Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696364

RESUMEN

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Asunto(s)
Modelos Biológicos , Árboles , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/anatomía & histología , Quercus/crecimiento & desarrollo , Quercus/anatomía & histología , Quercus/fisiología , Picea/crecimiento & desarrollo , Picea/anatomía & histología , Picea/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Pinus/crecimiento & desarrollo , Pinus/anatomía & histología , Simulación por Computador
2.
BMC Plant Biol ; 24(1): 414, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760680

RESUMEN

BACKGROUND: Variations in hydraulic conductivity may arise from species-specific differences in the anatomical structure and function of the xylem, reflecting a spectrum of plant strategies along a slow-fast resource economy continuum. Spruce (Picea spp.), a widely distributed and highly adaptable tree species, is crucial in preventing soil erosion and enabling climate regulation. However, a comprehensive understanding of the variability in anatomical traits of stems and their underlying drivers in the Picea genus is currently lacking especially in a common garden. RESULTS: We assessed 19 stem economic properties and hydraulic characteristics of 17 Picea species grown in a common garden in Tianshui, Gansu Province, China. Significant interspecific differences in growth and anatomical characteristics were observed among the species. Specifically, xylem hydraulic conductivity (Ks) and hydraulic diameter exhibited a significant negative correlation with the thickness to span ratio (TSR), cell wall ratio, and tracheid density and a significant positive correlation with fiber length, and size of the radial tracheid. PCA revealed that the first two axes accounted for 64.40% of the variance, with PC1 reflecting the trade-off between hydraulic efficiency and mechanical support and PC2 representing the trade-off between high embolism resistance and strong pit flexibility. Regression analysis and structural equation modelling further confirmed that tracheid size positively influenced Ks, whereas the traits DWT, D_r, and TSR have influenced Ks indirectly. All traits failed to show significant phylogenetic associations. Pearson's correlation analysis demonstrated strong correlations between most traits and longitude, with the notable influence of the mean temperature during the driest quarter, annual precipitation, precipitation during the wettest quarter, and aridity index. CONCLUSIONS: Our results showed that xylem anatomical traits demonstrated considerable variability across phylogenies, consistent with the pattern of parallel sympatric radiation evolution and global diversity in spruce. By integrating the anatomical structure of the stem xylem as well as environmental factors of origin and evolutionary relationships, our findings provide novel insights into the ecological adaptations of the Picea genus.


Asunto(s)
Clima , Picea , Madera , Xilema , Picea/anatomía & histología , Picea/fisiología , Picea/crecimiento & desarrollo , Madera/anatomía & histología , Xilema/anatomía & histología , Xilema/fisiología , China , Especificidad de la Especie , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología , Tallos de la Planta/crecimiento & desarrollo
3.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38662576

RESUMEN

To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.


Asunto(s)
Sequías , Fagus , Nitrógeno , Picea , Pseudotsuga , Árboles , Agua , Picea/fisiología , Picea/crecimiento & desarrollo , Fagus/fisiología , Fagus/crecimiento & desarrollo , Nitrógeno/metabolismo , Agua/metabolismo , Pseudotsuga/fisiología , Pseudotsuga/crecimiento & desarrollo , Árboles/fisiología , Árboles/crecimiento & desarrollo , Resistencia a la Sequía
4.
Plant Biol (Stuttg) ; 26(4): 508-520, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38568928

