Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.631
Filtrar
1.
Photochem Photobiol Sci ; 23(7): 1361-1372, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865066

RESUMEN

Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.


Asunto(s)
Antracenos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Antracenos/farmacología , Transducción de Señal/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Ensayos de Selección de Medicamentos Antitumorales
2.
J Med Chem ; 67(13): 11069-11085, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913981

RESUMEN

Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Esferoides Celulares , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Esferoides Celulares/efectos de los fármacos , Liberación de Fármacos , Luz , Clorambucilo/química , Clorambucilo/farmacología , Clorambucilo/uso terapéutico , Nanopartículas/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Fotones , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Luz Roja
3.
BMC Genomics ; 25(1): 555, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831295

RESUMEN

BACKGROUND: The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS: The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS: The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.


Asunto(s)
Antraquinonas , Endófitos , Hypericum , Familia de Multigenes , Policétidos , Hypericum/microbiología , Hypericum/genética , Hypericum/metabolismo , Policétidos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Antraquinonas/metabolismo , Hongos/genética , Genoma Fúngico , Simulación por Computador , Sintasas Poliquetidas/genética , Perileno/análogos & derivados , Perileno/metabolismo , Antracenos/metabolismo , Genómica , Filogenia
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928142

RESUMEN

In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.


Asunto(s)
Alcoholes , Alcoholes/química , Perileno/química , Perileno/análogos & derivados , Compuestos Orgánicos Volátiles/química , Halógenos/química , Nanopartículas de Magnetita/química , Teoría Cuántica
5.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700737

RESUMEN

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Asunto(s)
Ascomicetos , Señalización del Calcio , Perileno , Perileno/análogos & derivados , Quinonas , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Quinonas/metabolismo , Perileno/metabolismo , Óxido Nítrico/metabolismo , Respuesta al Choque Térmico , Calcio/metabolismo , Calor
6.
Free Radic Biol Med ; 221: 98-110, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38754743

RESUMEN

Photodynamic therapy is a noninvasive treatment in which specific photosensitizers and light are used to produce high amounts of reactive oxygen species (ROS), which can be employed for targeted tissue destruction in cancer treatment or antimicrobial therapy. However, it remains unknown whether lower amounts of ROS produced by mild photodynamic therapy increase lifespan and stress resistance at the organism level. Here, we introduce a novel photodynamic treatment (PDTr) that uses 20 µM hypericin, a photosensitizer that originates from Hypericum perforatum, and orange light (590 nm, 5.4 W/m2, 1 min) to induce intracellular ROS formation (ROS), thereby resulting in lifespan extension and improved stress resistance in C. elegans. The PDTr-induced increase in longevity was abrogated by N-acetyl cysteine, suggesting the hormetic response was driven by prooxidative mechanisms. PDTr activated the translocation of SKN-1/NRF-2 and DAF-16/FOXO, leading to elevated expression of downstream oxidative stress-responsive genes, including ctl-1, gst-4, and sod-3. In summary, our findings suggest a novel PDTr method that extends the lifespan of C. elegans under both normal and oxidative stress conditions through the activation of SKN-1 and DAF-16 via the involvement of many antioxidant genes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Factores de Transcripción , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Estrés Oxidativo/efectos de los fármacos , Longevidad/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perileno/análogos & derivados , Perileno/farmacología , Antracenos/farmacología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Luz , Acetilcisteína/farmacología
7.
Biosens Bioelectron ; 259: 116424, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38801792

