway, thereby aggravating the process of pyroptosis and ferroptosis of cell models. The addition of MT or SB203580 (a P38MAPK inhibitor) significantly reduced pyroptotic cells, and also decreased iron accumulation. Consequently, these results indicate that MT alleviates IMI-induced pyroptosis and ferroptosis in the gut of the common carp through the PGN/TLR2/P38MAPK pathway.


Asunto(s)
Carpas , Ferroptosis , Melatonina , Neonicotinoides , Nitrocompuestos , Peptidoglicano , Piroptosis , Animales , Carpas/metabolismo , Ferroptosis/efectos de los fármacos , Melatonina/farmacología , Piroptosis/efectos de los fármacos , Neonicotinoides/farmacología , Neonicotinoides/toxicidad , Peptidoglicano/farmacología , Nitrocompuestos/toxicidad , Nitrocompuestos/farmacología , Insecticidas/toxicidad , Intestinos/efectos de los fármacos
4.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729251

RESUMEN

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Asunto(s)
Alimentación Animal , Bacillus , Dieta , Disbiosis , Enteritis , Enfermedades de los Peces , Microbioma Gastrointestinal , Glycine max , Lipopolisacáridos , Peptidoglicano , Ácidos Teicoicos , Animales , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Disbiosis/veterinaria , Disbiosis/inmunología , Bacillus/fisiología , Bacillus/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria , Glycine max/química , Lipopolisacáridos/farmacología , Ácidos Teicoicos/farmacología , Peptidoglicano/farmacología , Peptidoglicano/administración & dosificación , Lubina/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Suplementos Dietéticos/análisis , Distribución Aleatoria
5.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615702

RESUMEN

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Asunto(s)
Secuencia de Aminoácidos , Crassostrea , Filogenia , Factores de Transcripción STAT , Alineación de Secuencia , Animales , Crassostrea/genética , Crassostrea/inmunología , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Alineación de Secuencia/veterinaria , Lipopolisacáridos/farmacología , Inmunidad Innata/genética , Peptidoglicano/farmacología , Poli I-C/farmacología , Secuencia de Bases , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Complementario/genética , Clonación Molecular , Transducción de Señal
6.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679344

RESUMEN

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata , Octopodiformes , Receptores Toll-Like , Vibrio parahaemolyticus , Animales , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiología , Octopodiformes/genética , Octopodiformes/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Filogenia , Perfilación de la Expresión Génica/veterinaria , Poli I-C/farmacología , Peptidoglicano/farmacología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología
7.
Immunohorizons ; 8(3): 269-280, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517345

RESUMEN

Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic leukocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. In this study, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24 h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the proefferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVß5, CD36, and TIM-3, whereas TIM-1, αVß3, CD300b, CD300f, STABILIN-1, and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant, suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.


Asunto(s)
Carbunco , Bacillus anthracis , Humanos , Tirosina Quinasa c-Mer/metabolismo , Peptidoglicano/farmacología , Peptidoglicano/metabolismo , Carbunco/metabolismo , Carbunco/patología , Eferocitosis , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Macrófagos/metabolismo , Pared Celular/metabolismo , Pared Celular/patología
8.
Fish Shellfish Immunol ; 147: 109451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360193

RESUMEN

Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.


Asunto(s)
Proteínas Portadoras , Ácidos Teicoicos , Pez Cebra , Animales , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Antibacterianos , Fibrinógeno , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Bacterias/metabolismo , Proteínas de Pez Cebra/genética
9.
Int J Biol Macromol ; 254(Pt 3): 127784, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949278