RESUMEN

The analysis of genetic variation underlying local adaptation in natural populations, together with the response to different external stimuli, is currently a hot topic in forest sciences, with the aim of identifying genetic markers controlling key phenotypic traits of interest for their inclusion in restoration and breeding programs. In Europe, one of the main tree species is Norway spruce (Picea abies (L.) H.Karst.). Using the MassARRAY® platform, 568 trees from North Rhine-Westphalia (Germany) were genotyped with 94 single nucleotide polymorphisms (SNPs) related to circadian and growth rhythms, and to stress response. The association analysis of the selected markers with health status and elevation was performed using three different methods, and those identified by at least two of these were considered as high confidence associated SNPs. While just five markers showed a weak association with health condition, 32 SNPs were correlated with elevation, six of which were considered as high confidence associated SNPs, as indicated by at least two different association methods. Among these genes, thioredoxin and pseudo response regulator 1 (PRR1) are involved in redox homeostasis and ROS detoxification, APETALA2-like 3 (AP2L3), a transcription factor, is involved in seasonal apical growth, and a RPS2-like is a disease resistance gene. The function of some of these genes in controlling light-dependent reactions and metabolic processes suggests signatures of adaptation to local photoperiod and the synchronization of the circadian rhythm. This work provides new insights into the genetic basis of local adaptation over a shallow elevation gradient in Norway spruce.


Asunto(s)
Ritmo Circadiano , Homeostasis , Oxidación-Reducción , Picea , Polimorfismo de Nucleótido Simple , Picea/genética , Picea/fisiología , Ritmo Circadiano/genética , Polimorfismo de Nucleótido Simple/genética , Homeostasis/genética , Genotipo , Genes de Plantas/genética , Alemania , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marcadores Genéticos
5.
Glob Chang Biol ; 30(3): e17252, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501719

RESUMEN

The synthesis of a large body of evidence from field experiments suggests more diverse plant communities are more productive as well as more resistant to the effects of climatic extremes like drought. However, this view is strongly based on data from grasslands due to the limited empirical evidence from tree diversity experiments. Here we report on the relationship between tree diversity and productivity over 10 years in a field experiment established in 2005 that was then affected by the 2018 mega-drought in central Europe. Across a number of years, tree species diversity and productivity were significantly positively related; however, the slope switched to negative in the year of the drought. Net diversity effects increased through time, with complementarity effects making greater contributions to the net diversity effect than selection effects. Complementarity effects were clearly positive in three- and five-species mixtures before the drought (2012-2016) but were found to decrease in the year of the drought. Selection effects were clearly positive in 2016 and remained positive in the drought year 2018 in two-, three-, and five-species mixtures. The survival of Norway spruce (Picea abies) plummeted in response to the drought, and a negative relationship between species diversity and spruce survival was found. Taken together, our findings suggest that tree diversity per se may not buffer communities against the impacts of extreme drought and that tree species composition and the drought tolerance of tree species (i.e., species identity) will be important determinants of community productivity as the prevalence of drought increases.


Asunto(s)
Picea , Árboles , Árboles/fisiología , Sequías , Bosques , Europa (Continente) , Picea/fisiología
6.
Environ Monit Assess ; 196(3): 226, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302669

RESUMEN

In 2022, Europe emerged from eight of the hottest years on record, leading to significant spruce mortality across Europe. The particularly dry weather conditions of 2018 triggered an outbreak of bark beetles (Ips typographus), causing the loss of thousands of hectares of Norway spruce stands, including in Wallonia and North-eastern France. A methodology for detecting the health status of spruce was developed based on a dense time series of satellite imagery (Sentinel-2). The time series of satellite images allowed the modelling of the spectral response of healthy spruce forests over the seasons: a decrease in photosynthetic activity of the forest canopy causes deviations from this normal seasonal vegetation index trajectory. These anomalies are caused by a bark beetle attack and are detected automatically. The method leads in the production of an annual spruce health map of Wallonia and Grand-Est. The goal of this paper is to assess the damage caused by bark beetle using the resulting spruce health maps. A second objective was to compare the influence of basic variables on the mortality of spruce trees in these two regions. Lasted 6 years (2017-2022), bark beetle has destroyed 12.2% (23,674 ha) of the spruce area in Wallonia and Grand-Est of France. This study area is composed of three bioclimatic areas: Plains, Ardennes and Vosges, which have not been equally affected by bark beetle attacks. The plains were the most affected, with 50% of spruce forests destroyed, followed by the Ardennes, which lost 11.3% of its spruce stands. The Vosges was the least affected bioclimatic area, with 5.6% of spruce stands lost. For the most problematic sites, Norway spruce forestry should no longer be considered.