RESUMEN

Phototherapy has garnered significant attention in the past decade. Photothermal and photodynamic synergistic therapy combined with NIR fluorescence imaging has been one of the most attractive treatment options because of the deep tissue penetration, high selectivity and excellent therapeutic effect. Benefiting from the superb photometrics and ease of modification, perylene diimide (PDI) and its derivatives have been employed as sensing probes and therapeutic agents in the biological and biomedical research fields, and exhibiting excellent potential. Herein, we reported the development of a novel organic small-molecule phototherapeutic agent, PDI-TN. The absorption of PDI-TN extends into the NIR region, which provides feasibility for NIR phototherapy. PDI-TN overcomes the traditional Aggregation-Caused Quenching (ACQ) effect and exhibits typical characteristics of Aggregation-Induced Emission (AIE). Subsequently, PDI-TN NPs were obtained by using an amphiphilic triblock copolymer F127 to encapsulate PDI-TN. Interestingly, the PDI-TN NPs not only exhibit satisfactory photothermal effects, but also can generate O2•- and 1O2 through type I and type II pathways, respectively. Additionally, the PDI-TN NPs emit strong fluorescence in the NIR-II region, and show outstanding therapeutic potential for in vivo NIR-II fluorescence imaging. To our knowledge, PDI-TN is the first PDI derivative used for NIR-II fluorescence imaging-guided photodynamic and photothermal synergistic therapy, which suggests excellent potential for future biological/biomedical applications.


Asunto(s)
Imidas , Imagen Óptica , Perileno , Fotoquimioterapia , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Imidas/química , Imidas/uso terapéutico , Fotoquimioterapia/métodos , Humanos , Imagen Óptica/métodos , Animales , Ratones , Colorantes Fluorescentes/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Terapia Fototérmica , Rayos Infrarrojos , Línea Celular Tumoral
8.
Biomater Adv ; 161: 213891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781738

RESUMEN

An antitumour chemo-photodynamic therapy nanoplatform was constructed based on phospholipid-coated NaYF4: Yb/Er upconversion nanoparticles (UCNPs). In this work, the amphiphilic block copolymer DSPE-PEG2000 was combined with the surface ligand oleic acid of the UCNPs through hydrophobic interaction to form liposomes with a dense hydrophobic layer in which the photosensitizer hypocrellin B (HB) was assembled. The coated HB formed J-aggregates, which caused a large redshift in the absorption spectrum and improved the quantum efficiency of energy transfer. Furthermore, MnO2 nanosheets grew in-situ on the liposomes through OMn coordination. Therefore, a multifunctional tumour microenvironment (TME)-responsive theranostic nanoplatform integrating photodynamic therapy (PDT) and chemodynamic therapy (CDT) was successfully developed. The results showed that this NIR-mediated chemo-photodynamic therapy nanoplatform was highly efficient for oncotherapy.


Asunto(s)
Compuestos de Manganeso , Nanopartículas , Óxidos , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Quinonas , Fotoquimioterapia/métodos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Perileno/administración & dosificación , Humanos , Quinonas/química , Quinonas/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Óxidos/química , Óxidos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/administración & dosificación , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Animales , Fenol/química , Fenol/farmacología , Liposomas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Ratones , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos
9.
Anal Chim Acta ; 1302: 342494, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580414

RESUMEN

BACKGROUND: Thrombin, a coagulation system protease, is a key enzyme involved in the coagulation cascade and has been developed as a marker for coagulation disorders. However, the methods developed in recent years have the disadvantages of complex operation, long reaction time, low specificity and sensitivity. Meanwhile, thrombin is at a lower level in the pre-disease period. Therefore, to accurately diagnose the disease, it is necessary to develop a fast, simple, highly sensitive and specific method using signal amplification technology. RESULTS: We designed an electrochemical biosensor based on photocatalytic atom transfer radical polymerization (photo-ATRP) signal amplification for the detection of thrombin. Sulfhydryl substrate peptides (without carboxyl groups) are self-assembled to the gold electrode surface via Au-S bond and serve as thrombin recognition probes. The substrate peptide is cleaved in the presence of thrombin to generate -COOH, which can form a carboxylate-Zr(IV)-carboxylate complex via Zr(IV) and initiator (α-bromophenylacetic acid, BPAA). Subsequently, an electrochemical biosensor was prepared by introducing polymer chains with electrochemical signaling molecules (ferrocene, Fc) onto the electrode surface by photocatalytic (perylene, Py) mediated ATRP using ferrocenylmethyl methacrylate (FMMA) as a monomer. The concentration of thrombin was evaluated by the voltammetric signal generated by square wave voltammetry (SWV), and the result showed that the biosensor was linear between 1.0 ng/mL âˆ¼ 10 fg/mL, with a lower detection limit of 4.0 fg/mL (∼0.1 fM). Moreover, it was shown to be highly selective for thrombin activity in complex serum samples and for thrombin inhibition screening. SIGNIFICANCE: The biosensor is an environmentally friendly and economically efficient strategy while maintaining the advantages of high sensitivity, anti-interference, good stability and simplicity of operation, which has great potential for application in the analysis of complex samples.