RESUMEN

Penicillin-binding proteins (PBPs) include transpeptidases, carboxypeptidases, and endopeptidases for biosynthesis of peptidoglycans in the cell wall to maintain bacterial morphology and survival in the environment. Streptococcus pneumoniae expresses six PBPs, but their enzymatic kinetic characteristics and inhibitory effects on different ß-lactam antibiotics remain poorly understood. In this study, all the six recombinant PBPs of S. pneumoniae displayed transpeptidase activity with different substrate affinities (Km = 1.56-9.11 mM) in a concentration-dependent manner, and rPBP3 showed a greater catalytic efficiency (Kcat = 2.38 s-1) than the other rPBPs (Kcat = 3.20-7.49 × 10-2 s-1). However, only rPBP3 was identified as a carboxypeptidase (Km = 8.57 mM and Kcat = 2.57 s-1). None of the rPBPs exhibited endopeptidase activity. Penicillin and cefotaxime inhibited the transpeptidase and carboxypeptidase activity of all the rPBPs but imipenem did not inhibited the enzymatic activities of rPBP3. Except for the lack of binding of imipenem to rPBP3, penicillin, cefotaxime, and imipenem bound to all the other rPBPs (KD = 3.71-9.35 × 10-4 M). Sublethal concentrations of penicillin, cefotaxime, and imipenem induced a decrease of pneumococcal pbps-mRNA levels (p < 0.05). These results indicated that all six PBPs of S. pneumoniae are transpeptidases, while only PBP3 is a carboxypeptidase. Imipenem has no inhibitory effect on pneumococcal PBP3. The pneumococcal genes for encoding endopeptidases remain to be determined.


Asunto(s)
Peptidil Transferasas , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Proteínas de Unión a las Penicilinas/farmacología , Peptidil Transferasas/genética , Peptidil Transferasas/farmacología , Streptococcus pneumoniae/metabolismo , Antibacterianos/farmacología , Peptidoglicano/farmacología , Proteínas Bacterianas/metabolismo , Penicilinas/metabolismo , Penicilinas/farmacología , Imipenem/farmacología , Cefotaxima , Monobactamas/farmacología , Carboxipeptidasas , Antibióticos Betalactámicos , Endopeptidasas/farmacología
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069229

RESUMEN

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Asunto(s)
Hemostáticos , Lacticaseibacillus rhamnosus , Animales , Ratones , Interleucina-10 , Peptidoglicano/farmacología , Citocinas/metabolismo , Receptor PAR-1 , Receptor Toll-Like 3 , Pulmón/metabolismo , Inflamación , Mediadores de Inflamación
11.
Eur J Pharm Sci ; 191: 106602, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806408

RESUMEN

Staphylococcus aureus is an important pathogenic bacterium responsible for various organ infections. The serious side effects and the development of antibiotic resistance have rendered the antibiotic therapy against S. aureus increasingly challenging, emphasizing the pressing need for the exploration of novel therapeutic agents. Our research has uncovered the promising antimicrobial properties of 8-octyl berberine (OBBR), a novel compound derived from berberine (BBR), against S. aureus. OBBR exhibited a minimum inhibitory concentration (MIC) of 1.0 µg/mL, which closely approximated that of levofloxacin. Intriguingly, a multipassage resistance assay demonstrated that the MIC of OBBR against S. aureus remained relatively stable, while levofloxacin exhibited a 4-fold increase over 20 days, suggesting that OBBR was less prone to inducing resistance. Mechanistically, our investigation, employing Zeta potential measurements, flow cytometry, scanning electron microscopy, and transmission electron microscopy, unveiled that OBBR induced morphological alterations in the bacteria. Furthermore, it disrupted the bacterial cell wall and membrane by altering membrane potential and compromising membrane integrity. These actions culminated in bacterial disintegration and apoptosis. Transcriptomic analysis shed light on significant downregulation of gene ontology terms, predominantly associated with membranes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis implicated OBBR in disturbing peptidoglycan biosynthesis, with the membrane protein MraY emerging as a potential target for OBBR's action against S. aureus. Notably, experiments involving the overexpression of MraY confirmed OBBR's inhibitory effect on peptidoglycan synthesis. Furthermore, molecular docking and cellular thermal shift assay revealed OBBR's direct interaction with MraY, potentially leading to the inhibition of the enzymatic activity of MraY and, consequently, impeding peptidoglycan synthesis. In summary, OBBR, by targeting MraY and inhibiting peptidoglycan synthesis, emerges as a promising alternative antibiotic against S. aureus, offering potential advantages in terms of limited drug resistance development.


