Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.165
Filtrar
1.
BMC Microbiol ; 24(1): 252, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982378

RESUMEN

The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.


Asunto(s)
Biodegradación Ambiental , Fenol , Contaminantes Químicos del Agua , Fenol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Purificación del Agua/métodos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Biopelículas/crecimiento & desarrollo , Armoracia/metabolismo , Aguas del Alcantarillado/microbiología , Bacillus cereus/metabolismo , Bacillus cereus/aislamiento & purificación , Bacillus cereus/enzimología
2.
Molecules ; 29(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38998952

RESUMEN

The sensitivity of immunoassays is generally limited by the low signal reporter/recognition element ratio. Nanomaterials serving as the carriers can enhance the loading number of signal reporters, thus improving the detection sensitivity. However, the general immobilization strategies, including direct physical adsorption and covalent coupling, may cause the random orientation and conformational change in proteins, partially or completely suppressing the enzymatic activity and the molecular recognition ability. In this work, we proposed a strategy to load recognition elements of antibodies and enzyme labels using boronic acid-modified metal-organic frameworks (MOFs) as the nanocarriers for signal amplification. The conjugation strategy was proposed based on the boronate ester interactions between the carbohydrate moieties in antibodies and enzymes and the boronic acid moieties on MOFs. Both enzymes and MOFs could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, therefore achieving dual signal amplification. To indicate the feasibility and sensitivity of the strategy, colorimetric immunoassays of prostate specific antigen (PSA) were performed with boronic acid-modified Cu-MOFs as peroxidase mimics to catalyze TMB oxidation and nanocarriers to load antibody and enzyme (horseradish peroxidase, HRP). According to the change in the absorbance intensity of the oxidized TMB (oxTMB), PSA at the concentration range of 1~250 pg/mL could be readily determined. In addition, this work presented a site-specific and oriented conjugation strategy for the modification of nanolabels with recognition elements and signal reporters, which should be valuable for the design of novel biosensors with high sensitivity and selectivity.


Asunto(s)
Ácidos Borónicos , Colorimetría , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Colorimetría/métodos , Ácidos Borónicos/química , Inmunoensayo/métodos , Humanos , Bencidinas/química , Oxidación-Reducción , Antígeno Prostático Específico/análisis , Peróxido de Hidrógeno/química , Anticuerpos/química , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
3.
Anal Chem ; 96(26): 10630-10638, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38912708

RESUMEN

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Asunto(s)
Biomarcadores , Proteína C-Reactiva , Técnicas Electroquímicas , Electrodos , Interleucina-6 , Humanos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Técnicas Electroquímicas/instrumentación , Biomarcadores/sangre , Biomarcadores/análisis , Interleucina-6/sangre , Interleucina-6/análisis , Proteína C-Reactiva/análisis , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Límite de Detección , Inflamación/sangre , Inflamación/diagnóstico , Bencidinas
4.
J Mater Chem B ; 12(26): 6342-6350, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38856318

RESUMEN

The enzyme-linked immunosorbent assay (ELISA) remains the prevailing method for quantifying protein biomarkers. Enzymatic signal generation and amplification are key mechanisms that govern its analytical performance. This study reports the synthesis and application of microscale metal-organic framework (MOF)/enzyme composite particles as a novel detection probe to substantially enhance the sensitivity of ELISA. An optimal one-pot approach was established to incorporate a substantial amount of streptavidin-horseradish peroxidase (SA-HRP) either within or on the surface of the metal-azolate framework (MAF-7) microparticles. This approach enables the labeling of a single sandwich antibody-antigen complex with numerous enzymes, which markedly amplifies the enzymatic colorimetric signal generation. Moreover, MAF-7 caging was found to enhance the reactivity of the caged HRP enzyme, further promoting the overall detection sensitivity of ELISA. Compared to other developments that are often associated with more complicated detection modalities, our method is compatible with standard immunoassays and commonly used photometrical signal detection. The implementation of this strategy in the detection of CD147 results in a remarkably low limit of detection of 2.8 fg mL-1, representing a 105-fold improvement compared to that obtained with the standard ELISA. Moreover, the heightened sensitivity of this technique renders it particularly suitable for diagnosing breast cancer, thus presenting a promising tool for the early detection of the disease in clinical settings.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Vesículas Extracelulares , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Humanos , Vesículas Extracelulares/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Tamaño de la Partícula , Propiedades de Superficie , Biomarcadores de Tumor/análisis , Biomarcadores/análisis , Límite de Detección
5.
ACS Appl Mater Interfaces ; 16(26): 33235-33245, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885355

