Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39202895

RESUMEN

This study focuses on investigating sugar recovery from spoiled date fruits (SDF) for sustainable ethanol production using newly isolated yeasts. Upon their isolation from different food products, yeast strains were identified through PCR amplification of the D1/D2 region and subsequent comparison with the GenBank database, confirming isolates KKU30, KKU32, and KKU33 as Saccharomyces cerevisiae; KKU21 as Zygosaccharomyces rouxii; and KKU35m as Meyerozyma guilliermondii. Optimization of sugar extraction from SDF pulp employed response surface methodology (RSM), varying solid loading (20-40%), temperature (20-40 °C), and extraction time (10-30 min). Linear models for sugar concentration (R1) and extraction efficiency (R2) showed relatively high R2 values, indicating a good model fit. Statistical analysis revealed significant effects of temperature and extraction time on extraction efficiency. The results of batch ethanol production from SDF extracts using mono-cultures indicated varying consumption rates of sugars, biomass production, and ethanol yields among strains. Notably, S. cerevisiae strains exhibited rapid sugar consumption and high ethanol productivity, outperforming Z. rouxii and M. guilliermondii, and they were selected for scaling up the process at fed-batch mode in a co-culture. Co-cultivation resulted in complete sugar consumption and higher ethanol yields compared to mono-cultures, whereas the ethanol titer reached 46.8 ± 0.2 g/L.


Asunto(s)
Etanol , Etanol/metabolismo , Phoeniceae/metabolismo , Phoeniceae/química , Frutas/química , Frutas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Azúcares/metabolismo , Azúcares/análisis , Fermentación , Levaduras/metabolismo , Levaduras/genética , Levaduras/aislamiento & purificación
2.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539110

RESUMEN

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Asunto(s)
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Polvos , Flavonoides/metabolismo , Fenoles/metabolismo , Semillas/metabolismo
3.
Braz J Biol ; 83: e274405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126632

RESUMEN

The study was conducted to examine the antioxidant activity and evaluate the protective effects of the date seeds powder kentichi against alloxan-induced damage in the liver, kidney, and pancreas in diabetic's rats. Group 1: control group, that did not receive any treatment, Group 2: alloxan was injected intraperitoneally (120 mg/kg body weight) for two days (Diab), Group 3: treated only by date seeds powder added in the diet (300 g/kg) for 6 weeks (DSPK), Group 4: alloxan-diabetic rats treated with date seeds powder (300 g/kg) (DSPK + Diab). Estimations of biochemical parameters in blood were determined. TBARS, SOD, CAT, and GPx activities were determined. A histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin hematoxylin-eosin staining. In addition, the antioxidant activities of DSPK were evaluated by DPPH radical scavenging activity, reducing power, and ABTS free radical scavenging. The results revealed that date seeds significantly decreased serum levels of glucose, cholesterol, triglycerides, urea, creatinine, T-protein, ALP, D-bili and T-bili levels. In addition, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities that had been reduced in liver, kidney, and pancreas of the treated group were restored by DSPK treatments and, therefore, the lipid peroxidation level was reduced in the liver, kidney and pancreas tissue compared to the control group. Additionally, the histological structure in these organs was restored after treatment with date seeds powder.


Asunto(s)
Diabetes Mellitus Experimental , Phoeniceae , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Phoeniceae/metabolismo , Aloxano/efectos adversos , Aloxano/análisis , Estrés Oxidativo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , Polvos/efectos adversos , Polvos/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa/metabolismo , Semillas , Peroxidación de Lípido
4.
Biomolecules ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37892156