Asunto(s)
Berberina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Berberina/farmacología , Peptidoglicano/metabolismo , Peptidoglicano/farmacología , Simulación del Acoplamiento Molecular , Levofloxacino , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
12.
Environ Res ; 227: 115754, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36966998

RESUMEN

Microbiologically influenced corrosion (MIC) caused by biofilm is a serious problem in many industries. D-amino acids could be a potential strategy to enhance traditional corrosion inhibitors due to their roles in biofilm reduction. However, the synergistic mechanism of D-amino acids and inhibitors remains unknown. In this study, D-Phenylalanine (D-Phe) and 1-hydroxyethane-1,1-diphosphonic acid (HEDP) were selected as the typical D-amino acid and corrosion inhibitor to evaluate their effect on the corrosion caused by Desulfovibrio vulgaris. The combination of HEDP and D-Phe obviously slowed down the corrosion process by 32.25%, decreased the corrosion pit depth and retarded cathodic reaction. SEM and CLSM analysis indicated that D-Phe reduced the content of extracellular protein and thus inhibited the biofilm formation. The molecular mechanism of D-Phe and HEDP on corrosion inhibition was further explored via transcriptome. The combination of HEDP and D-Phe down-regulated the gene expression of peptidoglycan, flagellum, electron transfer, ferredoxin and quorum sensing (QS) molecules, leading to less peptidoglycan synthesis, weaker electron transfer and stronger QS factor inhibition. This work provides a new strategy for improving traditional corrosion inhibitors, retarding MIC and mitigating subsequent water eutrophication.


Asunto(s)
Ácido Etidrónico , Fenilalanina , Ácido Etidrónico/farmacología , Fenilalanina/farmacología , Corrosión , Peptidoglicano/farmacología , Biopelículas , Aminoácidos/farmacología , Acero/química , Acero/farmacología
13.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203215

RESUMEN

Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1ß, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.


Asunto(s)
Endopeptidasas , Limosilactobacillus reuteri , Periodontitis , Humanos , Receptor Toll-Like 4 , Lipopolisacáridos/toxicidad , Peptidoglicano/farmacología , Porphyromonas gingivalis , Fosfatidilinositol 3-Quinasas , Inflamación , Mediadores de Inflamación
14.
J Neurosci ; 42(41): 7809-7823, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36414007

RESUMEN

Probing the external world is essential for eukaryotes to distinguish beneficial from pathogenic micro-organisms. If it is clear that the main part of this task falls to the immune cells, recent work shows that neurons can also detect microbes, although the molecules and mechanisms involved are less characterized. In Drosophila, detection of bacteria-derived peptidoglycan by pattern recognition receptors of the peptidoglycan recognition protein (PGRP) family expressed in immune cells triggers nuclear factor-κB (NF-κB)/immune deficiency (IMD)-dependent signaling. We show here that one PGRP protein, called PGRP-LB, is expressed in bitter gustatory neurons of proboscises. In vivo calcium imaging in female flies reveals that the PGRP/IMD pathway is cell-autonomously required in these neurons to transduce the peptidoglycan signal. We finally show that NF-κB/IMD pathway activation in bitter-sensing gustatory neurons influences fly behavior. This demonstrates that a major immune response elicitor and signaling module are required in the peripheral nervous system to sense the presence of bacteria in the environment.SIGNIFICANCE STATEMENT In addition to the classical immune response, eukaryotes rely on neuronally controlled mechanisms to detect microbes and engage in adapted behaviors. However, the mechanisms of microbe detection by the nervous system are poorly understood. Using genetic analysis and calcium imaging, we demonstrate here that bacteria-derived peptidoglycan can activate bitter gustatory neurons. We further show that this response is mediated by the PGRP-LC membrane receptor and downstream components of a noncanonical NF-κB signaling cascade. Activation of this signaling cascade triggers behavior changes. These data demonstrate that bitter-sensing neurons and immune cells share a common detection and signaling module to either trigger the production of antibacterial effectors or to modulate the behavior of flies that are in contact with bacteria. Because peptidoglycan detection doesn't mobilize the known gustatory receptors, it also demonstrates that taste perception is much more complex than anticipated.


Asunto(s)
Drosophila , Peptidoglicano , Animales , Femenino , Drosophila/genética , Peptidoglicano/farmacología , Peptidoglicano/metabolismo , FN-kappa B , Calcio , Bacterias/metabolismo , Neuronas/metabolismo
15.
Front Immunol ; 13: 971883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275759