RESUMEN

Enhancing the stability of multienzyme cascade reactions in metal-organic frameworks (MOFs) is a challenging task in the fields of biotechnology and chemistry. However, addressing this challenge could yield far-reaching benefits across the application range in the biomedical, food, and environmental sectors. In this study, multienzyme partitioning immobilization that sequentially immobilizes cascade enzymes with hierarchical MOFs is proposed to reduce substrate diffusion resistance. Conversion results of ginsenosides indicate that this strategy improves the cascade efficiency up to 1.26 times. The substrate diffusion model is used to investigate the dual-interenzyme mass transfer behavior of substrates in the restricted domain space and evaluate the substrate channeling effect under partitioning immobilization. Molecular docking and kinetic simulations reveal that the MOFs effectively limit the conformational changes of cascade enzymes at high temperatures and in organic solvents while maintaining a large pocket of active centers. This phenomenon increased efficient substrate docking to the enzyme molecules, further optimizing cascade efficiency. The results of the immobilization of GOX and horseradish peroxidase as model enzymes indicate that the partitioned MOF immobilization strategy could be used for universal adaptation of cascade enzymes.


Asunto(s)
Enzimas Inmovilizadas , Peroxidasa de Rábano Silvestre , Estructuras Metalorgánicas , Simulación del Acoplamiento Molecular , Estructuras Metalorgánicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Cinética , Ginsenósidos/química , Ginsenósidos/metabolismo , Estabilidad de Enzimas
6.
Langmuir ; 40(27): 13957-13967, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38919992

RESUMEN

The specificity and efficiency of enzyme-mediated reactions have the potential to positively impact many biotechnologies; however, many enzymes are easily degraded. Immobilization on a solid support has recently been explored to improve enzyme stability. This study aims to gain insights and facilitate enzyme adsorption onto gold nanoparticles (AuNPs) to form a stable bioconjugate through the installation of thiol functional groups that alter the protein chemistry. In specific, the model enzyme, horseradish peroxidase (HRP), is thiolated via Traut's reagent to increase the robustness and enzymatic activity of the bioconjugate. This study compares HRP and its thiolated analog (THRP) to deduce the impact of thiolation and AuNP-immobilization on the enzyme activity and stability. HRP, THRP, and their corresponding bioconjugates, HRP-AuNP and THRP-AuNP, were analyzed via UV-vis spectrophotometry, circular dichroism, zeta potential, and enzyme-substrate kinetics assays. Our data show a 5-fold greater adsorption for THRP on the AuNP, in comparison to HRP, that translated to a 5-fold increase in the THRP-AuNP bioconjugate activity. The thiolated and immobilized HRP exhibited a substantial improvement in stability at elevated temperatures (50 °C) and storage times (1 month) relative to the native enzyme in solution. Moreover, HRP, THRP, and their bioconjugates were incubated with trypsin to assess the susceptibility to proteolytic digestion. Our results demonstrate that THRP-AuNP bioconjugates maintain full enzymatic activity after 18 h of incubation with trypsin, whereas free HRP, free THRP, and HRP-AuNP conjugates are rendered inactive by trypsin treatment. These results highlight the potential for protein modification and immobilization to substantially extend enzyme shelf life, resist protease digestion, and enhance biological function to realize enzyme-enabled biotechnologies.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Oro , Peroxidasa de Rábano Silvestre , Nanopartículas del Metal , Compuestos de Sulfhidrilo , Oro/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Compuestos de Sulfhidrilo/química , Nanopartículas del Metal/química , Proteolisis , Adsorción , Cinética
7.
Langmuir ; 40(27): 14086-14098, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38934738

RESUMEN

Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.


Asunto(s)
Aldehídos , Peroxidasa de Rábano Silvestre , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Aldehídos/química , Polímeros/química , Adsorción , Propiedades de Superficie , Enzimas Inmovilizadas/química
8.
Int J Biol Macromol ; 273(Pt 2): 133180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38880453

RESUMEN

Surface chemistry of carriers plays a key role in enzyme loading capacity, structure rigidity, and thus catalyze activity of immobilized enzymes. In this work, the two model enzymes of horseradish peroxidase (HRP) and glucose oxidase (GOx) are co-immobilized on the lysozyme functionalized magnetic core-shell nanocomposites (LYZ@MCSNCs) to enhance their stability and activity. Briefly, the HRP and GOx aggregates are firstly formed under the crosslinker of trimesic acid, in which the loading amount and the rigidity of the enzyme can be further increased. Additionally, LYZ easily forms a robust anti-biofouling nanofilm on the surface of SiO2@Fe3O4 magnetic nanoparticles with abundant functional groups, which facilitate chemical crosslinking of HRP and GOx aggregates with minimized inactivation. The immobilized enzyme of HRP-GOx@LYZ@MCSNCs exhibited excellent recovery activity (95.6 %) higher than that of the free enzyme (HRP&GOx). Specifically, 85 % of relative activity was retained after seven cycles, while 73.5 % of initial activity was also remained after storage for 33 days at 4 °C. The thermal stability and pH adaptability of HRP-GOx@LYZ@MCSNCs were better than those of free enzyme of HRP&GOx. This study provides a mild and ecofriendly strategy for multienzyme co-immobilization based on LYZ functionalized magnetic nanoparticles using HRP and GOx as model enzymes.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanopartículas de Magnetita , Muramidasa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Nanopartículas de Magnetita/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Concentración de Iones de Hidrógeno , Temperatura , Reactivos de Enlaces Cruzados/química , Agregado de Proteínas , Dióxido de Silicio/química
9.
J Colloid Interface Sci ; 672: 97-106, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833738

RESUMEN

Formate is an important environmental pollutant, and meanwhile its concentration change is associated with a variety of diseases. Thus, rapid and sensitive detection of formate is critical for the biochemical analysis of complex samples and clinical diagnosis of multiple diseases. Herein, a colorimetric biosensor was constructed based on the cascade catalysis of formate oxidase (FOx) and horseradish peroxidase (HRP). These two enzymes were co-immobilized in Cu3(PO4)2-based hybrid nanoflower with spatial localization, in which FOx and HRP were located in the shell and core of nanoflower, respectively (FOx@HRP). In this system, FOx could catalyze the oxidation of formate to generate H2O2, which was then utilized by HRP to oxidize 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid to yield blue product. Ideal linear correlation could be obtained between the absorbance at 420 nm and formate concentration. Meanwhile, FOx@HRP exhibited excellent detection performance with low limit of detection (6 µM), wide linear detection range (10-900 µM), and favorable specificity, stability and reusability. Moreover, it could be applied in the detection of formate in environmental, food and biological samples with high accuracy. Collectively, FOx@HRP provides a useful strategy for the simple and sensitive detection of formate and is potentially to be used in biochemical analysis and clinical diagnosis.


Asunto(s)
Colorimetría , Enzimas Inmovilizadas , Formiatos , Peroxidasa de Rábano Silvestre , Colorimetría/métodos , Formiatos/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
10.
Anal Chem ; 96(24): 10064-10073, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842443

RESUMEN

The global spread of monkeypox has become a worldwide public healthcare issue. Therefore, there is an urgent need for accurate and sensitive detection methods to effectively control its spreading. Herein, we screened by phage display two peptides M4 (sequence: DPCGERICSIAL) and M6 (sequence: SCSSFLCSLKVG) with good affinity and specificity to monkeypox virus (MPXV) B21R protein. To simulate the state of the peptide in the phage and to avoid spatial obstacles of the peptide, GGGSK was added at the C terminus of M4 and named as M4a. Molecular docking shows that peptide M4a and peptide M6 are bound to different epitopes of B21R by hydrogen bonds and salt-bridge interactions, respectively. Then, peptide M4a was selected as the capture probe, phage M6 as the detection probe, and carbonized polymer dots (CPDs) as the fluorescent probe, and a colorimetric and fluorescent double-signal capture peptide/antigen/signal peptide-displayed phage sandwich ELISA triggered by horseradish peroxidase (HRP) through a simple internal filtration effect (IFE) was constructed. HRP catalyzes H2O2 to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB, which can further quench the fluorescence of CPDs through IFE, enabling to detect MPXV B21R in colorimetric and fluorescent modes. The proposed simple immunoassay platform shows good sensitivity and reliability in MPXV B21R detection. The limit of detection for colorimetric and fluorescent modes was 27.8 and 9.14 pg/mL MPXV B21R, respectively. Thus, the established double-peptide sandwich-based dual-signal immunoassay provides guidance for the development of reliable and sensitive antigen detection capable of mutual confirmation, which also has great potential for exploring various analytical strategies for other respiratory virus surveillance.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Péptidos , Ensayo de Inmunoadsorción Enzimática/métodos , Péptidos/química , Antígenos Virales/inmunología , Antígenos Virales/análisis , Antígenos Virales/química , Simulación del Acoplamiento Molecular , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Límite de Detección , Colorantes Fluorescentes/química , Biblioteca de Péptidos , Bencidinas/química , Colorimetría/métodos
11.
ACS Appl Bio Mater ; 7(5): 3506-3514, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38696441

RESUMEN

Horseradish peroxidase (HRP)-mediated hydrogelation, caused by the cross-linking of phenolic groups in polymers in the presence of hydrogen peroxide (H2O2), is an effective route for bioink solidification in 3D bioprinting. Sugar beet pectin (SBP) naturally has cross-linkable phenols through the enzymatic reaction. Therefore, chemical modifications are not required, unlike the various polymers that have been used in the enzymatic cross-linking system. In this study, we report the application of SBP in extrusion-based bioprinting including HRP-mediated bioink solidification. In this system, H2O2 necessary for the solidification of inks is supplied in the gas phase. Cell-laden liver lobule-like constructs could be fabricated using bioinks consisting of 10 U/mL HRP, 4.0 and 6.0 w/v% SBP, and 6.0 × 106 cells/mL human hepatoblastoma (HepG2) cells exposed to air containing 16 ppm of H2O2 concurrently during printing and 10 min postprinting. The HepG2 cells enclosed in the printed constructs maintained their viability, metabolic activity, and hepatic functions from day 1 to day 7 of the culture, which indicates the cytocompatibility of this system. Taken together, this result demonstrates the potential of SBP and HRP cross-linking systems for 3D bioprinting, which can be applied in tissue engineering applications.


Asunto(s)
Beta vulgaris , Materiales Biocompatibles , Bioimpresión , Peroxidasa de Rábano Silvestre , Ensayo de Materiales , Pectinas , Impresión Tridimensional , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Beta vulgaris/química , Humanos , Pectinas/química , Células Hep G2 , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Peróxido de Hidrógeno/química , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/síntesis química , Ingeniería de Tejidos
12.
Biomacromolecules ; 25(6): 3620-3627, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38806062

RESUMEN

Lignin is an aromatic polymer that constitutes plant cell walls. The polymerization of lignin proceeds by radical coupling, and this process requires radicalization of the phenolic end of lignin by enzymes. However, due to the steric hindrance between enzymes, lignin, and polysaccharides, the direct oxidation of the phenolic end of lignin by the enzyme would be difficult, and the details of the growth of lignin are still unknown. In this study, enzymatic dehydrogenative polymerization experiments were conducted using coniferyl alcohol (CA) and the deuterium-labeled lignin model compound (D-LM) under a noncontact condition in which horseradish peroxidase cannot directly oxidize D-LM due to separation by a dialysis membrane. Analysis of deuterium-labeled degraded compounds obtained by a combination of methylation and thioacidolysis revealed the formation of the bond between the phenolic end of D-LM and CA, suggesting that membrane-permeable, low-molecular-weight lignols functioned as a redox shuttle mediator.


Asunto(s)
Lignina , Oxidación-Reducción , Polimerizacion , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Peso Molecular , Fenilpropionatos/química , Fenilpropionatos/metabolismo
13.
J Am Chem Soc ; 146(19): 13247-13257, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701006

RESUMEN

Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.


Asunto(s)
Peroxidasa de Rábano Silvestre , Líquidos Iónicos , Simulación de Dinámica Molecular , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Líquidos Iónicos/química , Imidazoles/química , Teoría Cuántica , Soluciones , Agua/química
14.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38693874

RESUMEN

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Asunto(s)
Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , beta-Galactosidasa , Glucosa Oxidasa/química , Humanos , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Orgánulos/metabolismo , Colorantes Fluorescentes/química , Polímeros/química , Fluorescencia , Células HeLa , Mitocondrias/metabolismo
15.
Sci Rep ; 14(1): 11442, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769440