Asunto(s)
Técnicas Biosensibles , Perileno , ADN/química , Trombina , Polimerizacion , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Péptidos , Límite de Detección
10.
Mikrochim Acta ; 191(4): 228, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558104

RESUMEN

A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 µg mL-1, boasting an exceptionally low limit of detection of 0.002 µg mL-1 and a limit of quantification of 0.10 µg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.


Asunto(s)
Carbono , Polímeros de Fluorocarbono , Perileno , Toluidinas , Carbono/química , Perileno/química , Electrodos
11.
Zhongguo Zhong Yao Za Zhi ; 49(4): 981-988, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621905

RESUMEN

The quantitative analysis of multicomponents by single-marker(QAMS) was established for 13 chemical components of Epimedii Folium, including neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ, so as to investigate the feasibility and accuracy of this method in evaluating the quality of Epimedii Folium materials from different origins and different varieties. Through the scientific and accurate investigation of the experimental method, the external standard method was used to determine the content of 13 chemical components in epimedium brevieornu. At the same time, icariin was used as the internal standard, and the relative correction factors of icariin with neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ were established, respectively. The contens of neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuosideⅠ in Epimedii Folium were calculated by QAMS. Finally, the difference between the measured value and the calculated value was compared to verify the accuracy and scientific nature of QAMS in the determination. The relative correction factor of each component had better repeatability, and there was no significant difference between the results of the external standard method and those of QAMS. With icariin as the internal standard, QAMS simultaneously determining neoglycolic acid, chlorogenic acid, cryo-chlorogenic acid, magnolidine, hypericin, epimedin A, epimedin B, epimedin C, icariin, baohuoside Ⅱ, sagittatoside A, icariin subside Ⅰ, and baohuoside Ⅰ can be used for quantitative analysis of Epimedii Folium.


Asunto(s)
Antracenos , Medicamentos Herbarios Chinos , Epimedium , Perileno/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Ácido Clorogénico , Flavonoides/análisis , Medicamentos Herbarios Chinos/química , Epimedium/química
12.
Photochem Photobiol Sci ; 23(6): 1067-1075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625651

RESUMEN

Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antracenos , Neoplasias Colorrectales , Febuxostat , Proteínas de Neoplasias , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Antracenos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perileno/análogos & derivados , Perileno/farmacología , Febuxostat/farmacología , Febuxostat/uso terapéutico , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Células HT29 , Antineoplásicos/farmacología , Antineoplásicos/química
13.
J Cardiovasc Pharmacol ; 83(6): 588-601, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547517

RESUMEN

ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.


Asunto(s)
Antracenos , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones Endogámicos C57BL , Miocitos Cardíacos , Perileno , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Insuficiencia Renal Crónica , Transducción de Señal , Animales , Perileno/análogos & derivados , Perileno/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Ratas , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Línea Celular , Antracenos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Fosfolipasa C gamma/metabolismo , Factores de Transcripción NFATC/metabolismo , Ratones
14.
Biosens Bioelectron ; 252: 116151, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402725

RESUMEN

Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with K2S2O8. Furthermore, the narrow band gap of EG-PDI facilitates its excitation at an ultra-low potential (-0.3 V). To improve the efficiency of tumor marker analysis, multifunctional Au nanostars (ANS) was introduced both as an energy acceptor of the ECL system and a probe for the photothermal system. Dual-mode immunoassay have demonstrated superior analytical performance in detecting alpha-fetoprotein (AFP), meeting the requirements of modern clinical diagnostics in resource-limited environments.


Asunto(s)
Técnicas Biosensibles , Imidas , Perileno/análogos & derivados , Inmunoensayo , Glicoles de Etileno
15.
Analyst ; 149(6): 1746-1752, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38349197

RESUMEN

In this work, the supersensitive and selective determination of lincomycin (Lin) was achieved using a novel electroluminescent (ECL) aptasensor based on the synergistic integration of gold functionalized upconversion nanoparticles (UCNPs) and thiolated 3,4,9,10-perylene tetracarboxylic acid (PTCA). The integration of two luminophores of UCNPs and PTCA combined the merits of the cathodoluminescence stability of UCNPs and the high quantum yield of PTCA, which significantly promoted the ECL signal and analytical performance of the proposed sensor. The introduction of gold nanoparticles in UCNPs can not only improve the conductivity and ECL performance of UCNPs but also cause them to easily integrate with thiolated PTCA (t-PTCA) via an Au-S bond. The ECL signal of UCNPs@Au/t-PTCA/GCE was almost twice as strong as that of t-PTCA/GCE and tenfold higher than that of UCNPs@Au/GCE. Because of the non-conductive protein of the Lin aptamer, the ECL intensity of apt/UCNPs@Au/t-PTCA/GCE noticeably decreased. In the presence of Lin, the aptamer was pulled down from the sensing interface, resulting in the recovery of the ECL intensity of the sensor. Under optimal conditions, our proposed sensor can quantify the concentration of Lin in the range from 1.0 × 10-15 to 1.0 × 10-7 M with a low detection limit of 2.4 × 10-16 M (S/N = 3), exhibiting high sensitivity and specificity for the determination of Lin.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Perileno/análogos & derivados , Nanopartículas del Metal/química , Oro/química , Aptámeros de Nucleótidos/química , Lincomicina , Técnicas Biosensibles/métodos , Límite de Detección , Mediciones Luminiscentes , Técnicas Electroquímicas/métodos
16.
Int J Pharm ; 653: 123876, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38331331

RESUMEN

Rheumatoid arthritis (RA) is a joint-destructive autoimmune disease that severely affects joint function. Despite the variability of treatment protocols, all of them are associated with severe side effects that compromise patient compliance. The main aim of the current study is to prepare localized effective RA treatment with reduced side effects by combining nanoencapsulation, photodynamic therapy (PDT) and hollow microneedles (Ho-MNs) to maximize the pharmacological effects of hypericin (HYP). To attain this, HYP-loaded emulsomes (EMLs) were prepared, characterized and administered through intradermal injection using AdminPen™ Ho-MNs combined with PDT in rats with an adjuvant-induced RA model. The prepared EMLs had a spherical shape and particle size was about 93.46 nm with an absolute entrapment efficiency. Moreover, confocal imaging indicated the interesting capability of Ho-MNs to deposit the HYP EMLs to a depth reaching 1560 µm into the subcutaneous tissue. In vivo, study results demonstrated that the group treated with HYP EMLs through Ho-MNs combined with PDT had no significant differences in joint diameter, TNF-α, IL1, HO-1, NRF2 and SD levels compared with the negative control group. Similarly, rats treated with the combination of HYP EMLs, Ho-MNs and PDT showed superior joint healing efficacy compared with the groups treated with HYP EMLs in dark, HYP ointment or HYP in microneedles in histopathological examination. These findings highlight the promising potential of photoactivated HYP EMLs when combined with Ho-MNs technology for RA management. The presented therapeutic EMLs-MNs platform could serve as a powerful game-changer in the development of future localized RA treatments.