RESUMEN

The Apextrin C-terminal (ApeC) domain is a new protein domain largely specific to aquatic invertebrates. In amphioxus, a short-form ApeC-containing protein (ACP) family is capable of binding peptidoglycan (PGN) and agglutinating bacteria via its ApeC domain. However, the functions of ApeC in other phyla remain unknown. Here we examined 130 ACPs from gastropods and bivalves, the first and second biggest mollusk classes. They were classified into nine groups based on their phylogenetics and architectures, including three groups of short-form ACPs, one group of apextrins and two groups of ACPs of complex architectures. No groups have orthologs in other phyla and only four groups have members in both gastropods and bivalves, suggesting that mollusk ACPs are highly diversified. We selected one bivalve ACP (CgACP1; from the oyster Crossostrea gigas) and one gastropod ACP (BgACP1; from the snail Biomphalaria glabrata) for functional experiments. Both are highly-expressed, secreted short-form ACPs and hence comparable to the amphioxus ACPs previously reported. We found that recombinant CgACP1 and BgACP1 bound with yeasts and several bacteria with different affinities. They also agglutinated these microbes, but showed no inhibiting or killing effects. Further analyses show that both ACPs had high affinities to the Lys-type PGN from S. aureus but weak or no affinities to the DAP-type PGN from Bacillus subtilis. Both recombinant ACPs displayed weak or no affinities to other microbial cell wall components, including lipopolysaccharide (LPS), lipoteichoic acid (LTA), zymosan A, chitin, chitosan and cellulose, as well as to several PGN moieties, including muramyl dipeptide (MDP), N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). Besides, CgACP1 had the highest expression in the gill and could be greatly up-regulated quickly after bacterial challenge. This is reminiscent of the amphioxus ACP1/2 which serve as essential mucus lectins in the gill. Taken together, the current findings from mollusk and amphioxus ACPs suggest several basic common traits for the ApeC domains, including the high affinity to Lys-type PGN, the bacterial binding and agglutinating capacity, and the role as mucus proteins to protect the mucosal surface.


Asunto(s)
Quitosano , Anfioxos , Animales , Peptidoglicano/farmacología , Lipopolisacáridos , Acetilmuramil-Alanil-Isoglutamina/farmacología , Staphylococcus aureus/metabolismo , Acetilglucosamina/química , Zimosan , Anfioxos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo , Lectinas , Moluscos , Celulosa
16.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233224

RESUMEN

Mesangial cells (MC) maintain the architecture and cellular communication and indirectly join in the glomerular filtration rate for the correct functioning of the glomerulus. Consequently, these cells are activated constantly in response to changes in the intraglomerular environment due to a metabolic imbalance or infection. IL-36, a member of the IL-1 family, is a cytokine that initiates and maintains inflammation in different tissues in acute and chronic pathologies, including the skin, lungs, and intestines. In the kidney, IL-36 has been described in the development of tubulointerstitial lesions, the production of an inflammatory environment, and is associated with metabolic and mesangioproliferative disorders. The participation of IL-36 in functional dysregulation and the consequent generation of the inflammatory environment by MCs in the presence of microbial stimulation is not yet elucidated. In this work, the MES SV40 cell cultures were stimulated with classical pathogen-associated molecular patterns (PAMPs), mimicking an infection by negative and positive bacteria as well as a viral infection. Lipopolysaccharide (LPS), peptidoglycan (PGN) microbial wall components, and a viral mimic poly I:C were used, and the mRNA and protein expression of the IL-36 members were assessed. We observed a differential and dose-dependent IL-36 mRNA and protein expression under LPS, PGN, and poly I:C stimulation. IL-36ß was only found when the cells were treated with LPS, while IL-36α and IL-36γ were favored by PGN and poly I:C stimulation. We suggest that the microbial components participate in the activation of MCs, leading them to the production of IL-36, in which a specific member may participate in the origin and maintenance of inflammation in the glomerular environment that is associated with infections.


Asunto(s)
Citocinas , Lipopolisacáridos , Citocinas/metabolismo , Humanos , Inflamación , Interleucina-1/genética , Interleucina-1/metabolismo , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Peptidoglicano/farmacología , Poli I-C , ARN Mensajero/genética
17.
Fish Shellfish Immunol ; 131: 612-623, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272520

RESUMEN

Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.


Asunto(s)
Mytilus , Animales , Proteínas Portadoras , Peptidoglicano/farmacología , Peptidoglicano/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Inmunidad Innata/genética
18.
Fish Shellfish Immunol ; 131: 559-569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36241004

RESUMEN

Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.