RESUMEN

The global supply of fluoropolymers and fluorinated solvents is decreasing due to environmental concerns regarding polyfluoroalkyl substances. CYTOP has been used for decades primarily as a component of a femtoliter chamber array for digital bioanalysis; however, its supply has recently become scarce, increasing the urgency of fabricating a femtoliter chamber array using alternative materials. In this study, we investigated the feasibility of fabricating a femtoliter chamber array using four types of fluoropolymers in stable supply as candidate substitutes and verified their applicability for digital bioanalysis. Among these candidates, Fluorine Sealant emerged as a viable option for fabricating femtoliter chamber arrays using a conventional photolithography process. To validate its efficacy, we performed various digital bioanalysis using FP-A-based chamber arrays with model enzymes such as CRISPR-Cas, horseradish peroxidase, and ß-galactosidase. The results demonstrated the similar performance to that of CYTOP, highlighting the broader utility of FP-A in digital bioanalysis. Our findings underscore the potential of FP-A to enhance the versatility of digital bioanalysis and foster the ongoing advancement of innovative diagnostic technologies.


Asunto(s)
Polímeros , Polímeros/química , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , beta-Galactosidasa/metabolismo
16.
Anal Chem ; 96(16): 6337-6346, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613479

RESUMEN

The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (µPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.


Asunto(s)
Suelo , Suelo/química , Peroxidasa de Rábano Silvestre/metabolismo , Peroxidasa de Rábano Silvestre/química , Sistemas CRISPR-Cas , Oryza/química , Contaminantes del Suelo/análisis , Dispositivos Laboratorio en un Chip , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124236, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615415

RESUMEN

In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 µg/mL (R2 = 0.9878), and the detection limit was 41.95 µg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Bencidinas , Técnicas Biosensibles , Colorimetría , Oro , Límite de Detección , Nanopartículas del Metal , Mucina-1 , Mucina-1/análisis , Mucina-1/sangre , Colorimetría/métodos , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Humanos , Técnicas Biosensibles/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
18.
Anal Sci ; 40(5): 951-958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598048

RESUMEN

Daily monitoring of serum uric acid levels is very important to provide appropriate treatment according to the constitution and lifestyle of individual hyperuricemic patients. We have developed a suspension-based assay to measure uric acid by adding a sample solution to the suspension containing micro-sized particles immobilized on uricase and horseradish peroxidase (HRP). In the proposed method, the mediator reaction of uricase, HRP, and uric acid produces resorufin from Amplex red. This resorufin is adsorbed onto enzyme-immobilized micro-sized particles simultaneously with its production, resulting in the red color of the micro-sized particles. The concentration of resorufin on the small surface area of the microscopic particles achieves a colorimetric analysis of uric acid with superior visibility. In addition, ethanol-induced desorption of resorufin allowed quantitative measurement of uric acid using a 96-well fluorescent microplate reader. The limit of detection (3σ) and RSD (n = 3) were estimated to be 2.2 × 10-2 µg/mL and ≤ 12.1%, respectively. This approach could also be applied to a portable fluorometer.


Asunto(s)
Colorimetría , Enzimas Inmovilizadas , Fluorometría , Peroxidasa de Rábano Silvestre , Urato Oxidasa , Ácido Úrico , Ácido Úrico/sangre , Ácido Úrico/química , Ácido Úrico/análisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Tamaño de la Partícula , Humanos , Suspensiones , Oxazinas/química
19.
J Mater Chem B ; 12(16): 3996-4003, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563677

RESUMEN

Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.


Asunto(s)
Enzimas Inmovilizadas , Glucosa Oxidasa , Estructuras Metalorgánicas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Polímeros/química , Propiedades de Superficie , Porosidad , Tamaño de la Partícula , Catálisis , Biocatálisis , Poliestirenos/química
20.
Anal Chem ; 96(18): 7281-7288, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663032

RESUMEN

Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction, and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity, or are technically demanding. To tackle these issues, here, we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through repeated cycles of target staining, fluorescence imaging, and fluorophore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ∼820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed that different subregions of the tissue are composed of cells from specific clusters.


Asunto(s)
Química Clic , Colorantes Fluorescentes , Tonsila Palatina , Humanos , Colorantes Fluorescentes/química , Tonsila Palatina/citología , Tonsila Palatina/química , Tonsila Palatina/metabolismo , Análisis de la Célula Individual , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo , Proteómica/métodos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Imagen Óptica , Adhesión en Parafina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...