RESUMEN

We evaluated the therapeutic potentials of Khudari fruit pulp, a functional food and cultivar of Phoenix dactylifera, against neurological disorders. Our results demonstrate a good amount of phytochemicals (total phenolic content: 17.77 ± 8.21 µg GA/mg extract) with a high antioxidant potential of aqueous extract (DPPH assay IC50 = 235.84 ± 11.65 µg/mL) and FRAP value: 331.81 ± 4.56 µmol. Furthermore, the aqueous extract showed the marked inhibition of cell-free acetylcholinesterase (electric eel) with an IC50 value of 48.25 ± 2.04 µg/mL, and an enzyme inhibition kinetics study revealed that it exhibits mixed inhibition. Thereafter, we listed the 18 best-matched phytochemical compounds present in aqueous extract through LC/MS analysis. The computational study revealed that five out of eighteen predicted compounds can cross the BBB and exert considerable aqueous solubility. where 2-{5-[(1E)-3-methylbuta-1,3-dien-1-yl]-1H-indol-3-yl}ethanol (MDIE) indicates an acceptable LD50. value. A molecular docking study exhibited that the compounds occupied the key residues of acetylcholinesterase with ΔG range between -6.91 and -9.49 kcal/mol, where MDIE has ∆G: -8.67 kcal/mol, which was better than that of tacrine, ∆G: -8.25 kcal/mol. Molecular dynamics analyses of 100 ns supported the stability of the protein-ligand complexes analyzed through RMSD, RMSF, Rg, and SASA parameters. TRP_84 and GLY_442 are the most critical hydrophobic contacts for the complex, although GLU_199 is important for H-bonds. Prime/MM-GBSA showed that the protein-ligand complex formed a stable confirmation. These findings suggest that the aqueous extract of Khudari fruit pulp has significant antioxidant and acetylcholinesterase inhibition potentials, and its compound, MDIE, forms stably with confirmation with the target protein, though this fruit of Khudari dates can be a better functional food for the treatment of Alzheimer's disease. Further investigations are needed to fully understand the therapeutic role of this plant-based compound via in vivo study.


Asunto(s)
Colinesterasas , Phoeniceae , Antioxidantes/farmacología , Antioxidantes/química , Acetilcolinesterasa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Phoeniceae/química , Phoeniceae/metabolismo , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Ligandos , Espectrometría de Masas en Tándem , Fitoquímicos
5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047009

RESUMEN

Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.


Asunto(s)
Phoeniceae , Silicio , Silicio/farmacología , Silicio/metabolismo , Phoeniceae/genética , Phoeniceae/metabolismo , Antioxidantes/farmacología , Temperatura , Estrés Oxidativo
6.
Int J Phytoremediation ; 25(12): 1687-1698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36912095

RESUMEN

Mining activities provide a pathway for the entry and accumulation of various heavy metals in soil, which ultimately leads to severe environmental pollution. Utilization of various immobilizing agents could restore such contaminated soils. Therefore, in this study, date palm-derived biochars (BCs: produced at 300 °C, 500 °C and 700 °C) and magnetized biochars (MBCs) were employed to stabilize heavy metals (Cd, Pb, Cu and Zn) in mining polluted soil. Metal polluted soil was amended with BCs and MBCs at w/w ratio of 2% and cultivated with wheat (Triticum aestivum L.) in a greenhouse. After harvesting, dry and fresh biomass of plants were recorded. The soil and plant samples were collected, and the concentrations of heavy metals were measured after extracting with water, DTPA (diethylenetriaminepentaacetic acid), EDTA (ethylenediaminetetraacetic acid), and acetic acid. BCs and MBCs resulted in reduced metal availability and uptake, with higher fresh and dry biomass (>36%). MBCs showed maximum decrease (>70%) in uptake and shoot concentration of metals, as these reductions for Cd and Pb reached below the detection limits. Among all single-step extractions, the DTPA-extractable metals showed a significant positive correlation with shoot concentrations of tested metals. Thus, the synthesized BCs and MBCs could effectively be used for stabilizing heavy metals and improve plant productivity in multi-contaminated soils. However, future studies should focus on long term field trials to restore contaminated mining soils using modified biochars.


This study has demonstrated the performance of magnetized biochars for in-situ stabilization of toxic metals (Cd, Pb, Cu and Zn) in mining polluted soil by single extraction method. All the produced BCs and magnetized BCs showed great potential in immobilizing the metals and reducing their availability in soil, consequently decreasing their shoot concentration and plant uptake. Significant negative correlations were observed between soil pH and metal extraction from applied extraction methods such as water soluble, DTPA, and EDTA extractions. We found DTPA as a suitable extractant for investigating metal uptake in plant in multi-contaminated soils. Treatments with MBCs showed maximum decrease in plant uptake and concentration of studied metals. Thus, application of MBCs could efficiently immobilize soil heavy metals.


