Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
1.
Analyst ; 149(15): 3961-3970, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38980709

RESUMEN

Manganese dioxide (MnO2) nanosheets possess unique physical and chemical properties, making them widely applicable in various fields, such as chemistry and biomedicine. Although MnO2 nanosheets are produced using bottom-up wet chemistry synthesis methods, their scale is below the gram level and requires a long processing time, restricting their effective scale-up from laboratory to market. We report a facile, green and scalable synthesis of MnO2 nanosheets by mixing Shiranui mandarin orange juice and KMnO4 for 30 minutes. We produced more than one gram (1.095) of MnO2 nanosheets with a 0.65 nm mean thickness and a 50 nm mean lateral size. Furthermore, we established a visual colorimetric biosensing strategy based on MnO2 nanosheets for the assay of glutathione (GSH) and cardiac troponin I (cTnI), offering high sensitivity and feasibility in clinical samples. For GSH, the limit of detection was 0.08 nM, and for cTnI, it was 0.70 pg mL-1. Meanwhile, the strategy can be used for real-time analysis by applying a smartphone-enabled biosensing strategy, which can provide point-of-care testing in remote areas.


Asunto(s)
Colorimetría , Glutatión , Tecnología Química Verde , Límite de Detección , Compuestos de Manganeso , Nanoestructuras , Óxidos , Troponina I , Óxidos/química , Compuestos de Manganeso/química , Colorimetría/métodos , Glutatión/química , Glutatión/análisis , Troponina I/análisis , Troponina I/sangre , Nanoestructuras/química , Humanos , Tecnología Química Verde/métodos , Técnicas Biosensibles/métodos , Permanganato de Potasio/química , Teléfono Inteligente , Jugos de Frutas y Vegetales/análisis
2.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844318

RESUMEN

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Asunto(s)
Compuestos de Amonio , Filtración , Manganeso , Óxidos , Manganeso/química , Óxidos/química , Compuestos de Amonio/química , Filtración/métodos , Contaminantes Químicos del Agua/química , Permanganato de Potasio/química , Compuestos de Manganeso/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Compuestos de Potasio/química , Adsorción , Compuestos Férricos/química , Compuestos de Hierro
3.
Sci Rep ; 14(1): 12754, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38830936

RESUMEN

Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world. Biodegradability is the gift that keeps on giving, in the sense of creating an Earth worth living. The future is thus best served by green energy, sustainability, and renewable resources. To realize such goals, waste should be considered as a valuable resource. In this context, Zea mays (Zm) root fibres, which are normally considered as agricultural waste, can be used as reinforcing substances in polymer matrices to produce structural composite materials. Before being used in composites, such fibres must be analysed for their physical properties. Chemical treatments can be employed to improve the structural quality of fibres, and the changes due to such modification can be analysed. Therefore, the current work examines the effect of permanganate treatment on the surface properties of Zm fibres. The raw and potassium permanganate-treated samples were assayed for various properties. Physical analysis of the fibre samples yielded details concerning the physical aspects of the fibres. The thermal conductivity and moisture absorption behaviour of the samples were analysed. Chemical analysis was employed to characterize the composition of both treated and untreated samples. p-XRD was employed to examine the crystalline nature of the Zm fibres. Numerous functional groups present in each sample were analysed by FTIR. Thermogravimetric analysis was used to determine the thermal stability of Zm fibres. Elemental analysis (CHNS and EDS) was used to determine the elemental concentrations of both raw and treated samples. The surface alterations of Zm fibres brought on by treatment were described using SEM analysis. The characteristics of Zm roots and the changes in quality due to treatment were reviewed, and there were noticeable effects due to the treatment. Both samples would have applications in various fields, and each could be used as a potential reinforcing material in the production of efficient bio-composites.