Asunto(s)
Lipopolisacáridos , Perciformes , Animales , Estructura Molecular , Inmunidad Innata/genética , Proteínas Portadoras , Peptidoglicano/farmacología , Peptidoglicano/metabolismo , Mamíferos/metabolismo
19.
PLoS One ; 17(9): e0271420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36155485

RESUMEN

Cutibacterium acnes is a pathogenic bacterium that cause inflammatory diseases of the skin and intervertebral discs. The immune activation induced by C. acnes requires multiple cellular responses in the host. Silkworm, an invertebrate, generates melanin by phenoloxidase upon recognizing bacterial or fungal components. Therefore, the melanization reaction can be used as an indicator of innate immune activation. A silkworm infection model was developed for evaluating the virulence of C. acnes, but a system for evaluating the induction of innate immunity by C. acnes using melanization as an indicator has not yet been established. Here we demonstrated that C. acnes rapidly causes melanization of the silkworm hemolymph. On the other hand, Staphylococcus aureus, a gram-positive bacterium identical to C. acnes, does not cause immediate melanization. Even injection of heat-killed C. acnes cells caused melanization of the silkworm hemolymph. DNase, RNase, and protease treatment of the heat-treated C. acnes cells did not decrease the silkworm hemolymph melanization. Treatment with peptidoglycan-degrading enzymes, such as lysostaphin and lysozyme, however, decreased the induction of melanization by the heat-treated C. acnes cells. These findings suggest that silkworm hemolymph melanization may be a useful indicator to evaluate innate immune activation by C. acnes and that C. acnes peptidoglycans are involved in the induction of innate immunity in silkworms.


Asunto(s)
Bombyx , Animales , Desoxirribonucleasas , Hemolinfa/microbiología , Humanos , Lisostafina , Melaninas , Monofenol Monooxigenasa , Muramidasa , Peptidoglicano/farmacología , Propionibacterium acnes , Ribonucleasas
20.
Int J Biol Macromol ; 220: 493-509, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981681

RESUMEN

In mammals, six interleukin-17 (IL-17) genes, as potent pro-inflammatory cytokines, all accelerate the inflammatory responses. In teleosts, seven IL-17 genes have been found in various species, but little is known about the function of teleost-specific IL-17N. In this study, teleost IL-17N and IL-17A/F2 genes all had six conserved cysteine residues forming three intrachain disulfide bridges, the length of three exons of teleost IL-17N gene was similar to that of teleost IL-17A/F2 gene, and the neighbor-joining (NJ) phylogenetic tree showed that teleost IL-17N was clustered with vertebrate IL-17A/F, implying that teleost IL-17N gene may be a paralog of teleost IL-17A/F gene. Pelteobagrus fulvidraco (Pf) IL-17N gene was highly expressed in the blood, brain and kidney of healthy yellow catfish. Pf_IL-17N transcript and protein were notably up-regulated in the spleen, head kidney, gill and kidney detected after Edwardsiella ictaluri infection. Lipopolysaccharides (LPS), polyinosinic-polycytidylic acid (Poly I:C) and peptidoglycan (PGN) also remarkably induced the expression of Pf_IL-17N in the isolated peripheral blood leucocytes (PBLs) of yellow catfish. These results reveal that Pf_IL-17N may play important roles in preventing the invasion of pathogens. Furthermore, the recombinant (r) Pf_IL-17N protein could significantly induce the mRNA expressions of inflammatory cytokines, chemokines and antimicrobial peptide genes in yellow catfish in vivo and in vitro, and it also notably promoted the phagocytosis of myeloid cells in the PBLs and the chemotaxis of the PBLs and gill leucocytes (GLs) in yellow catfish. Besides, though the rPf_IL-17N protein could induce and aggravate inflammation infiltration in the kidney of yellow catfish, it did not effectively and notably increase the survival rate of yellow catfish after E. ictaluri infection. Furthermore, the rPf_IL-17N protein could induce the mRNA expressions of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways related genes, and the inhibitor of NF-κB and MAPK signal pathways could restrain the rPf_IL-17N protein-induced inflammatory response. This study provides crucial evidence that the Pf_IL-17N may mediate inflammatory response to eliminate invasive pathogens.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Bagres/metabolismo , Cisteína/genética , Disulfuros , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/prevención & control , Proteínas de Peces/química , Interleucina-17/genética , Interleucinas/genética , Lipopolisacáridos/farmacología , Mamíferos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , FN-kappa B/genética , Peptidoglicano/farmacología , Filogenia , Poli I-C/farmacología , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...