Asunto(s)
Metales Pesados , Phoeniceae , Contaminantes del Suelo , Cadmio , Phoeniceae/metabolismo , Plomo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Carbón Orgánico , Suelo , Ácido Pentético
7.
Tree Physiol ; 43(4): 587-596, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36579827

RESUMEN

Drought and salt exposure are among the most prevalent and severe abiotic stressors causing serious agricultural yield losses, alone and in combination. Little is known about differences and similarities in the effects of these two stress factors on plant metabolic regulation, particularly on nitrogen metabolism. Here, we studied the effects of water deprivation and salt exposure on water relations and nitrogen metabolites in leaves and roots of date palm seedlings. Both, water deprivation and salt exposure had no significant effects on plant water content or stable carbon (C) and nitrogen (N) isotope signatures. Significant effects of water deprivation on total C and N concentrations were only observed in roots, i.e., decreased total C and increased total N concentrations. Whereas salt exposure initially decreased total C and increased total N concentrations significantly in roots, foliar total C concentration was increased upon prolonged exposure. Initially C/N ratios declined in roots of plants from both treatments and upon prolonged salt exposure also in the leaves. Neither treatment affected soluble protein and structural N concentrations in leaves or roots, but resulted in the accumulation of most amino acids, except for glutamate and tryptophan, which remained stable, and serine, which decreased, in roots. Accumulation of the most abundant amino acids, lysine and proline, was observed in roots under both treatments, but in leaves only upon salt exposure. This finding indicates a similar role of these amino acids as compatible solutes in the roots in response to salt und drought, but not in the leaves. Upon prolonged treatment, amino acid concentrations returned to levels found in unstressed plants in leaves of water deprived, but not salt exposed, plants. The present results show both water deprivation and salt exposure strongly impact N metabolism of date palm seedlings, but in a different manner in leaves and roots.


Asunto(s)
Phoeniceae , Phoeniceae/metabolismo , Plantones/fisiología , Privación de Agua , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Aminoácidos/metabolismo , Agua/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
8.
Sci Rep ; 12(1): 15027, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056140

RESUMEN

Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.


Asunto(s)
Sequías , Phoeniceae , Etiquetas de Secuencia Expresada , Phoeniceae/genética , Phoeniceae/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo
9.
Biotechnol Lett ; 44(11): 1323-1336, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36100779

RESUMEN

OBJECTIVES: The present study aimed to explore the eliciting effects of increasing concentrations (50, 100, and 200 µM) of methyl jasmonate (MeJA). We cultivated actively proliferating buds of Phoenix dactylifera L. cv. Barhee in a temporary immersion system and we monitored the bioactive compound accumulation after 7 days of culture. METHODS: Total phenolic (TPC) and flavonoid (TFC) contents were determined by high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR), and radical scavenging activity using DPPH and ABTS assays. We also explored the activity of phenylpropanoid pathway enzymes, namely phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL) and polyphenol oxidase (PPO). RESULTS: Our results revealed that MeJA treatment induced oxidative stress, and at the same time increased the activity of related defense enzymes in a dose-dependent manner. Exogenous application of MeJA at 200 µM increased ROS (two fold), hydrogen peroxide (3.7 fold), nitric oxide (14 fold), MDA (6.3 fold), superoxide dismutase (5.9 fold), catalase (4.4 fold) and guaiacol peroxidase (3.87 fold). Furthermore, the results demonstrated that 200 µM MeJA treatment enhanced the activities of PAL (3.65 fold), TAL (4.35 fold), PPO (threefold) and increased TPC (twofold) and TFC (1.75 fold) contents in buds cultures higher than the control. HPLC analysis showed that buds cultures exposed to 200 µM MeJA accumulated maximum amount of catechin (11 fold), 4-hydroxybenzoic acid (1.48 fold), caffeic acid (2.5 fold) and p-coumaric acid (1.76 fold) and demonstrate antioxidant capacity with the lowest DPPH (114.5 µg ml-1) and ABTS (90.2 µg ml-1) IC50 values on day 7 of culture as compared to the control. The MeJA in the culture medium directly reduced cell viability in a dose dependent manner up to 35% with the highest concentration. CONCLUSION: The results of this study has revealed, for the first time, that MeJA offers a promising potential for the production of phenolic compound in Phoenix dactylifera L. buds.