Asunto(s)
Abies , Escarabajos , Picea , Gorgojos , Animales , Picea/fisiología , Escarabajos/fisiología , Corteza de la Planta , Bélgica , Tecnología de Sensores Remotos , Monitoreo del Ambiente , Noruega , Francia , Brotes de Enfermedades , Árboles
7.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273515

RESUMEN

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Asunto(s)
Fagus , Picea , Pinus sylvestris , Quercus , Árboles , Bosques , Picea/fisiología , Noruega , Cambio Climático
8.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213092

RESUMEN

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Asunto(s)
Abies , Fagus , Picea , Pinus , Picea/fisiología , Floema , Clima , Árboles/fisiología
9.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38070177

RESUMEN

Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.


Asunto(s)
Fagus , Picea , Picea/fisiología , Fagus/fisiología , Ecosistema , Agua , Bosques , Árboles/fisiología , Suelo/química , Isótopos
10.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756632

RESUMEN

Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.


Asunto(s)
Carbono , Picea , Picea/fisiología , Ecosistema , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Bosques , Árboles , Noruega
11.
Tree Physiol ; 44(1)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-37861656

RESUMEN

Conifers growing in temperate forests utilize sustained forms of thermal dissipation during winter to protect the photosynthetic apparatus from damage, which can be monitored via pronounced reductions in photochemical efficiency (Fv/Fm) during winter. Eastern white pine (Pinus strobus L.) and white spruce (Picea  glauca (Moench) Voss) are known to recover from winter stress at different rates, with pine recovering more slowly than spruce, suggesting different mechanisms for sustained dissipation in these species. Our objectives were to monitor pine and spruce throughout spring recovery in order to provide insights into key mechanisms for sustained dissipation in both species. We measured chlorophyll fluorescence, pigments, and abundance and phosphorylation status of key photosynthetic proteins. We found that both species rely on two forms of sustained dissipation involving retention of high amounts of antheraxanthin (A) + zeaxanthin (Z), one that is very slowly reversible and temperature independent and one that is more dynamic and occurs only on subzero days. Differences in protein abundance suggest that spruce, but not pine, likely upregulates cyclic or alternative pathways of electron transport involving the cytochrome b6f complex and photosystem I (PSI). Both species show an increased sustained phosphorylation of the D1 protein on subzero days, and spruce additionally shows dramatic increases in the sustained phosphorylation of light-harvesting complex II (LHCII) and other PSII core proteins on subzero days only, suggesting that a mechanism of sustained dissipation that is temperature dependent requires sustained phosphorylation of photosynthetic proteins in spruce, possibly allowing for direct energy transfer from PSII to PSI as a mechanism of photoprotection. The data suggest differences in strategy among conifers in mechanisms of sustained thermal dissipation in response to winter stress. Additionally, the flexible induction of sustained A + Z and phosphorylation of photosynthetic proteins in response to subzero temperatures during spring recovery seem to be important in providing photoprotection during transitional periods with high temperature fluctuation.


Asunto(s)
Picea , Pinus , Picea/fisiología , Fotosíntesis , Pinus/fisiología , Fosforilación , Temperatura , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo
12.
Sci Rep ; 13(1): 21257, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040772

RESUMEN

Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits offers valuable insights into species responses to present and future environmental conditions, aiding the implementation of measures to ensure forest resilience and productivity. This study investigates the variability in functional traits among five black spruce (Picea mariana (Mill.) B.S.P.) provenances originating from a latitudinal gradient along the boreal forest, and planted in a common garden in Quebec, Canada. We examined differences in bud phenology, growth performance, lifetime first reproduction, and the impact of a late-frost event on tree growth and phenological adjustments. The findings revealed that trees from northern sites exhibit earlier budbreak, lower growth increments, and reach reproductive maturity earlier than those from southern sites. Late-frost damage affected growth performance, but no phenological adjustment was observed in the successive year. Local adaptation in the functional traits may lead to maladaptation of black spruce under future climate conditions or serve as a potent evolutionary force promoting rapid adaptation under changing environmental conditions.


