RESUMEN
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar Idiopática , Imidas , Pulmón , Nanocompuestos , Perileno , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Imidas/química , Imidas/farmacología , Animales , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Humanos , Bleomicina , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
L-Cysteine (Cys)-activatable photosensitizer 3 was designed and synthesized based on hypocrellin B (1). Cys is a novel tumor-associated biomarker. 3 exhibited negligible photosensitizing ability without Cys. However, when 1 was released from 3 by reaction with Cys, the photosensitizing activity was restored. Furthermore, 3 showed selective and effective photo-cytotoxicity against only cancer cells such as HeLa and A549 cells that highly express Cys when irradiated with 660 nm light, which is inside the phototherapeutic window.
Asunto(s)
Antineoplásicos , Cisteína , Perileno , Fármacos Fotosensibilizantes , Quinonas , Humanos , Quinonas/química , Quinonas/farmacología , Quinonas/síntesis química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Perileno/química , Perileno/análogos & derivados , Perileno/farmacología , Perileno/síntesis química , Cisteína/química , Células HeLa , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Células A549 , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Supervivencia Celular/efectos de los fármacos , FotoquimioterapiaRESUMEN
The lipopolyplex, a multicomponent nonviral gene carrier, generally demonstrates superior colloidal stability, reduced cytotoxicity, and high transfection efficiency. In this study, a new concept, photochemical reaction-induced transfection, using photosensitizer (PS)-loaded lipopolyplexes was applied, which led to enhanced transfection and cytotoxic effects by photoexcitation of the photosensitizer. Hypericin, a hydrophobic photosensitizer, was encapsulated in the lipid bilayer of liposomes. The preformed nanosized hypericin liposomes enclosed the linear polyethylenimine (lPEI)/pDNA polyplexes, resulting in the formation of hypericin lipopolyplexes (Hy-LPP). The diameters of Hy-LPP containing 50 nM hypericin and 0.25 µg of pDNA were 185.6 ± 7.74 nm and 230.2 ± 4.60 nm, respectively, measured by dynamic light scattering (DLS) and atomic force microscopy (AFM). Gel electrophoresis confirmed the encapsulation of hypericin and pDNA in lipopolyplexes. Furthermore, in vitro irradiation of intracellular Hy-LPP at radiant exposures of 200, 600, and 1000 mJ/cm2 was evaluated. It demonstrated 60- to 75-fold higher in vitro luciferase expression than that in nonirradiated cells. The lactate dehydrogenase (LDH) assay supported that reduced transfection was a consequence of photocytotoxicity. The developed photosensitizer-loaded lipopolyplexes improved the transfection efficiency of an exogenous gene or induced photocytotoxicity; however, the frontier lies in the applied photochemical dose. The light-triggered photoexcitation of intracellular hypericin resulted in the generation of reactive oxygen species (ROS), leading to photoselective transfection in HepG2 cells. It was concluded that the two codelivered therapeutics resulted in enhanced transfection and a photodynamic effect by tuning the applied photochemical dose.
Asunto(s)
Antracenos , Carcinoma Hepatocelular , Liposomas , Neoplasias Hepáticas , Perileno , Fármacos Fotosensibilizantes , Transfección , Perileno/química , Perileno/análogos & derivados , Perileno/farmacología , Antracenos/química , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Transfección/métodos , Liposomas/química , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/patología , Células Hep G2 , ADN/química , Polietileneimina/química , Polietileneimina/farmacología , Plásmidos/química , Supervivencia Celular/efectos de los fármacosRESUMEN
SARS-CoV-2 is a highly pathogenic virus responsible for the COVID-19 disease. It belongs to the Coronaviridae family, characterized by a phospholipid envelope, which is crucial for viral entry and replication in host cells. Hypericin, a lipophilic, naturally occurring photosensitizer, was reported to effectively inactivate enveloped viruses, including SARS-CoV-2, upon light irradiation. In addition to its photodynamic activity, Hyp was found to exert an antiviral action also in the dark. This study explores the mechanical properties of heat-inactivated SARS-CoV-2 viral particles using Atomic Force Microscopy (AFM). Results reveal a flexible structure under external stress, potentially contributing to the virus pathogenicity. Although the fixation protocol causes damage to some particles, correlation with fluorescence demonstrates colocalization of partially degraded virions with their genome. The impact of hypericin on the mechanical properties of the virus was assessed and found particularly relevant in dark conditions. These preliminary results suggest that hypericin can affect the mechanical properties of the viral envelope, an effect that warrants further investigation in the context of antiviral therapies.