Asunto(s)
Raíces de Plantas , Permanganato de Potasio , Zea mays , Zea mays/química , Zea mays/metabolismo , Permanganato de Potasio/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Biodegradación Ambiental , Conductividad Térmica
4.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 570-577, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825902

RESUMEN

Objective: To seek the optimal melanin-removal method for hematoxylin and eosin (HE) staining, immunohistochemistry and molecular detection. Methods: Thirty-eight paraffin tissue samples of malignant melanoma diagnosed at the Fujian Cancer Hospital, Fuzhou, China between January 2018 and March 2022 were collected and used to make a tissue microarray. Melanin in these cases was removed using warm hydrogen peroxide, double oxidation depigmentation, modified potassium permanganate-oxalic acid or trichloroisocyanuric acid, followed by HE staining. The cases were divided into two cohorts: one was subject to the one of the above four methods to remove melanin first, followed by immunohistochemistry (SOX-10, Ki-67, HMB45 and Melan A), while the other was subject to immunohistochemical staining first and then a melanin removal. Following that, seventeen melanin-rich paraffin tissue samples were collected and depigmented using the methods described above. DNA extraction was then done, followed by assessments of DNA content and quality. Moreover, the completeness of melanin removal, the effect on HE and immunohistochemical staining, and the quality of DNA were compared between the depigmented methods. Results: Regarding the effectiveness of melanin removal, the modified potassium permanganate-oxalic acid and the warm hydrogen peroxide methods were the most effective, and both showed residual melanin in only 5.26% (2/38) of the cases. The trichloroisocyanuric acid method showed residual melanin in 10.53% (4/38) of the cases. The worst was the double oxidation depigmentation method, which showed pigment residue in 15.79% (6/38) of the cases. For HE staining, the percentage of good staining with the warm hydrogen peroxide method was 92.11%, higher than the other three methods. For immunohistochemical staining, the mean staining scores of immunohistochemistry first followed by melanin removal with modified potassium permanganate-oxalic acid, double oxidation and trichloroisocyanuric acid were 20.84, 26.63 and 35.02, respectively. These immunohistochemical staining scores were higher than those of melanin removal first followed by immunohistochemistry (8.70, 15.41 and 21.22, respectively). The mean staining score of melanin removal by warm hydrogen peroxide method followed by immunohistochemistry was 33.57, superior to that of immunohistochemistry followed by the melanin removal (19.96). Moreover, the staining scores of HMB45, MelanA and Ki-67 with immunohistochemical staining followed by trichloroisocyanuric acid method were 36.45, 33.79, and 36.24, respectively, while the staining score of SOX10 with melanin removal by warm hydrogen peroxide followed by immunohistochemistry was 34.39. The DNA was significantly degraded by modified potassium permanganate-oxalic acid, double oxidation depigmentation and trichloroisocyanuric acid, whereas the mean concentration of DNA extracted after melanin removal by hydrogen peroxide method was 59.59 µg/L, substantially higher than that of DNA extracted without melanin removal (30.3 µg/L, P=0.001). The A260/A280 of DNA extracted after melanin removal by hydrogen peroxide was between 1.8 and 2.0 in all cases, and the A260/A230 was above 2.0 in sixteen cases, suggesting high purity of DNA. However, the DNA extracted without removing the melanin showed poor purity, with A260/A280 below 1.8 in eight cases and A260/A230 below 2.0 in sixteen cases. Conclusions: Warm hydrogen peroxide showed the least melanin residue, superior HE staining and a minimal effect on DNA purity/quality compared to the other three methods. It thus appears most suitable for PCR, NGS and other molecular detection. Melanin removal with trichloroisocyanuric acid after immunohistochemical staining has the least melanin residual, and thus could be the most convenient and efficient. However, it is noted that the efficacy of the same depigmentation method varies with different antibodies. Therefore, the optimal depigmentation method should be selected based on the specific markers of interest.


Asunto(s)
Peróxido de Hidrógeno , Inmunohistoquímica , Melaninas , Permanganato de Potasio , Coloración y Etiquetado , Humanos , Melaninas/metabolismo , Coloración y Etiquetado/métodos , Melanoma/metabolismo , Melanoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
5.
J Chromatogr A ; 1728: 464987, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38821034

RESUMEN

In this work, we proposed an indirect phase-conversion strategy to construct a new approach for accurately and efficiently determining the permanganate index in water samples via headspace GC measurement. After the reducible substances in water reacted with excess potassium permanganate, the remaining potassium permanganate underwent a reaction with sodium oxalate under acidic conditions. The carbon dioxide generated from the gas-evolving reaction was then analyzed by headspace GC. Our findings showed that this new approach boasts high precision (relative standard deviation ≤ 2.18%) and accuracy for permanganate index analysis, thus validating the effectiveness of this new method in analyzing permanganate index. The introduction of the indirect phase-conversion strategy in this study is expected to set a precedent for further advancements in methodologies designed to indirectly evaluate substances capable of undergoing gas-producing reactions.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Óxidos/química , Contaminantes Químicos del Agua/análisis , Cromatografía de Gases/métodos , Permanganato de Potasio/química , Compuestos de Manganeso/química , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Agua/química
6.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695980

RESUMEN

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Asunto(s)
Carbón Orgánico , Cobre , Contaminantes Químicos del Agua , Zinc , Adsorción , Zinc/química , Cobre/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Permanganato de Potasio/química , Purificación del Agua/métodos , Sasa/química , Hidróxido de Sodio/química
7.
J Environ Manage ; 359: 120973, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703644

RESUMEN

Chemical oxidation processes are widely used for the remediation of organically contaminated soils, but their potential impact on variable-valence and toxic metals such as chromium (Cr) is often overlooked. In this study, we investigated the risk of Cr(Ⅲ) oxidation in soils during the remediation of 2-chlorophenol (2-CP) contaminated soils using four different processes: Potassium permanganate (KMnO4), Modified Fenton (Fe2+/H2O2), Alkali-activated persulfate (S2O82-/OH-), and Fe2+-activated persulfate (S2O82-/Fe2+). Our results indicated that the KMnO4, Fe2+/H2O2, and S2O82-/Fe2+ processes progressively oxidized Cr(III) to Cr(Ⅵ) during the 2-CP degradation. The KMnO4 process likely involved direct electron transfer, while the Fe2+/H2O2 and S2O82-/Fe2+ processes primarily relied on HO• and/or SO4•- for the Cr(III) oxidation. Notably, after 4 h of 2-CP degradation, the Cr(VI) content in the KMnO4 process surpassed China's 3.0 mg kg-1 risk screening threshold for Class I construction sites, and further exceeded the 5.7 mg kg-1 limit for Class II construction sites after 8 h. Conversely, the S2O82-/OH- process exhibited negligible oxidation of Cr(III), maintaining a low oxidation ratio of 0.13%, as highly alkaline conditions induced Cr(III) precipitation, reducing its exposure to free radicals. Cr(III) oxidation ratio was directly proportional to oxidant dosage, whereas the Fe2+/H2O2 process showed a different trend, influenced by the concentration of reductants. This study provides insights into the selection and optimization of chemical oxidation processes for soil remediation, emphasizing the imperative for thorough risk evaluation of Cr(III) oxidation before their application.


Asunto(s)
Clorofenoles , Cromo , Restauración y Remediación Ambiental , Oxidación-Reducción , Contaminantes del Suelo , Suelo , Cromo/química , Contaminantes del Suelo/química , Clorofenoles/química , Suelo/química , Peróxido de Hidrógeno/química , Permanganato de Potasio/química
8.
Acta Derm Venereol ; 104: adv18642, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415865

RESUMEN

In atopic dermatitis (AD), Staphylococcus aureus frequently colonizes lesions, leading to superinfections that can then lead to exacerbations. The presence of biofilm-producing isolates has been associated with worsening of the disease. Potassium permanganate is used as a topical treatment of infected eczema, blistering conditions, and wounds. Little is known of its effects against microbes in AD skin. The aim of this study was to explore antibacterial and antibiofilm properties of potassium permanganate against staphylococcal isolates derived from AD skin. Viable count and radial diffusion assays were used to investigate antibacterial effects of potassium permanganate against planktonic staphylococcal isolates. The antibiofilm effects were assessed using biofilm assays and scanning electron microscopy. The Staphylococcus aureus isolates were completely killed when exposed to 0.05% of potassium permanganate. In concentrations of 0.01%, potassium permanganate inhibited bacterial biofilm formation. Eradication of established staphylococcal biofilm was observed in concentrations of 1%. Electron microscopy revealed dense formations of coccoidal structures in growth control and looser formations of deformed bacteria when exposed to potassium permanganate. This suggests antibacterial and antibiofilm effects of potassium permanganate against staphylococcal isolates derived from AD skin, when tested in vitro, and a potential role in the treatment of superinfected AD skin.


Asunto(s)
Dermatitis Atópica , Eccema , Infecciones Estafilocócicas , Humanos , Dermatitis Atópica/tratamiento farmacológico , Permanganato de Potasio/farmacología , Piel , Staphylococcus aureus , Antibacterianos/farmacología
10.
Biosens Bioelectron ; 246: 115872, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039731

RESUMEN

Multicolor-based visual immunosensor is a promising tool for rapid analysis without the use of bulky instruments. Herein, an anti-fenitrothion nanobody-alkaline phosphatase fusion protein (VHHjd8-ALP) was employed to develop a multicolor visual immunosensor (MVIS) and a ratiometric fluorescence MVIS (RFMVIS, respectively). After one-step competitive immunoassay, the VHHjd8-ALP bound to microplate catalyzed phenyl phosphate disodium salt (ArP) into phenol. Under high alkaline condition (pH 12), the phenol reduced KMnO4 to intermediate (K2MnO4) and further to MnO2 in alkaline condition (pH 12), accompanied by a visible color transition of purple-green-yellow, which can be used for semiquantitative visual analysis or qualitative detection by measuring RGB value. RFMVIS was proposed on the basis of MVIS to further improve sensitivity. The CdTe quantum dot and fluorescein were used as signal probes to develop the fluorescent immunosensor. The CdTe dots with red emission (644 nm) was quenched by oxidation of KMnO4, whereas the fluorescein with green emission (520 nm) remained constant, accompanied by a fluorescent color transition of green-yellow-red. By measuring the ratio of the fluorescence intensity (I644/I520), the ratiometric fluorescence immunosensor was developed for qualitative analysis. The two visual immunosensors were sensitive and simple, and they showed good accuracy and practicability in the recovery test, thus are ideal tools for rapid screening.


Asunto(s)
Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Permanganato de Potasio , Fenitrotión , Fosfatos , Compuestos de Manganeso , Telurio , Inmunoensayo , Óxidos , Fluoresceínas , Fenoles , Colorantes Fluorescentes , Límite de Detección , Espectrometría de Fluorescencia
11.
J Fish Dis ; 47(2): e13891, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37990596

RESUMEN

Micropterus salmoides rhabdovirus (MSRV) is a significant pathogen that causes high morbidity and mortality in largemouth bass, leading to enormous economic losses for largemouth bass aquaculture in China. The aim of this study was to investigate the efficacy of four disinfectants (potassium permanganate, glutaraldehyde, trichloroisocyanuric acid and povidone iodine) on MSRV, to control the infection and transmission of MSRV in largemouth bass aquaculture. The disinfectants were tested at different concentrations (5, 25, 50, 100 and 500 mg/L) prepared with distilled water for 30 min contact time, and the viral nucleic acid was quantified using qPCR and the infectivity was tested by challenge experiment. Potassium permanganate at 5-500 mg/L, glutaraldehyde at 500 mg/L, trichloroisocyanuric acid at 50-500 mg/L and povidone iodine at 500 mg/L concentration could effectively decrease the virus nucleic acid, and the survival rate of largemouth bass juveniles after challenge experiment increased significantly from 3.7% ± 6.41% to 33.33 ± 11.11% - 100%. Moreover, the minimum effective time of 5 mg/L potassium permanganate was further studied at 2, 5, 10 and 20 min contact time. The viral nucleic acid decreased significantly at 5-20 min exposure time, and the survival rate increased significantly from 7.41% ± 6.41% to 77.78 ± 11.11% - 100%. The median lethal concentration (LC50 ) values of potassium permanganate were 10.64, 6.92 and 3.7 mg/L at 24, 48 and 96 h, respectively. Potassium permanganate could be used for the control of MSRV in the cultivation process; the recommended concentration is 5 mg/L and application time should be less than 24 h. The results could be applied to provide a method to control the infection and transmission of MSRV in water, and improve the health status of largemouth bass.


Asunto(s)
Lubina , Desinfectantes , Enfermedades de los Peces , Ácidos Nucleicos , Rhabdoviridae , Animales , Desinfectantes/farmacología , Glutaral , Permanganato de Potasio , Povidona Yodada , Enfermedades de los Peces/prevención & control , Agua
12.
Chemosphere ; 346: 140641, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939932

RESUMEN

In this study, we systematically explore coagulation behavior, ultrafiltration membrane fouling behavior and the mechanism involved in during the process of pre-oxidation of potassium permanganate and coagulation of aluminum chloride at different condition to treat model pollutants (humic acid, HA) and natural water. The KMnO4 pre-oxidation significantly enhances flocs formation, and for HA artificial water the flocs size increases from 82 to 122 µm at pH 5.5, from 63 to 185 µm at pH 7.0 and from 0 to 75 µm at pH 8.5, respectively, as for natural water it increases from 72 to 139 µm. The enhanced coagulation at pH 5.5 is attributed to the increased polymeric Al speciation after pre-oxidation along with the generated Mn2+ damaging the electric double layer structure. And for pH 8.5 it is mainly caused by the in-situ MnO2 as combination nuclei during pre-oxidation. Besides, for pH 7.0, the combined effect of in-situ MnO2 and the increased polymeric Al speciation both contribute to improvement of the coagulation. What's more, the enhanced Al coagulation by pre-oxidation of KMnO4 also helps alleviate the membrane fouling for both HA artificial water and natural water, and a much rougher surface with larger flocs forms after KMnO4-aided Al coagulation filtration. This study provides an alternative perspective on the mechanism of pre-oxidation coagulation process.


Asunto(s)
Permanganato de Potasio , Purificación del Agua , Permanganato de Potasio/química , Compuestos de Manganeso , Óxidos , Membranas Artificiales , Ultrafiltración , Agua
13.
Appl Immunohistochem Mol Morphol ; 32(1): 53-59, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855438

RESUMEN

Pathologists diagnose diseases by observing the histologic and cellular morphology microscopically. However, the high pigmentation in melanin-containing tumors can hide the tumor cell structures, making diagnosing challenging. Previously, hydrogen peroxide and potassium permanganate were utilized for melanin bleaching with several limitations. For instance, hydrogen peroxide has a weak bleaching ability, and the process is time-consuming (12 h). Meanwhile, potassium permanganate affects the antigenicity of antigens and is unsuitable for immunohistochemical (IHC) staining. In this study, the hypochlorous acid (HClO) solution was applied to hematoxylin-eosin and IHC staining of melanin tissue sections. The study discovered that 1% HClO could completely bleach melanin particles in tumor tissues in a short period (19.95 ± 2.53 min) without compromising the hematoxylin-eosin staining. In addition, 2% HClO was utilized for bleaching at room temperature for 61.17 ± 4.32 minutes after the tissue was incubated with 3,3'-diaminobenzidine in IHC staining. This treatment effectively removed melanin without negatively impacting 3,3'-diaminobenzidine signal expression, thus ensuring that the sections met the necessary diagnostic requirements. Therefore, this method could facilitate pathologists in disease diagnosis of melanin-containing tissues.


Asunto(s)
Melaninas , Melanoma , Humanos , Melaninas/metabolismo , Melanoma/diagnóstico , Hematoxilina , Eosina Amarillenta-(YS) , Ácido Hipocloroso , Permanganato de Potasio/química , Peróxido de Hidrógeno/química , 3,3'-Diaminobencidina , Coloración y Etiquetado
14.
Int J Biol Macromol ; 253(Pt 4): 127012, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734524

RESUMEN

Lignin nanoparticles (LNPs) were synthesized using an anti-solvent method and subsequently loaded with manganese dioxide (MnO2) via potassium permanganate treatment, resulting in the formation of MnO2@LNPs. An extensive investigation was conducted to elucidate the influence of MnO2@LNPs on the decolorization of methyl orange solution. The LNPs were successfully obtained by adjusting the preparation parameters, yielding particles exhibited average sizes ranging from 300 to 600 nm, and the synthesis process exhibited a high yield of up to 87.3% and excellent dispersion characteristics. Notably, LNPs size was reduced by decreasing initial concentration, increasing stirring rate, and adding water. In the acetone-water two-phase system, LNPs self-assembled into spherical particles driven by π-π interactions and hydrogen bond forces. Oxidation modification using potassium permanganate led to the formation of nanoscale MnO2, which effectively combined with LNPs. Remarkably, the resulting MnO2@LNPs demonstrated a two-fold increase in methyl orange adsorption capacity (227 mg/g) compared to unmodified LNPs. The process followed the Langmuir isotherm model and was exothermic.


Asunto(s)
Nanopartículas , Óxidos , Óxidos/química , Compuestos de Manganeso/química , Permanganato de Potasio , Lignina/química , Adsorción , Agua , Nanopartículas/química
15.
Bioresour Technol ; 386: 129482, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451511

RESUMEN

Hydrochars formed by hydrothermal carbonization of hickory wood, bamboo, and wheat straw at 200 °C were modified by potassium permanganate (KMnO4) for the sorption of Pb(II), Cd(II), and Cu(II). The wheat straw hydrochar (WSHyC) modified with 0.2 M KMnO4 resulted in the most promising adsorbent (WSHyC-0.2KMnO4). Characterization of WSHyC and WSHyC-0.2KMnO4 revealed that the modified hydrochar features large specific surface area, rich of surface oxygenic functional groups (OCFG), and a significant amount of MnOx micro-particles. Batch adsorption experiments indicated that the adsorption rate by WSHyC-0.2KMnO4 was faster than for WSHyC, attaining equilibrium after around 5 h. The optimum adsorption capacity (Langmuir) of Pb(II), Cd(II), and Cu(II) by WSHyC-0.2KMnO4 was 189.24, 29.06 and 32.68 mg/g, respectively, 12 âˆ¼ 17 times greater than by WSHyC. The significantly enhanced heavy metal adsorption can be attributable to the increased OCFG and MnOx microparticles on the surface, thereby promoting ion exchange, electrostatic interactions, and complexation mechanisms.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Cadmio , Permanganato de Potasio , Carbón Orgánico , Plomo , Adsorción , Triticum , Cinética
16.
Ultrason Sonochem ; 98: 106502, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37379744

RESUMEN

1000 kHz high-frequency ultrasound at 0.12 and 0.39 W/mL intensity was used to enhance the inactivation of suspensions of Microcystis aeruginosa cells using KMnO4. With 10 mg/L of KMnO4, ultrasound at 0.12 W/mL intensity was found to be effective in inactivating the cyanobacteria within 10 min. A Weibull model was found to describes the inactivation well. Its concave shape shows that some cells have a certain resistance to this treatment. Cytometry and microscopic analysis confirm that the treatment damages cell integrity. Despite that the extracellular organic matter in the water was not significantly increased. The concentration of extracellular cyanobacterial toxins even decreased. The filtered suspension of inactivated cyanobacteria was used to cultivate mung beans, and the suspension did not hinder their germination. This provides a new idea for using cyanobacteria-laden wastewater. These findings suggest a technique for speeding up the oxidation of Microcystis cells using KMnO4 with ultrasound at moderate intensity, which provide new insights into the biological effects of ultrasound.


Asunto(s)
Cianobacterias , Microcystis , Purificación del Agua , Permanganato de Potasio/farmacología , Oxidación-Reducción , Purificación del Agua/métodos
17.
J Hazard Mater ; 457: 131772, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37307725

RESUMEN

Cyanobacterial blooms present great challenges to drinking water treatment and human health. The novel combination of potassium permanganate (KMnO4) and ultraviolet (UV) radiation is engaged as a promising advanced oxidation process in water purification. This study investigated the treatment of a typical cyanobacteria, Microcystis aeruginosa by UV/KMnO4. Cell inactivation was significantly improved by UV/KMnO4 treatment, compared to UV alone or KMnO4 alone, and cells were completely inactivated within 35 min by UV/KMnO4 in natural water. Moreover, effective degradation of associated microcystins was simultaneously achieved at UV fluence rate of 0.88 mW cm-2 and KMnO4 dosages of 3-5 mg L-1. The significant synergistic effect is possibly attributable to the highly oxidative species produced during UV photolysis of KMnO4. In addition, the cell removal efficiency via self-settling reached 87.9 % after UV/KMnO4 treatment, without additional coagulants. The fast in situ generated manganese dioxide was responsible for the enhancement of M. aeruginosa cell removal. This study firstly reports multiple roles of UV/KMnO4 process in cyanobacterial cell inactivation and removal, as well as simultaneous microcystin degradation under practical conditions.


Asunto(s)
Cianobacterias , Microcystis , Purificación del Agua , Humanos , Microcistinas/metabolismo , Microcystis/metabolismo , Permanganato de Potasio
18.
Huan Jing Ke Xue ; 44(6): 3278-3287, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309946

RESUMEN

In this study, coconut shell biochar modified by KMnO4 (MCBC) was used as the adsorbent, and its removal performance and mechanism for Cd(Ⅱ) and Ni(Ⅱ) were discussed. When the initial pH and MCBC dosage were separately 5 and 3.0 g·L-1, respectively, the removal efficiencies of Cd(Ⅱ) and Ni(Ⅱ) were both higher than 99%. The removal of Cd(Ⅱ) and Ni(Ⅱ) was more in line with the pseudo-second-order kinetic model, indicating that their removal was dominated by chemisorption. The rate-controlling step for Cd(Ⅱ) and Ni(Ⅱ) removal was the fast removal stage, for which the rate depended on the liquid film diffusion and intraparticle diffusion (surface diffusion). Cd(Ⅱ) and Ni(Ⅱ) were mainly attached to the MCBC via surface adsorption and pore filling, in which the contribution of surface adsorption was greater. The maximum adsorption amounts of Cd(Ⅱ) and Ni(Ⅱ) by MCBC were individually 57.18 mg·g-1 and 23.29 mg·g-1, which were approximately 5.74 and 6.97 times that of the precursor (coconut shell biochar), respectively. The removal of Cd(Ⅱ) and Zn(Ⅱ) was spontaneous and endothermic and had obvious thermodynamic characteristics of chemisorption. Cd(Ⅱ) was attached to MCBC through ion exchange, co-precipitation, complexation reaction, and cation-π interaction, whereas Ni(Ⅱ) was removed by MCBC via ion exchange, co-precipitation, complexation reaction, and redox. Among them, co-precipitation and complexation were the main modes of surface adsorption of Cd(Ⅱ) and Ni(Ⅱ). Additionally, the proportion of amorphous Mn-O-Cd or Mn-O-Ni in the complex may have been higher. These research results will provide important technical support and theoretical basis for the practical application of commercial biochar in the treatment of heavy metal wastewater.


Asunto(s)
Cocos , Permanganato de Potasio , Cadmio , Adsorción
19.
Luminescence ; 38(5): 647-661, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36967642

RESUMEN

A flow injection (FI) methodology using the acidic potassium permanganate (KMnO4 )-rhodamine-B (Rh-B) reaction with chemiluminescence (CL) detection was established to determine acetochlor and cartap-HCl pesticides in freshwater samples. Experimental parameters were optimized, and Chelex-100 cationic exchanger mini column and solid-phase extraction (SPE) were used as phase separation techniques. Linear calibration curves were observed for the standard solutions of acetochlor and cartap-HCl over the ranges 0.005-2.0 mg L-1 [y = 1155.8x + 57.551, R2  = 0.9999 (n = 8)] and 0.005-1.0 mg L-1 [y = 979.76x + 14.491, R2  = 0.9998 (n = 8)] with LODs and LOQs of 7.5 × 10-4 and 8.0 × 10-4  mg L-1 (3σ blank) and 2.5 × 10-3 and 2.7 × 10-3  mg L-1 (10σ blank), respectively, with an injection throughput of 140 h-1 . These methods were used to estimate acetochlor and cartap-HCl with or without the SPE procedure, respectively, in spiked freshwater samples. Results obtained were not significantly different at a 95% confidence level to those of other reported methods. Recoveries for acetochlor and cartap-HCl were obtained over the ranges 93-112% (RSD = 1.9-3.6%) and 98-109% (RSD = 1.7-3.8%), respectively. The most probable CL reaction mechanism was explored.


Asunto(s)
Ácidos , Luminiscencia , Rodaminas , Permanganato de Potasio , Agua Dulce , Análisis de Inyección de Flujo/métodos , Mediciones Luminiscentes/métodos
20.
Chemosphere ; 321: 138094, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758814

RESUMEN

Permanganate (MnO4-), an oxidant that has been applied in water treatment, has highly varied reactivity toward pollutants. In this study, we found manganate (MnO42-) could destruct diverse functional groups, with oxidation rates being higher than that of permanganate under acidic and neutral conditions. Mechanistic study revealed manganate rapidly disproportionated to permanganate and colloidal MnO2 in solution. Under acidic conditions, the in-situ formed colloidal MnO2 possess higher reactivity than permanganate and primarily contributed to the degradation of pollutants. The reactivity of in-situ formed colloidal MnO2 is highly sensitive to pH and decreased dramatically with increasing pH. Consequently, the contribution of MnO2 to pollutant removal decreased with elevating pH, which also leads to the decreased degradation efficiency of micropollutants at high pH. Manganate is an intermediate produced during the manufacturing process of permanganate. This study indicates that manganate might be an alternative of permanganate for water purification under acidic and neutral conditions.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Óxidos , Compuestos de Manganeso , Oxidación-Reducción , Oxidantes , Permanganato de Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...