Asunto(s)
Antioxidantes , Phoeniceae , Antioxidantes/farmacología , Antioxidantes/metabolismo , Phoeniceae/metabolismo , Estrés Nitrosativo , Oxilipinas/farmacología , Ciclopentanos/farmacología , Acetatos/farmacología , Fenilanina Amoníaco-Liasa/metabolismo , Fenoles/metabolismo , Estrés Oxidativo
10.
Nutrients ; 14(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36079749

RESUMEN

Objective. Date fruit has been reported to have benefits in type 2 diabetes (T2D), though there is a concern, given the high sugar content, about its effects on glycemic control. Design and Setting. Prospective, interventional, randomized, parallel study. Participants. In total, 79 patients with T2D (39 male and 40 female). Intervention. Participants were randomly allocated to either 60 g date fruit or 60 g raisins daily of the equivalent glycemic index (amount split, given as midmorning and midafternoon snack) for 12 weeks. Main Outcome Measures. The primary outcome was to investigate the effect of date fruit on HbA1c and fasting blood glucose, and their variability, in patients with T2D in comparison to the same glycemic load of raisins. The secondary outcomes were to determine whether date fruit affected cardiovascular risk by measuring fasting lipids, C-reactive protein (CRP), blood pressure, and insulin resistance (IR) as measured by Homeostatic Model Assessment (HOMA-IR). Results. In total, 61 (27 female and 34 male) of 79 patients completed the study. There was no difference between or within groups for HbA1c or HbA1c variability, fasting glucose or glucose variability, insulin resistance (HOMA-IR), insulin sensitivity (HOMA-S), beta cell function (HOMA-B), the disposition index, lipids, systolic (SBP) or diastolic blood pressure (DBP), or C-reactive protein (CRP) (p > 0.05). Conclusion. No improvement in glycemic indices was seen following supplementation of 60 g daily date fruit or raisins, though neither had a deleterious effect on glycemic control over a 12-week period, indicating their safety when consumed in T2D. Additionally, no beneficial therapeutic effects of date fruit on other cardiovascular indices in T2D were seen.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Phoeniceae , Vitis , Glucemia/metabolismo , Proteína C-Reactiva , Femenino , Hemoglobina Glucada/metabolismo , Control Glucémico , Humanos , Resistencia a la Insulina/fisiología , Lípidos , Masculino , Phoeniceae/metabolismo , Estudios Prospectivos
11.
Toxicology ; 480: 153313, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113622

RESUMEN

Scientific evidence has shown that fipronil induces oxidative stress and genotoxicity. Our study aimed to evaluate the potential oxidation in redox parameters and DNA, as well as determine the protective effect of date extract of increasing resistance to cellular damage. 30 Male albino rats were divided into six groups ( n = 5): 1) control group; 2) treatment group with date extract (1 g/kg B.W.); 3) treatment group with 1/20 LD50 of fipronil; 4) treatment group with 1/40 LD50 of fipronil; 5) treatment group with 1/20 LD50 of fipronil + 1 g/kg date extract; and 6) treatment group with 1/40 LD50 of fipronil + 1 g/kg dates extract. Date extract showed a high content of phenolic compounds and antioxidant properties. Fipronil increased 8-hydroxy-2-deoxyguanosine levels and lipid peroxidation by malondialdehyde but decreased the total antioxidant capacity in plasma. Moreover, glutathione, catalase, and superoxide dismutase levels in the liver and kidney decreased, along with histopathological abnormalities. Additionally, tail moment parameters of liver DNA and micronucleus frequencies in the bone marrow increased. This study showed that fipronil-induced various health hazards in vivo, whereas date extract alleviated the said toxicological effects. However, date extract failed to reduce genotoxicity.


Asunto(s)
Antioxidantes , Phoeniceae , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Desoxiguanosina/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Hígado , Malondialdehído/metabolismo , Estrés Oxidativo , Phoeniceae/metabolismo , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Pirazoles , Ratas , Superóxido Dismutasa/metabolismo
12.
World J Microbiol Biotechnol ; 38(11): 207, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36008694

RESUMEN

The plant growth-promoting rhizobacteria (PGPRs) improve plant growth and fitness by multiple direct (nitrogen fixation and phosphate solubilization) and indirect (inducing systematic resistance against phytopathogens, soil nutrient stabilization, and maintenance) mechanisms. Nevertheless, the mechanisms by which PGPRs promote plant growth in hot and arid environments remain poorly recorded. In this study, a comparative genome analysis of two phosphate solubilizing bacteria, Pseudomonas atacamensis SM1 and Pseudomonas toyotomiensis SM2, isolated from the rhizosphere of date palm was performed. The abundance of genes conferring stress tolerance (chaperones, heat shock genes, and chemotaxis) and supporting plant growth (plant growth hormone, root colonization, nitrogen fixation, and phosphate solubilization) were compared among the two isolates. This study further evaluated their functions, metabolic pathways, and evolutionary relationship. Results show that both bacterial strains have gene clusters required for plant growth promotion (phosphate solubilization and root colonization), but it is more abundant in P. atacamensis SM1 than in P. toyotomiensis SM2. Genes involved in stress tolerance (mcp, rbs, wsp, and mot), heat shock, and chaperones (hslJ and hslR) were also more common in P. atacamensis SM1. These findings suggest that P. atacamensis SM1could have better adaptability to the hot and arid environment owing to a higher abundance of chaperone genes and heat shock proteins. It may promote plant growth owing to a higher load of root colonization and phosphate solubilization genes and warrants further in vitro study.


Asunto(s)
Phoeniceae , Rizosfera , Bacterias/metabolismo , Ácidos Indolacéticos/metabolismo , Phoeniceae/metabolismo , Fosfatos/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Pseudomonas/metabolismo , Microbiología del Suelo
13.
Food Chem ; 396: 133666, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841681

RESUMEN

In this study, attempts were made to utilize date by-product (date fruit pomace; DFP). This study aimed to investigate the health-promoting benefits of the fermented and non-fermented DFP before in vitro digestion and after (bioaccessible fraction). Untargeted metabolomic analyses for bioaccessible fractions were performed by UPLC-QTOF. DPPH percentages were 89.7%-90.3%, 90.1%-91.3%, and 90.8%-91.3% in the control, I. orientalis, and P. kudriazevii samples, respectively, before digestion; α-glucosidase inhibition before digestion was 1.9%-24.4%, 16.3%-30.0%, and 21.3%-31.3%, respectively; antimicrobial activities were 6.1%-13.3%, 13.7%-25.7%, and 20.6%-28.0% against E. coli O157:H7 and 2.2%-11.9%, 7.2%-20.7%, and 11.9%-29.2% against L. monocytogenes, respectively. The DPPH scavenging percentages were ∼63% lower in the bioaccessible fraction. The differentially regulated metabolites classes were benzene and derivatives, amino acids, peptides and analogs, organic acids, and phenols. This study revealed that the fermented DFP exhibited higher health properties than control.


Asunto(s)
Escherichia coli O157 , Phoeniceae , Antioxidantes/química , Fermentación , Frutas/química , Metabolómica , Fenoles/análisis , Phoeniceae/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
BMC Complement Med Ther ; 22(1): 68, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35291987

RESUMEN

BACKGROUND: Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . METHODS: In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 µg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. RESULTS: Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 µg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but  no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. CONCLUSION: PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation.


Asunto(s)
Neoplasias de la Mama , Phoeniceae , Neoplasias de la Mama/tratamiento farmacológico , Caspasa 3/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Simulación del Acoplamiento Molecular , Phoeniceae/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
15.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443635

RESUMEN

Generally, the bioconversion of lignocellulolytics into a new biomolecule is carried out through two or more steps. The current study used one-step bioprocessing of date palm fronds (DPF) into citric acid as a natural product, using a pioneer strain of Trichodermaharzianum (PWN6) that has been selected from six tested isolates based on the highest organic acid (OA) productivity (195.41 µmol/g), with the lowest amount of the released glucose. Trichoderma sp. PWN6 was morphologically and molecularly identified, and the GenBank accession number was MW78912.1. Both definitive screening design (DSD) and artificial neural network (ANN) were applied, for the first time, for modeling the bioconversion process of DPF. Although both models are capable of making accurate predictions, the ANN model outperforms the DSD model in terms of OA production, as ANN is characterized by a higher value of R2 (0.963) and validation R2 (0.967), and lower values of the RMSE (13.44), MDA (11.06), and SSE (9749.5). Citric acid was the only identified OA as was confirmed by GC-MS and UPLC, with a total of 1.5%. In conclusion, DPF together with T. harzianum PWN6 is considered an excellent new combination for citric acid biosynthesis, after modeling with artificial intelligence procedure.