Asunto(s)
Antracenos , Microscopía de Fuerza Atómica , Perileno , Fármacos Fotosensibilizantes , SARS-CoV-2 , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Antracenos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Virión/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19/virología , Chlorocebus aethiops , Células Vero , Tratamiento Farmacológico de COVID-19 , AnimalesRESUMEN
Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.
Asunto(s)
Antineoplásicos , Proliferación Celular , Curcumina , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroínas , Nanofibras , Tamaño de la Partícula , Perileno , Fenol , Poliésteres , Quinonas , Curcumina/química , Curcumina/farmacología , Nanofibras/química , Fibroínas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Poliésteres/química , Quinonas/química , Quinonas/farmacología , Proliferación Celular/efectos de los fármacos , Fenol/química , Perileno/química , Perileno/análogos & derivados , Perileno/farmacología , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Preparaciones de Acción Retardada/química , Supervivencia Celular/efectos de los fármacos , Línea Celular TumoralRESUMEN
To solve the problems existing in the clinical application of hypericin (Hyp) and tirapazamine (TPZ), a nano-drug delivery system with synergistic anti-tumor functions was constructed using mesoporous silica nanoparticles (MSN) and sodium alginate (SA). The system exhibited excellent stability, physiological compatibility and targeted drug release performance in tumor tissues. In the in vitro and in vivo experiments, Hyp released from MSN killed tumor cells through photodynamic therapy (PDT). The degree of hypoxia in the tumor tissue site was exacerbated, enabling TPZ to fully exert its anti-tumor activity. Our studies suggested that the synergistic effects between the components of the nano-drug delivery system significantly improve the anti-tumor properties of Hyp and TPZ.
Asunto(s)
Alginatos , Antracenos , Nanopartículas , Perileno , Dióxido de Silicio , Tirapazamina , Microambiente Tumoral , Dióxido de Silicio/química , Microambiente Tumoral/efectos de los fármacos , Alginatos/química , Animales , Humanos , Tirapazamina/química , Tirapazamina/farmacología , Nanopartículas/química , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Ratones , Antracenos/química , Línea Celular Tumoral , Fotoquimioterapia , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Porosidad , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Sinergismo Farmacológico , Sistema de Administración de Fármacos con Nanopartículas/químicaRESUMEN
A wide range of perylenequinones (PQs) with diverse structures and versatile bioactivities have long been isolated, positioning them as highly promising agents for photodynamic therapy (PDT). However, the lack of an efficient and cost-effective method to obtain these compounds and to introduce structural diversity and complexity currently hinders their further research and application. In this concept, we present a comprehensive overview of the advancements in the biosynthetic pathways of natural PQs based on their structural classification, and also summarize recent progress in the biosynthesis of natural PQs and derivatives. These pioneering efforts may pave the way for structure modification and large-scale bioproduction of natural and unnatural PQs through synthetic biology strategies to promote their drug development.
Asunto(s)
Desarrollo de Medicamentos , Perileno , Perileno/análogos & derivados , Perileno/química , Perileno/metabolismo , Perileno/farmacología , Humanos , Estructura Molecular , Quinonas/química , Quinonas/farmacología , Quinonas/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacologíaRESUMEN
Breast adenocarcinoma ranks high among the foremost lethal cancers affecting women globally, with its triple-negative subtype posing the greatest challenge due to its aggressiveness and resistance to treatment. To enhance survivorship and patients' quality of life, exploring advanced therapeutic approaches beyond conventional chemotherapies is imperative. To address this, innovative nanoscale drug delivery systems have been developed, offering precise, localized, and stimuli-triggered release of anticancer agents. Here, we present perylenemonoimide nanoparticle-based vehicles engineered for deep-red light activation, enabling direct chlorambucil release. Synthesized via the reprecipitation technique, these nanoparticles were thoroughly characterized. Light-induced drug release was monitored via spectroscopic and reverse-phase HPLC. The efficacy of the said drug delivery system was evaluated in both two-dimensional and three-dimensional spheroidal cancer models, demonstrating significant tumor regression attributed to apoptotic cell death induced by efficient drug release within cells and spheroids. This approach holds promise for advancing targeted breast cancer therapy, enhancing treatment efficacy and minimizing adverse effects.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Esferoides Celulares , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Esferoides Celulares/efectos de los fármacos , Liberación de Fármacos , Luz , Clorambucilo/química , Clorambucilo/farmacología , Clorambucilo/uso terapéutico , Nanopartículas/química , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Fotones , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Luz RojaRESUMEN
Colorectal cancer (CRC) is significantly contributed to global cancer mortality rates. Treating CRC is particularly challenging due to metastasis and drug resistance. There is a pressing need for new treatment strategies against metastatic CRC. Photodynamic therapy (PDT) offers a well-established, minimally invasive treatment option for cancer with limited side effects. Hypericin (HYP), a potent photosensitizer for PDT, has been documented to induce cytotoxicity and apoptosis in various types of cancers. However, there are few reports on the inhibitory effects of HYP-mediated PDT on the metastatic ability of CRC cells. Here, we evaluate the inhibitory effects of HYP-mediated PDT against metastatic CRC cells and define its underlying mechanisms. Wound-healing and Transwell assays show that HYP-mediated PDT suppresses migration and invasion of CRC cells. F-actin visualization assays indicate HYP-mediated PDT decreases F-actin formation in CRC cells. TEM assays reveal HYP-mediated PDT disrupts pseudopodia formation of CRC cells. Mechanistically, immunofluorescence and western blotting results show that HYP-mediated PDT upregulates E-cadherin and downregulates N-cadherin and Vimentin. HYP-mediated PDT also suppresses key EMT regulators, including Snail, MMP9, ZEB1 and α-SMA. Additionally, the expressions of RhoA and ROCK1 are downregulated by HYP-mediated PDT. Together, these findings suggest that HYP-mediated PDT inhibits the migration and invasion of HCT116 and SW620 cells by modulating EMT and RhoA-ROCK1 signaling pathway. Thus, HYP-mediated PDT presents a potential therapeutic option for CRC.
Asunto(s)
Antracenos , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Humanos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Antracenos/farmacología , Transducción de Señal/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia , Ensayos de Selección de Medicamentos AntitumoralesRESUMEN
BACKGROUND: Conventional topical psoriasis treatments suffer from limited delivery to affected areas and skin irritation due to high local drug concentration. PURPOSE: This study aims to prepare hypericin (HYP) loaded nanostructured lipid carriers (NLCs) and their application in psoriasis treatment through intradermal administration using hollow microneedles assisted by photodynamic therapy. METHODS: The colloidal characteristics of NLCs, entrapment efficiency and morphology were evaluated. An ex-vivo skin distribution study was conducted along with testing the in vivo antipsoriatic activity in mice with the imiquimod-induced psoriasis model. RESULTS: The particle size and zeta potential of HYP-NLCs were 167.70 nm and -18.1, respectively. The ex-vivo skin distribution study demonstrated the superior distribution of HYP-NLCs to a depth of 1480 µm within the skin layers relative to only 750 µm for free HYP. In vivo studies revealed that the levels of NF-KB, IL 6, MMP1, GSH, and catalase in the group treated with HYP-NLCs in the presence of light were comparable to the negative control. CONCLUSIONS: The histopathological inspection of dissected skin samples reflected the superiority of HYP-NLCs over HYP ointment. This could be ascribed to the effect of nanoencapsulation on improving HYP properties besides the ability of hollow microneedles to ensure effective HYP delivery to the affected psoriatic area.
Asunto(s)
Antracenos , Imiquimod , Agujas , Perileno , Fotoquimioterapia , Psoriasis , Psoriasis/tratamiento farmacológico , Psoriasis/inducido químicamente , Animales , Imiquimod/administración & dosificación , Perileno/análogos & derivados , Perileno/administración & dosificación , Perileno/farmacología , Fotoquimioterapia/métodos , Ratones , Administración Cutánea , Sistemas de Liberación de Medicamentos , Lípidos/química , Portadores de Fármacos/química , Fármacos Fotosensibilizantes/administración & dosificación , Tamaño de la Partícula , Piel/metabolismo , Piel/patología , Masculino , Ratones Endogámicos BALB C , Nanoestructuras , Modelos Animales de EnfermedadRESUMEN
Phototherapy has garnered significant attention in the past decade. Photothermal and photodynamic synergistic therapy combined with NIR fluorescence imaging has been one of the most attractive treatment options because of the deep tissue penetration, high selectivity and excellent therapeutic effect. Benefiting from the superb photometrics and ease of modification, perylene diimide (PDI) and its derivatives have been employed as sensing probes and therapeutic agents in the biological and biomedical research fields, and exhibiting excellent potential. Herein, we reported the development of a novel organic small-molecule phototherapeutic agent, PDI-TN. The absorption of PDI-TN extends into the NIR region, which provides feasibility for NIR phototherapy. PDI-TN overcomes the traditional Aggregation-Caused Quenching (ACQ) effect and exhibits typical characteristics of Aggregation-Induced Emission (AIE). Subsequently, PDI-TN NPs were obtained by using an amphiphilic triblock copolymer F127 to encapsulate PDI-TN. Interestingly, the PDI-TN NPs not only exhibit satisfactory photothermal effects, but also can generate O2â¢- and 1O2 through type I and type II pathways, respectively. Additionally, the PDI-TN NPs emit strong fluorescence in the NIR-II region, and show outstanding therapeutic potential for in vivo NIR-II fluorescence imaging. To our knowledge, PDI-TN is the first PDI derivative used for NIR-II fluorescence imaging-guided photodynamic and photothermal synergistic therapy, which suggests excellent potential for future biological/biomedical applications.
Asunto(s)
Imidas , Imagen Óptica , Perileno , Fotoquimioterapia , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Perileno/uso terapéutico , Imidas/química , Imidas/uso terapéutico , Fotoquimioterapia/métodos , Humanos , Imagen Óptica/métodos , Animales , Ratones , Colorantes Fluorescentes/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Terapia Fototérmica , Rayos Infrarrojos , Línea Celular TumoralRESUMEN
An antitumour chemo-photodynamic therapy nanoplatform was constructed based on phospholipid-coated NaYF4: Yb/Er upconversion nanoparticles (UCNPs). In this work, the amphiphilic block copolymer DSPE-PEG2000 was combined with the surface ligand oleic acid of the UCNPs through hydrophobic interaction to form liposomes with a dense hydrophobic layer in which the photosensitizer hypocrellin B (HB) was assembled. The coated HB formed J-aggregates, which caused a large redshift in the absorption spectrum and improved the quantum efficiency of energy transfer. Furthermore, MnO2 nanosheets grew in-situ on the liposomes through OMn coordination. Therefore, a multifunctional tumour microenvironment (TME)-responsive theranostic nanoplatform integrating photodynamic therapy (PDT) and chemodynamic therapy (CDT) was successfully developed. The results showed that this NIR-mediated chemo-photodynamic therapy nanoplatform was highly efficient for oncotherapy.
Asunto(s)
Compuestos de Manganeso , Nanopartículas , Óxidos , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Quinonas , Fotoquimioterapia/métodos , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Perileno/administración & dosificación , Humanos , Quinonas/química , Quinonas/farmacología , Nanopartículas/química , Nanopartículas/uso terapéutico , Óxidos/química , Óxidos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/administración & dosificación , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Animales , Fenol/química , Fenol/farmacología , Liposomas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Ratones , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacosRESUMEN
Photodynamic therapy is a noninvasive treatment in which specific photosensitizers and light are used to produce high amounts of reactive oxygen species (ROS), which can be employed for targeted tissue destruction in cancer treatment or antimicrobial therapy. However, it remains unknown whether lower amounts of ROS produced by mild photodynamic therapy increase lifespan and stress resistance at the organism level. Here, we introduce a novel photodynamic treatment (PDTr) that uses 20 µM hypericin, a photosensitizer that originates from Hypericum perforatum, and orange light (590 nm, 5.4 W/m2, 1 min) to induce intracellular ROS formation (ROS), thereby resulting in lifespan extension and improved stress resistance in C. elegans. The PDTr-induced increase in longevity was abrogated by N-acetyl cysteine, suggesting the hormetic response was driven by prooxidative mechanisms. PDTr activated the translocation of SKN-1/NRF-2 and DAF-16/FOXO, leading to elevated expression of downstream oxidative stress-responsive genes, including ctl-1, gst-4, and sod-3. In summary, our findings suggest a novel PDTr method that extends the lifespan of C. elegans under both normal and oxidative stress conditions through the activation of SKN-1 and DAF-16 via the involvement of many antioxidant genes.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidad , Estrés Oxidativo , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Factores de Transcripción , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Estrés Oxidativo/efectos de los fármacos , Longevidad/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perileno/análogos & derivados , Perileno/farmacología , Antracenos/farmacología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Luz , Acetilcisteína/farmacologíaRESUMEN
In this study, a novel drug delivery system (MSN-PEG-Hypericin) was successfully fabricated using tetraethyl orthosilicate and 3-aminopropyltriethoxysilane as raw materials, and the PEGylation of the prepared aminated mesoporous silica and grafting of hypericin onto the carrier were further conducted to obtain MSN-PEG-Hypericin. The successful preparation of MSN-PEG-Hypericin was characterized by several physical-chemical techniques. Furthermore, the MSN-PEG-Hypericin system increased the ability of hypericin to generate reactive oxygen species (ROS) in vitro. The cytotoxicity assay and hemolysis analysis showed that MSN-PEG-Hypericin had good biocompatibility. For antibacterial studies, the irradiation time and incubation time of photodynamic therapy (PDT) for S. aureus and E. coli were respectively 8 min and 8 h, and the concentrations of hypericin were 2.5 and 5 µg/mL. The result of triphenyl tetrazolium chloride assay indicated that MSN-PEG-Hypericin had stronger photodynamic antibacterial activity than free hypericin, and S. aureus was more sensitive to PDT than E. coli, which was related to their cell structural differences. The antibacterial mechanism study indicated that the generated ROS could destroy the bacterial structures and cause bacterial death due to the leakage of the contents. The MSN-PEG-Hypericin system prepared in this study had potential application prospects in the antibacterial field.
Asunto(s)
Antracenos , Antibacterianos , Disulfuros , Portadores de Fármacos , Escherichia coli , Perileno , Fotoquimioterapia , Polietilenglicoles , Especies Reactivas de Oxígeno , Dióxido de Silicio , Staphylococcus aureus , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Antracenos/química , Polietilenglicoles/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Dióxido de Silicio/química , Staphylococcus aureus/efectos de los fármacos , Porosidad , Especies Reactivas de Oxígeno/metabolismo , Portadores de Fármacos/química , Disulfuros/química , Hemólisis/efectos de los fármacos , Humanos , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/químicaRESUMEN
Photodynamic Therapy (PDT) is an emerging method to treat colorectal cancers (CRC). Hypericin (HYP) is an effective mediator of PDT and the ABCG2 inhibitor, Febuxostat (FBX) could augment PDT. HT29 and HEK293 cells showed light dependant cytotoxic response to PDT in both 2D and 3D cell models. FBX co-treatment was not found to improve PDT cytotoxicity. Next, ABCG2 protein expression was observed in HT29 but not in HEK293 cells. However, ABCG2 gene expression analysis did not support protein expression results as ABCG2 gene expression results were found to be higher in HEK293 cells. Although HYP treatment was found to significantly reduce ABCG2 gene expression levels in both cell lines, FBX treatment partially restored ABCG2 gene expression. Our findings indicate that FBX co-treatment may not be suitable for augmenting HYP-mediated PDT in CRC but could potentially be useful for other applications.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antracenos , Neoplasias Colorrectales , Febuxostat , Proteínas de Neoplasias , Perileno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Antracenos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perileno/análogos & derivados , Perileno/farmacología , Febuxostat/farmacología , Febuxostat/uso terapéutico , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Células HT29 , Antineoplásicos/farmacología , Antineoplásicos/químicaRESUMEN
ABSTRACT: Chronic kidney disease (CKD) is a significant global health threat that imposes a substantial burden on both individuals and societies. CKD frequently correlates with cardiovascular events, particularly left ventricular hypertrophy (LVH), which contributes to the high mortality rate associated with CKD. Fibroblast growth factor 23 (FGF23), a hormone primarily involved in regulating calcium and phosphorus metabolism, has been identified as a major risk factor for LVH in CKD patients. Elevated serum FGF23 levels are known to induce LVH and myocardial fibrosis by activating the fibroblast growth factor receptor 4 (FGFR4) signal pathway. Therefore, targeting FGFR4 and its downstream signaling pathways holds potential as a treatment strategy for cardiac dysfunction in CKD. In our current study, we have discovered that Hypericin, a key component derived from Hypericum perforatum , has the ability to alleviate CKD-related LVH by targeting the FGFR4/phospholipase C gamma 1 (PLCγ1) signaling pathway. Through in vitro experiments using rat cardiac myocyte H9c2 cells, we observed that Hypericin effectively inhibits FGF23-induced hypertrophy and fibrosis by suppressing the FGFR4/PLCγ1/calcineurin/nuclear factor of activated T-cell (NFAT3) signaling pathway. In addition, our in vivo studies using mice on a high-phosphate diet and rat models of 5/6 nephrectomy demonstrated that Hypericin has therapeutic effects against CKD-induced LVH by modulating the FGFR4/PLCγ1/calcineurin/NFAT3 signaling pathway. In conclusion, our research highlights the potential of Hypericin as a candidate for the treatment of CKD-induced cardiomyopathy. By suppressing the FGFR4/PLCγ1 signaling pathway, Hypericin shows promise in attenuating LVH and myocardial fibrosis associated with CKD.
Asunto(s)
Antracenos , Modelos Animales de Enfermedad , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones Endogámicos C57BL , Miocitos Cardíacos , Perileno , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Insuficiencia Renal Crónica , Transducción de Señal , Animales , Perileno/análogos & derivados , Perileno/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Ratas , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Línea Celular , Antracenos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Fosfolipasa C gamma/metabolismo , Factores de Transcripción NFATC/metabolismo , RatonesRESUMEN
Depression is a significant global health concern that remains inadequately treated due to the limited effectiveness of conventional drug therapies. One potential therapeutic agent, hypericin (HYP), is identified as an effective natural antidepressant. However, its poor water solubility, low bioavailability, and limited ability to penetrate the brain parenchyma have hindered its clinical application. To address these shortcomings and enhance the therapeutic efficacy of HYP, it is loaded onto black phosphorus nanosheets (BP) modified with the neural cell-targeting peptide RVG29 to synthesize a nanoplatform named BP-RVG29@HYP (BRH). This platform served as a nanocarrier for HYP and integrated the advantages of BP with advanced delivery methods and precise targeting strategies. Under the influence of 808 nm near-infrared irradiation (NIR), BRH effectively traversed an in vitro BBB model. In vivo experiments validated these findings, demonstrating that treatment with BRH significantly alleviated depressive-like behaviors and oxidative stress in mice. Importantly, BRH exhibited an excellent safety profile, causing minimal adverse effects, which highlighted its potential as a promising therapeutic agent. In brief, this novel nanocarrier holds great promise in the development of antidepressant drugs and can create new avenues for the treatment of depression.
