Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(8): 1873-1883, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899472

RESUMEN

BACKGROUND: Pathogenic variants in PLIN1-encoding PLIN1 (perilipin-1) are responsible for an autosomal dominant form of familial partial lipodystrophy (FPL) associated with severe insulin resistance, hepatic steatosis, and important hypertriglyceridemia. This study aims to decipher the mechanisms of hypertriglyceridemia associated with PLIN1-related FPL. METHODS: We performed an in vivo lipoprotein kinetic study in 6 affected patients compared with 13 healthy controls and 8 patients with type 2 diabetes. Glucose and lipid parameters, including plasma LPL (lipoprotein lipase) mass, were measured. LPL mRNA and protein expression were evaluated in abdominal subcutaneous adipose tissue from patients with 5 PLIN1-mutated FPL and 3 controls. RESULTS: Patients with PLIN1-mutated FPL presented with decreased fat mass, insulin resistance, and diabetes (glycated hemoglobin A1c, 6.68±0.70% versus 7.48±1.63% in patients with type 2 diabetes; mean±SD; P=0.27). Their plasma triglycerides were higher (5.96±3.08 mmol/L) than in controls (0.76±0.27 mmol/L; P<0.0001) and patients with type 2 diabetes (2.94±1.46 mmol/L, P=0.006). Compared with controls, patients with PLIN1-related FPL had a significant reduction of the indirect fractional catabolic rate of VLDL (very-low-density lipoprotein)-apoB100 toward IDL (intermediate-density lipoprotein)/LDL (low-density lipoprotein; 1.79±1.38 versus 5.34±2.45 pool/d; P=0.003) and the indirect fractional catabolic rate of IDL-apoB100 toward LDL (2.14±1.44 versus 7.51±4.07 pool/d; P=0.005). VLDL-apoB100 production was not different between patients with PLIN1-related FPL and controls. Compared with patients with type 2 diabetes, patients with PLIN1-related FPL also showed a significant reduction of the catabolism of both VLDL-apoB100 (P=0.031) and IDL-apoB100 (P=0.031). Plasma LPL mass was significantly lower in patients with PLIN1-related FPL than in controls (21.03±10.08 versus 55.76±13.10 ng/mL; P<0.0001), although the LPL protein expression in adipose tissue was similar. VLDL-apoB100 and IDL-apoB100 indirect fractional catabolic rates were negatively correlated with plasma triglycerides and positively correlated with LPL mass. CONCLUSIONS: We show that hypertriglyceridemia associated with PLIN1-related FPL results from a marked decrease in the catabolism of triglyceride-rich lipoproteins (VLDL and IDL). This could be due to a pronounced reduction in LPL availability, related to the decreased adipose tissue mass.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertrigliceridemia , Resistencia a la Insulina , Lipodistrofia Parcial Familiar , Lipoproteína Lipasa , Lipoproteínas , Perilipina-1 , Triglicéridos , Humanos , Masculino , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-1/sangre , Triglicéridos/sangre , Hipertrigliceridemia/sangre , Hipertrigliceridemia/genética , Femenino , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Lipoproteínas/sangre , Lipoproteína Lipasa/sangre , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/sangre , Lipodistrofia Parcial Familiar/metabolismo , Mutación , Glucemia/metabolismo , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/metabolismo , Biomarcadores/sangre , Fenotipo , Predisposición Genética a la Enfermedad , Lipólisis , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940054

RESUMEN

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Asunto(s)
Adiponectina , Tejido Adiposo Pardo , Dieta Alta en Grasa , Glicoproteínas , Lipólisis , Animales , Masculino , Ratones , Aciltransferasas , Adipogénesis , Adiponectina/metabolismo , Adiponectina/genética , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Glicoproteínas/metabolismo , Resistencia a la Insulina , Lipasa/metabolismo , Lipasa/genética , Ratones Endogámicos C57BL , Perilipina-1/metabolismo , Perilipina-1/genética
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159506, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734059

RESUMEN

Lipid droplets (LD) are highly dynamic organelles specialized for the regulation of energy storage and cellular homeostasis. LD consist of a neutral lipid core surrounded by a phospholipid monolayer membrane with embedded proteins, most of which are involved in lipid homeostasis. In this study, we focused on one of the major LD proteins, sterol C24-methyltransferase, encoded by ERG6. We found that the absence of Erg6p resulted in an increased accumulation of yeast perilipin Pet10p in LD, while the disruption of PET10 was accompanied by Erg6p LD over-accumulation. An observed reciprocal enrichment of Erg6p and Pet10p in pet10Δ and erg6Δ mutants in LD, respectively, was related to specific functional changes in the LD and was not due to regulation on the expression level. The involvement of Pet10p in neutral lipid homeostasis was observed in experiments that focused on the dynamics of neutral lipid mobilization as time-dependent changes in the triacylglycerols (TAG) and steryl esters (SE) content. We found that the kinetics of SE hydrolysis was reduced in erg6Δ cells and the mobilization of SE was completely lost in mutants that lacked both Erg6p and Pet10p. In addition, we observed that decreased levels of SE in erg6Δpet10Δ was linked to an overexpression of steryl ester hydrolase Yeh1p. Lipid analysis of erg6Δpet10Δ showed that PET10 deletion altered the composition of ergosterol intermediates which had accumulated in erg6Δ. In conclusion, yeast perilipin Pet10p functionally interacts with Erg6p during the metabolism of ergosterol.