Asunto(s)
Ácido Cítrico/metabolismo , Phoeniceae/metabolismo , Trichoderma/metabolismo , Inteligencia Artificial , Celulasa/metabolismo , Redes Neurales de la Computación
16.
Mol Biol Rep ; 48(6): 5305-5318, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34244886

RESUMEN

BACKGROUND: Industrial toxicants such as Carbon tetrachloride (CCl4) are known to disrupt the oxidative-antioxidative balance, which generates excessive amounts of free radicals leading to chronic or acute liver damage. Natural antioxidants, including Ajwa, play an important role in protecting against hepatotoxicity. METHODS AND RESULTS: This study investigated the prophylactic impacts of ajwa seeds aqueous extract (ASE) against hepatic oxidative injury in rats induced by CCl4. Eighty male Wistar albino rats were equally assigned to eight groups: one group receive no treatment, four groups were received CCl4-olive oil mixture [1:1(v/v)] (0.2 ml/100 g body weight (bw), intraperitoneally) two times/week for 4 weeks/rat alone or with 200 mg Vit. C/kg bw or 5 ml ASE/rat or both, and three groups received olive oil, Vit. C, or ASE. Vitamin C and ASE were orally administrated two weeks before CCl4 injection and 4 weeks concomitant with CCl4. Lipid peroxidation, lipogenesis-related genes, hepatic histopathology, Bax immunostaining and DNA fragmentation were assessed. ASE protected hepatic damage by suppressing oxidative stress and elevating activities of antioxidant enzymes, including superoxide dismutase and catalase. ASE also regulated hepatic dyslipidemia, hepatic lipid accumulation and expression of SREBP-1 and FAS genes in CCl4-treated rats. ASE decreased apoptosis through inhibition of CCl4 induced Bax activation in hepatocytes. CONCLUSION: These observations provide evidence for the hepatoprotective potential of ASE via inhibiting hepatic lipogenesis and oxidative stress, suggesting being used as a natural product in attenuating CCl4 induced oxidative damage, hepatotoxicity and associated dysfunction.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Phoeniceae/metabolismo , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono/efectos adversos , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Profilaxis Pre-Exposición/métodos , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
17.
Microbiol Res ; 248: 126769, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33873140

RESUMEN

Toddy is a traditional mild-alcoholic drink of India, which is produced from fresh palm saps by natural fermentation. We studied the successional changes in bacterial and fungal communities during the natural fermentation (0 h-96 h) of toddy. During fermentation, alcohol content of the fermenting saps increased significantly from 0.6 %±0.15 to 5.6 %±0.02, pH decreased from 6.33 %±0.02-3.93 ± 0.01, volatile and titratable acidity acidity (g/100 mL) increased from 0.17 ± 0.02 (0 h) to 0.48 ± 0.02 (96 h) and 1.30 ± 0.005 (0 h) to 2.47 ± 0.005 (96 h), respectively. Total sugar content and ˚BRIX also decreased during the fermentation. Firmicutes (78.25 %) was the most abundant phylum followed by Proteobacteria (21.57 %). Leuconostoc was the most abundant genus in the early stages of fermentation. However, Lactobacillus and Gluconoacetobacter were found abundant with increase in pH during the later phases of fermentation (72 h-96 h). Ascomycota (99.02 %) was the most abundant fungal phylum. Hanseniaspora was the abundant yeast in the initial stages of fermentation, whereas the population of Saccharomyces increased significantly after 24 h of fermentation. Torulaspora, Lachancea and Starmerella showed their heterogeneous distribution throughout the fermentation. Computational analysis of metagenomes based on KEGG and MetaCyc databases showed different predictive functional profiles such as folate biosynthesis, glutathione metabolism, terpenoids biosynthesis and biosynthesis of amino acids with significant differences between the fresh palm saps and fermenting saps during toddy fermentation.


Asunto(s)
Bebidas Alcohólicas/microbiología , Ascomicetos/metabolismo , Bacterias/metabolismo , Microbiota , Phoeniceae/microbiología , Bebidas Alcohólicas/análisis , Alcoholes/análisis , Alcoholes/metabolismo , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fermentación , Flores/metabolismo , Flores/microbiología , India , Phoeniceae/metabolismo , Azúcares/metabolismo
18.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806362

RESUMEN

Date palm (Phoenix dactylifera) is one of the most widespread fruit crop species and can tolerate drastic environmental conditions that may not be suitable for other fruit species. Excess UV-B stress is one of the greatest concerns for date palm trees and can cause genotoxic effects. Date palm responds to UV-B irradiation through increased DEG expression levels and elaborates upon regulatory metabolic mechanisms that assist the plants in adjusting to this exertion. Sixty-day-old Khalas date palm seedlings (first true-leaf stage) were treated with UV-B (wavelength, 253.7 nm; intensity, 75 µW cm-2 for 72 h (16 h of UV light and 8 h of darkness). Transcriptome analysis revealed 10,249 and 12,426 genes whose expressions were upregulated and downregulated, respectively, compared to the genes in the control. Furthermore, the differentially expressed genes included transcription factor-encoding genes and chloroplast- and photosystem-related genes. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect metabolite variations. Fifty metabolites, including amino acids and flavonoids, showed changes in levels after UV-B excess. Amino acid metabolism was changed by UV-B irradiation, and some amino acids interacted with precursors of different pathways that were used to synthesize secondary metabolites, i.e., flavonoids and phenylpropanoids. The metabolite content response to UV-B irradiation according to hierarchical clustering analysis showed changes in amino acids and flavonoids compared with those of the control. Amino acids might increase the function of scavengers of reactive oxygen species by synthesizing flavonoids that increase in response to UV-B treatment. This study enriches the annotated date palm unigene sequences and enhances the understanding of the mechanisms underlying UV-B stress through genetic manipulation. Moreover, this study provides a sequence resource for genetic, genomic and metabolic studies of date palm.


Asunto(s)
Phoeniceae/metabolismo , Phoeniceae/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes del Cloroplasto/efectos de la radiación , Genes de Plantas/efectos de la radiación , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/efectos de la radiación , Anotación de Secuencia Molecular , Fosforilación Oxidativa/efectos de la radiación , Phoeniceae/genética , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , RNA-Seq , Estrés Fisiológico/efectos de la radiación , Factores de Transcripción/genética , Transcriptoma/efectos de la radiación
19.
J Exp Bot ; 72(2): 757-774, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529339

RESUMEN

The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Phoeniceae , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Phoeniceae/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
20.
Mar Drugs ; 18(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256188

RESUMEN

Fucoidans from Moroccan brown seaweed Bifurcaria bifurcata and Fucus spiralis were tested for their elicitor activity after their purification and complete characterization. The fucoidans of B. bifurcata (BBF) and of F. spiralis (FSF) were extracted and purified then characterized by infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and size exclusion chromatography. The results show that BBF and FSF are mainly sulfated with 45.49 and 49.53% (w/w) sulfate, respectively. Analysis of neutral sugars determined by gas chromatography-mass spectrometry showed that FSF and BBF were mainly composed of 64% and 91% fucose and 20% and 6% galactose, respectively, with a few other sugars such as glucose (8% in FSF), rhamnose (1% in BBF) and mannose (8% in FSF and, 2% in BBF). The eliciting activity of these sulfated polysaccharides in stimulating the natural defenses of the date palm was evaluated through the activity of phenylalanine ammonia-lyase (PAL), and the increase in phenols and lignin content in the roots. The results obtained clearly show that the two fucoidans early and intensely stimulate the natural defenses of the date palm after 24 h of treatments. This remarkable elicitor effect seems to be linked to the sulfated groups compared to non-sulfate alginates extracted from the same algae. These results open promising perspectives for a biological control approach against date palm diseases.


Asunto(s)
Agentes de Control Biológico/farmacología , Fucus/metabolismo , Phoeniceae/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/efectos de los fármacos , Polisacáridos/farmacología , Algas Marinas/metabolismo , Agentes de Control Biológico/aislamiento & purificación , Lignina/metabolismo , Estructura Molecular , Fenoles/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Phoeniceae/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/aislamiento & purificación , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...