Asunto(s)
Antracenos , Encéfalo , Depresión , Perileno , Fósforo , Perileno/análogos & derivados , Perileno/química , Perileno/farmacología , Animales , Antracenos/química , Fósforo/química , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Ratones , Sistemas de Liberación de Medicamentos , Barrera Hematoencefálica/metabolismo , Nanopartículas/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/química , Estrés Oxidativo/efectos de los fármacosRESUMEN
Targeted reprogramming of cancer-associated fibroblasts (CAFs) is one of the most essential cancer therapies. However, how to reprogram active CAFs toward deactivated state still remains immense challenge. To tackle this challenge, herein, one perylene N, N'-bis(2-((dimethylammonium)ethylene)-2-(methoxylethyl))-1, 6, 7, 12-tetrachloroperylene-3, 4, 9, 10-tetracarboxylic diimide (PDIC-OC) is prepared, which can trigger endogenous reactive oxygen species (ROS) burst to result in cytoskeletal dysfunction and cell apoptosis so that suppress transforming growth factor ß (TGF-ß) production. As a result, PDIC-OC can reprogram the activated CAFs and relieve immunosuppressive tumor microenvironment by efficient polarization of M2-typed macrophages into M1-typed ones, downregulation of alpha-smooth muscle actin (α-SMA), alleviation of hypoxic state to promote infiltration of cytotoxic T lymphocytes, and ultimately realizes outstanding antitumor performance on B16F10 tumor-xenografted and lung-metastatic mouse model even at low concentration of 1 mg kg-1 body weight. This work thus presents a novel strategy that cytoskeleton dysfunction and cell apoptosis cooperatively suppress the secretion of TGF-ß to reprogram CAFs and meanwhile clarifies intrinsic mechanism for perylene-triggered chemo-immunotherapy against hypoxic tumors.
Asunto(s)
Fibroblastos Asociados al Cáncer , Citoesqueleto , Inmunoterapia , Perileno , Animales , Perileno/análogos & derivados , Perileno/farmacología , Perileno/química , Ratones , Citoesqueleto/metabolismo , Citoesqueleto/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Inmunoterapia/métodos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BLRESUMEN
The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.
Asunto(s)
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biología Sintética , Perileno/farmacología , Perileno/metabolismoRESUMEN
The aim of this study was to explore the potential of hypericin, a naturally occurring photosensi-tizer, for photodynamic therapy (PDT) in skin cancer, investigating its phototoxic effects and mechanisms of action in cancer cells compared to normal skin keratinocytes, squamous cell cancer (SCC-25) cells and melanoma (MUG-Mel2) cells. Hypericin was applied at concentrations ranging from 0.1-40 µM to HaCaT, SCC-25, and MUG-Mel2 cells. After 24 h of incubation, the cells were exposed to orange light at 3.6 J/cm2 or 7.2 J/cm2. Phototoxicity was assessed using MTT and SRB tests. Cellular uptake was measured by flow cytometry. Apoptosis-positive cells were estimated through TUNEL for apoptotic bodies' visualization. Hypericin exhibited a higher phototoxic reaction in cancer cells compared to normal keratinocytes after irradiation. Cancer cells demonstrated increased and selective uptake of hypericin. Apoptosis was observed in SCC-25 and MUG-Mel2 cells following PDT. Our findings suggest that hypericin-based PDT is a promising and less invasive approach for treating skin cancer. The higher phototoxic reaction, selective uptake by cancer cells, and observed proapoptotic properties support the promising role of hypericin-based PDT in skin cancer treatment.