Asunto(s)
Ergosterol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ergosterol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Perilipina-1/metabolismo , Perilipina-1/genética , Gotas Lipídicas/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metabolismo de los Lípidos/genética , Triglicéridos/metabolismo
4.
Nutrients ; 16(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732501

RESUMEN

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Metabolismo de los Lípidos , Hígado , Músculo Esquelético , Obesidad , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Músculo Esquelético/metabolismo , Hígado/metabolismo , Ratones , Obesidad/metabolismo , Masculino , Ratones Endogámicos C57BL , Perilipina-1/metabolismo , Gotas Lipídicas/metabolismo
5.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690912

RESUMEN

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Asunto(s)
Bombyx , Proteínas de Insectos , Quinasas Janus , Gotas Lipídicas , Nosema , Perilipina-1 , Transducción de Señal , Bombyx/microbiología , Bombyx/metabolismo , Bombyx/genética , Animales , Nosema/metabolismo , Nosema/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Gotas Lipídicas/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/genética , Perilipina-1/metabolismo , Perilipina-1/genética , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Cuerpo Adiposo/metabolismo , Larva/microbiología , Larva/metabolismo , Metabolismo de los Lípidos
6.
Cell Rep ; 43(4): 114093, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602875

RESUMEN

The storage of fat within lipid droplets (LDs) of adipocytes is critical for whole-body health. Acute fatty acid (FA) uptake by differentiating adipocytes leads to the formation of at least two LD classes marked by distinct perilipins (PLINs). How this LD heterogeneity arises is an important yet unresolved cell biological problem. Here, we show that an unconventional integral membrane segment (iMS) targets the adipocyte specific LD surface factor PLIN1 to the endoplasmic reticulum (ER) and facilitates high-affinity binding to the first LD class. The other PLINs remain largely excluded from these LDs until FA influx recruits them to a second LD population. Preventing ER targeting turns PLIN1 into a soluble, cytoplasmic LD protein, reduces its LD affinity, and switches its LD class specificity. Conversely, moving the iMS to PLIN2 leads to ER insertion and formation of a separate LD class. Our results shed light on how differences in organelle targeting and disparities in lipid affinity of LD surface factors contribute to formation of LD heterogeneity.


Asunto(s)
Adipocitos , Diferenciación Celular , Retículo Endoplásmico , Gotas Lipídicas , Gotas Lipídicas/metabolismo , Adipocitos/metabolismo , Animales , Ratones , Retículo Endoplásmico/metabolismo , Perilipinas/metabolismo , Humanos , Células 3T3-L1 , Ácidos Grasos/metabolismo , Perilipina-1/metabolismo , Perilipina-2/metabolismo
7.
Diabetes Res Clin Pract ; 209: 111605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453058

RESUMEN

BACKGROUND: The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS: We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS: PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1ß and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1ß, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION: Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/genética , Pie Diabético/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Piel/patología , Inflamación/metabolismo , Queratinocitos/metabolismo , Diabetes Mellitus/metabolismo , Perilipina-1/metabolismo
8.
Cardiovasc Res ; 120(3): 237-248, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214891

RESUMEN

The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.


Asunto(s)
Aterosclerosis , Lipodistrofia Parcial Familiar , Animales , Humanos , Ratones , Aterosclerosis/genética , Metabolismo de los Lípidos/genética , Lipodistrofia Parcial Familiar/genética , Mutación , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
9.
Nat Commun ; 15(1): 186, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167864

RESUMEN

Adipose tissue stores triacylglycerol (TAG) in lipid droplets (LD) and release fatty acids upon lipolysis during energy shortage. We identify ApoL6 as a LD-associated protein mainly found in adipose tissue, specifically in adipocytes. ApoL6 expression is low during fasting but induced upon feeding. ApoL6 knockdown results in smaller LD with lower TAG content in adipocytes, while ApoL6 overexpression causes larger LD with higher TAG content. We show that the ApoL6 affects adipocytes through inhibition of lipolysis. While ApoL6, Perilipin 1 (Plin1), and HSL can form a complex on LD, C-terminal ApoL6 directly interacts with N-terminal Plin1 to prevent Plin1 binding to HSL, to inhibit lipolysis. Thus, ApoL6 ablation decreases white adipose tissue mass, protecting mice from diet-induced obesity, while ApoL6 overexpression in adipose brings obesity and insulin resistance, making ApoL6 a potential future target against obesity and diabetes.


Asunto(s)
Gotas Lipídicas , Lipólisis , Animales , Ratones , Gotas Lipídicas/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Perilipina-1/genética , Perilipina-1/metabolismo
10.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140813

RESUMEN

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Asunto(s)
Gotas Lipídicas , Perilipinas , Humanos , Gotas Lipídicas/metabolismo , Animales , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo de los Lípidos , Lipólisis , Perilipina-1/metabolismo , Perilipina-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...