Asunto(s)
Picea , Picea/fisiología , Canadá , Quebec , Bosques , Árboles , Asignación de Recursos
13.
PLoS One ; 18(10): e0292682, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824484

RESUMEN

Tree line areas exhibited significant changes in response to climate change, including upward migration. Lower tree line dynamics are rarely studied, but as unique features in arid and semi-arid areas, they may influence forest distribution. Here, eight lower tree line plots in a Picea crassifolia Kom. (Qinghai spruce) forest in the arid and semi-arid Qilian Mountains of northwestern China were used to determine changes in tree line location and relationships with meteorological factors during 1968-2018. The results showed that the lower tree line descended by an average of 9.82 m during 1968 to 2018, and exhibited almost no change after 2008. The change in the lower tree line was significantly correlated with the annual average temperature (°C) and annual precipitation (mm) and may be affected by human activities. In the past 50 years, the lower tree line in arid areas exhibited a downward trend. Our findings indicate that the movement of the lower tree line is also an important aspect of climatic changes in coniferous forest distribution in arid and semi-arid mountains.


Asunto(s)
Picea , Árboles , Humanos , Bosques , China , Temperatura , Cambio Climático , Picea/fisiología
14.
Tree Physiol ; 43(10): 1745-1757, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37405989

RESUMEN

Abiotic factors such as water and nutrient availability can exert a dominant influence on the susceptibility of plants to various pathogens. Effects of abiotic environmental factors on phenolic compound concentrations in the plant tissue may represent one of the major underlying mechanisms, as these compounds are known to play a substantial role in plant resistance to pests. In particular, this applies to conifer trees, in which a large range of phenolic compounds are produced constitutively and/or induced by pathogen attack. We subjected Norway spruce saplings to water limitation and elevated nutrient supply over 2 years and subsequently controlled infection with the needle rust Chrysomyxa rhododendri (DC.) de Bary and analysed both constitutive and inducible phenolic compound concentrations in the needles as well as the degree of infection. Compared with the control group, both drought and fertilization profoundly modified the constitutive and pathogen-induced profiles of phenolic compounds, but had little impact on the total phenolic content. Fertilization predominantly affected the inducible phenolic response and led to higher infection rates by C. rhododendri. Drought stress, in contrast, mainly shaped the phenolic profiles in healthy plant parts and had no consequences on the plant susceptibility. The results show that specific abiotic effects on individual compounds seem to be decisive for the infection success of C. rhododendri, whereby the impaired induced response in saplings subjected to nutrient supplementation was most critical. Although drought effects were minor, they varied depending on the time and length of water limitation. The results indicate that prolonged drought periods in the future may not significantly alter the foliar defence of Norway spruce against C. rhododendri, but fertilization, often propagated to increase tree growth and forest productivity, can be counterproductive in areas with high pathogen pressure.


Asunto(s)
Sequías , Picea , Picea/fisiología , Noruega , Árboles , Agua
15.
Glob Chang Biol ; 29(17): 4842-4860, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424219

RESUMEN

Common-garden trials of forest trees provide phenotype data used to assess growth and local adaptation; this information is foundational to tree breeding programs, genecology, and gene conservation. As jurisdictions consider assisted migration strategies to match populations to suitable climates, in situ progeny and provenance trials provide experimental evidence of adaptive responses to climate change. We used drone technology, multispectral imaging, and digital aerial photogrammetry to quantify spectral traits related to stress, photosynthesis, and carotenoids, and structural traits describing crown height, size, and complexity at six climatically disparate common-garden trials of interior spruce (Picea engelmannii × glauca) in western Canada. Through principal component analysis, we identified key components of climate related to temperature, moisture, and elevational gradients. Phenotypic clines in remotely sensed traits were analyzed as trait correlations with provenance climate transfer distances along principal components (PCs). We used traits showing clinal variation to model best linear unbiased predictions for tree height (R2 = .98-.99, root mean square error [RMSE] = 0.06-0.10 m) and diameter at breast height (DBH, R2 = .71-.97, RMSE = 2.57-3.80 mm) and generated multivariate climate transfer functions with the model predictions. Significant (p < .05) clines were present for spectral traits at all sites along all PCs. Spectral traits showed stronger clinal variation than structural traits along temperature and elevational gradients and along moisture gradients at wet, coastal sites, but not at dry, interior sites. Spectral traits may capture patterns of local adaptation to temperature and montane growing seasons which are distinct from moisture-limited patterns in stem growth. This work demonstrates that multispectral indices improve the assessment of local adaptation and that spectral and structural traits from drone remote sensing produce reliable proxies for ground-measured height and DBH. This phenotyping framework contributes to the analysis of common-garden trials towards a mechanistic understanding of local adaptation to climate.