Asunto(s)
Artritis Reumatoide , Perileno/análogos & derivados , Fotoquimioterapia , Humanos , Ratas , Animales , Fotoquimioterapia/métodos , Antracenos , Artritis Reumatoide/tratamiento farmacológico , Fármacos Fotosensibilizantes
17.
Toxicol Lett ; 393: 1-13, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219807

RESUMEN

St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.


Asunto(s)
Antracenos , Carcinoma Hepatocelular , Enfermedad Hepática Inducida por Sustancias y Drogas , Hypericum , Neoplasias Hepáticas , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Terpenos , Humanos , Extractos Vegetales/toxicidad , Extractos Vegetales/uso terapéutico , Hypericum/toxicidad , Citalopram/toxicidad , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Adenosina Trifosfato
18.
Angew Chem Int Ed Engl ; 63(11): e202318799, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38230819

RESUMEN

Activation of stimulator of interferon genes (STING) by cyclic dinucleotides (CDNs) has been considered as a powerful immunotherapy strategy. While promising, the clinical translation of CDNs is still overwhelmed by its limited biostability and the resulting systemic immunotoxicity. Being differentiating from current application of exogenous CDNs to address these challenges, we herein developed one perylene STING agonist PDIC-NS, which not only promotes the production of endogenous CDNs but also inhibits its hydrolysis. More significantly, PDIC-NS can well reach lung-selective enrichment, and thus mitigates the systemic immunotoxicity upon intravenous administration. As a result, PDIC-NS had realized remarkable in vivo antitumor activity, and backward verified on STING knock out mice. Overall, this study states that PDIC-NS can function as three-in-one small-molecule STING agonist characterized by promoting the content and biostability of endogenous CDNs as well as possessing good tissue specificity, and hence presents an innovative strategy and platform for tumor chemo-immunotherapy.


Asunto(s)
Neoplasias , Perileno , Animales , Ratones , Nucleótidos Cíclicos , Inmunoterapia/métodos , Proteínas de la Membrana/genética , Neoplasias/tratamiento farmacológico
19.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258338

RESUMEN

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Asunto(s)
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biología Sintética , Perileno/farmacología , Perileno/metabolismo
20.
J Phys Chem B ; 128(2): 576-584, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38189153

RESUMEN

Despite the increased interest of visible-light-absorbing compound Hypericin (Hyp) in photodiagnosis, photocatalysis, and photodynamic therapy (PDT) applications, a major obstacle still exists; i.e., the photoactivity is diminished due to the facile aggregation of Hyp in aqueous environment that induces excited-state quenching. Herein, we explore the excited-state property of Hyp bound to the DNA G-quadruplex by combining multiple steady-state and time-resolved spectroscopy. We find that the aggregation-induced quenching effect can be successfully prevented by appropriate G-quadruplex binders that disperse Hyp into monomer. The binding of Hyp/G-quadruplex is selective, however, exhibiting a preferential binding toward parallel G-quadruplexes (c-kit2, C14B1, STAT3, S50, and PS2.M), over antiparallel or hybrid G-quadruplex (Tel22, TBA). The excited-state property of Hyp is highly related to the binding behavior, showing a consistent trend that the better the Hyp/G-quadruplex binding, the longer the triplet 3Hyp* lifetime and the higher the efficiency to produce 1O2. For Hyp/c-kit2, the major binding mode is 5'-end stacking, which offers protection from collisional quenching reactions and ensures a stable photocycle of 3Hyp*-O2 energy transfer forming 1O2, leading to the highest 1O2 quantum yield (0.67) with superior photostability. These findings open possibilities of developing Hyp/G-quadruplex complex as a biocompatible photosensitizer for PDT applications, etc.


Asunto(s)
G-Cuádruplex , Perileno , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Perileno/química , Antracenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...