Asunto(s)
Picea , Picea/fisiología , Tecnología de Sensores Remotos , Dispositivos Aéreos No Tripulados , Fitomejoramiento , Árboles , Fenotipo
16.
Sci Total Environ ; 880: 163114, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011694

RESUMEN

Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.


Asunto(s)
Fagus , Picea , Agricultura Forestal , Sequías , Suelo , Tecnología de Sensores Remotos , Europa (Continente) , Picea/fisiología , Fagus/fisiología , Agua , Árboles/fisiología
17.
J Environ Manage ; 339: 117783, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058930

RESUMEN

Lowland conifer forests dominated by black spruce (Picea mariana) and tamarack (Larix laricina) typically occur in peatlands in the boreal North American forest with near-surface water tables throughout the year. These forests are ecologically and economically important resources that may be impacted by climate change. However, information characterizing effects of forest disturbance, such as even-aged harvest on water table dynamics is needed to evaluate which forest tree species cover types are most hydrologically susceptible to even-aged harvest and changes in precipitation. We used a chronosequence approach to evaluate water table fluctuations and evapotranspiration across four stand age classes (<10, 15-30, 40-80, and >100-years old) and three distinct forest cover types (productive black spruce, stagnant black spruce, and tamarack) for a period of three years in Minnesota, USA. In general, there is limited evidence for elevated water tables in the younger age classes; the <10-year age class had no significant difference in mean weekly water table depth compared to the older age classes across all cover types. Estimated actual daily evapotranspiration (ET) generally agreed with the water table observations, with the exception of the tamarack cover type where ET was significantly lower in the <10-year age class. Productive black spruce sites that are 40-80-years old had higher evapotranspiration, and lower water table, possibly reflecting increased transpiration associated with the stem exclusion stage of stand development. Tamarack in the 40-80-year age class had higher water tables but no difference in ET compared to all other age classes, indicating that other external factors are driving higher water tables in that age class. To evaluate susceptibility to changing climate, we also assessed the sensitivity and response of water table dynamics to pronounced differences in growing season precipitation that occurred across study years. In general, tamarack forests are more sensitive to changes in precipitation compared to the two black spruce forest cover types. These findings can inform expected responses of site hydrology for a range of precipitation scenarios that may occur under future climate and be used by forest managers to evaluate hydrologic impacts of forest management activities across lowland conifer forest cover types.


Asunto(s)
Agua Subterránea , Picea , Árboles , Bosques , Taiga , Picea/fisiología , Agua , Cambio Climático
18.
Tree Physiol ; 43(6): 925-937, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864576

RESUMEN

It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.


Asunto(s)
Abies , Picea , Dióxido de Carbono/fisiología , Picea/fisiología , Nitrógeno , Agua , Temperatura , Fotosíntesis , Hojas de la Planta/fisiología
19.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822431

RESUMEN

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Asunto(s)
Fagus , Micorrizas , Picea , Suelo , Bosques , Estaciones del Año , Fagus/fisiología , Bacterias , Árboles/fisiología , Picea/fisiología
20.
Sci Total Environ ; 868: 161601, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36646222

RESUMEN

Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.


Asunto(s)
Fagus , Picea , Árboles/fisiología , Ecosistema , Sequías , Cambio Climático , Bosques , Picea/fisiología , Fagus/fisiología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA