Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.373
Filtrar
1.
Sci Rep ; 14(1): 21284, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261518

RESUMEN

The newly recorded Phyllymenia gibesii in the Mediterranean Sea at Alexandria coast of Egypt is regarded as a significant source of bioactive substances and is applied as an antioxidant, anti-inflammatory, and antimicrobial agent. According to the HPLC chromatograms, the acetone extract of P. gibesii comprised ten photosynthetic pigments (chlorophyll-a, chlorophyll-d, α-carotene, ß-carotene, phycocyanin, allophycocyanin, antheraxanthin, ß-cryptoxanthin, lutein, and violaxanthin). Total carotenoids were the dominant class in the pigments' profile, achieving a concentration of 257 g/g dry weight. The P. gibbesii extract had a total content of phenols (146.67 mg/g) and a total content of flavonoids (104.40 mg/g). The capacity of all the investigated biological activities augmented with the concentration of the algal extract. The maximal DPPH scavenging capacity was 81.44%, with an inhibitory concentration (IC50) of 9.88 µg/mL. Additionally, the highest ABTS scavenging capacity was 89.62%, recording an IC50 of 21.77 µg/mL. The hemolytic activity of P. gibbesii attained a maximum capacity of 49.88% with an IC50 of 100.25 µg/mL. Data also showed the maximum anti-inflammatory effectiveness at 81.25%, with an IC50 of 99.75 µg/mL. Furthermore, the extract exhibited antimicrobial capacity against all reference strains, particularly at high concentrations (0.1 mg/mL), with the greatest effect on C. albicans and E. coli.


Asunto(s)
Polifenoles , Polifenoles/farmacología , Polifenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Pigmentos Biológicos/química , Pigmentos Biológicos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Estramenopilos/química , Mar Mediterráneo , Cromatografía Líquida de Alta Presión , Pruebas de Sensibilidad Microbiana
2.
Anal Methods ; 16(33): 5652-5664, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39109659

RESUMEN

The intricate composition of microalgal pigments plays a crucial role in various biological processes, from photosynthesis to biomarker identification. Traditional pigment analysis methods involve complex extraction techniques, posing challenges in maintaining analyte integrity. In this study, we employ Electron Transfer Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (ET-MALDI-MS) to compare the pigmentary profiles of Chlorella vulgaris intact cells, chloroplasts, and solvent extracts. We aim to obtain comprehensive extracts rich in polar and non-polar compounds using ultrasound-assisted and supercritical fluid extraction methods. Additionally, intact chloroplasts are isolated using a lysis buffer and sucrose density gradient centrifugation. Our ET-MALDI-MS analysis reveals distinct compositional differences, highlighting the impact of extraction protocols on microalgal pigment identification. We observe prominent signals corresponding to radical cations of key pigments, including chlorophylls and carotenoids, which are crucial for C. vulgaris identification. Furthermore, ET-MALDI-MS facilitates the identification of specific lipids within chloroplast membranes and other organelles. This study underscores the rapid and precise nature of ET-MALDI-MS in microalgal biomarker analysis, providing valuable insights into phytoplankton dynamics, trophic levels, and environmental processes. C. vulgaris emerges as a promising model for studying pigment composition and membrane lipid diversity, enhancing our understanding of microalgal ecosystems.


Asunto(s)
Chlorella vulgaris , Cloroplastos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Chlorella vulgaris/química , Chlorella vulgaris/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cloroplastos/química , Cloroplastos/metabolismo , Carotenoides/análisis , Carotenoides/química , Clorofila/análisis , Clorofila/química , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química
3.
Food Res Int ; 192: 114818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147513

RESUMEN

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Asunto(s)
Hierro , Polifenoles , Rizoma , Rizoma/química , Polifenoles/química , Polifenoles/análisis , Hierro/química , Quelantes del Hierro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análisis , Levodopa/química , Lotus/química , Cromatografía Líquida de Alta Presión , Culinaria , Calor , Ácido Clorogénico/química , Espectrometría de Masa por Ionización de Electrospray
4.
Int J Biol Macromol ; 277(Pt 4): 134380, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098674

RESUMEN

Red Monascus Pigment (RMP), a natural pigment, has attracted significant attention due to its suitability for food use and potential health benefits. However, preserving its stability and exploring value-added development opportunities remain crucial challenges. This study outlined the utilization of RMP, by successfully preparing hydrogel beads encapsulating RMP crude extract (RMPCE) through Ca2+-mediated chitosan (CS)/sodium alginate (SA) encapsulation (CO-RMPHB). A systematic investigation into the fabrication and stability parameters, including preparation conditions, temperature, monochromatic light and storage time, was undertaken. Through optimization (SA: 2.50 wt%; CaCl2: 6.00 wt%; CS: 0.50 wt%), maximum encapsulation efficiency of 73.54 ± 2.16 % was achieved. The maximum swelling degree of blank hydrogel beads (BHB) in simulated gastric solution (pH = 1.2, 1.50 ± 0.97 %) was significantly lower than in simulated intestinal solution (pH = 7.0, 28.05 ± 1.43 %), confirming their sensitivity to pH changes. Additionally, the CO-RMPHB (66.08 %, 1000 µL) exhibited superior DPPH radical scavenging capability compared to individual RMPCE or BHB. Furthermore, analysis of the release kinetics based on zero-order, first-order, Higuchi, and Ritger-Peppas models revealed that RMPCE release from CO-RMPHB under in vitro digestion models followed non-Fickian diffusion. This discovery effectively addresses the challenges of the stability and controlled release of RMP, expanding its applications in the food and pharmaceutical industries.


Asunto(s)
Alginatos , Calcio , Quitosano , Hidrogeles , Monascus , Quitosano/química , Alginatos/química , Hidrogeles/química , Monascus/química , Monascus/metabolismo , Cinética , Calcio/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Pigmentos Biológicos/química , Portadores de Fármacos/química , Microesferas
5.
Int J Biol Macromol ; 276(Pt 1): 133869, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009261

RESUMEN

As food packaging evolves, consumer interests are shifting from traditional to intelligent food packaging systems. Intelligent packaging includes active components that display changes in a visual or interactive form perceivable by consumers. This offers real-time monitoring of the quality and shelf life of the packaged food and enhances transparency. For example, pH-sensitive natural pigment-based films change color in response to variations in pH levels, enabling the film/labels to reflect alterations in the acidity or basicity of the food inside the package. Natural pigments like anthocyanins, curcumin, betalains, chlorophyll, and carotenoids have been comprehensively reported for developing biodegradable pH-sensitive films of starch, protein, chitosan, and cellulose. Natural pigments offer great compatibility with these biopolymers and improve the other performance parameters of the films. However, these films still lack the strength and versatility of petroleum-based synthetic plastic films. But these films can be used as an indicator and combined with primary packaging to monitor freshness, time-temperature, and leak for muscle foods, dairy products, fruits and vegetables, and bakery products. Therefore, this review provides a detailed overview of pH-sensitive pigments, their compatibility with natural polymers, their role in film performance in monitoring, and their food packaging applications.


Asunto(s)
Embalaje de Alimentos , Pigmentos Biológicos , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Biopolímeros/química , Pigmentos Biológicos/química , Materiales Inteligentes/química , Antocianinas/química
6.
World J Microbiol Biotechnol ; 40(9): 272, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030303

RESUMEN

Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.


Asunto(s)
Microalgas , Pigmentos Biológicos , Microalgas/metabolismo , Microalgas/química , Pigmentos Biológicos/química , Carotenoides/química , Carotenoides/metabolismo , Carotenoides/análisis , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Cianobacterias/metabolismo , Cianobacterias/química , Rhodophyta/química , Rhodophyta/metabolismo , Chlorophyta/química , Chlorophyta/metabolismo , Clorofila/análisis , Polifenoles/análisis , Polifenoles/química , Polifenoles/metabolismo , Medios de Cultivo/química
7.
World J Microbiol Biotechnol ; 40(9): 270, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030429

RESUMEN

Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.


Asunto(s)
Bacterias , Pigmentos Biológicos , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Bacterias/metabolismo , Biotecnología/métodos , Carotenoides/metabolismo , Carotenoides/química , Indoles/metabolismo , Indoles/química , Terpenos/metabolismo , Terpenos/química , Piridinas/metabolismo , Piridinas/química , Pirroles/metabolismo , Pirroles/química , Técnicas Biosensibles , Fenazinas/metabolismo , Fenazinas/química
8.
ACS Appl Mater Interfaces ; 16(31): 40531-40542, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042762

RESUMEN

Nature provides a great source of inspiration for the development of sustainable materials with excellent properties, among which melanin with optical, electronic, and radiation protection properties are considered to be promising coloring materials. However, compared to chemical pigments, the single color, complex oxidation process, and poor solubility of natural melanin strongly limit their further applications. Here, we introduce a series of melanin-like polymeric pigments with amino acid-encoded physicochemical properties by a simple three-component reaction system. Our protocol enables artificial control of the chromophore structures through the rational design of the substrates and dopants, thereby combining the safety and functionality of biopigments with the color richness of chemical dyes. Similar to the photoprotective effect of natural melanin, the polymeric pigments showed excellent antioxidant activity in reducing free radicals and have the advantages of iridescent color, strong tinting strength, stability, and affordability. Furthermore, due to their ability to dye substrates, these biomimetic are expected to become new low-cost bioactive chromophores and find various biochemical applications such as in clothing and hair dyeing, food addition, and anticounterfeiting detection.


Asunto(s)
Materiales Biomiméticos , Melaninas , Materiales Biomiméticos/química , Melaninas/química , Colorantes/química , Color , Antioxidantes/química , Antioxidantes/farmacología , Pigmentos Biológicos/química
9.
Braz J Microbiol ; 55(3): 2227-2237, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954221

RESUMEN

Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.


Asunto(s)
Azospirillum brasilense , Melaninas , Triptófano , Triptófano/metabolismo , Triptófano/química , Melaninas/química , Melaninas/metabolismo , Azospirillum brasilense/metabolismo , Azospirillum brasilense/química , Azospirillum brasilense/genética , Pigmentos Biológicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Medios de Cultivo/química
10.
Mar Drugs ; 22(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057436

RESUMEN

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Algas Marinas , Xantófilas , Xantófilas/farmacología , Xantófilas/química , Xantófilas/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Algas Marinas/química , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Animales , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación
11.
Compr Rev Food Sci Food Saf ; 23(4): e13390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031881

RESUMEN

Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.


Asunto(s)
Color , Embalaje de Alimentos , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos , Pigmentos Biológicos/química
12.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38962874

RESUMEN

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Asunto(s)
Benzopiranos , Proteínas Fúngicas , Familia de Multigenes , Pigmentos Biológicos , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Talaromyces/química , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Humanos , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Línea Celular Tumoral
13.
PeerJ ; 12: e17698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071122

RESUMEN

Despite their overlooked status, weeds are increasingly recognized for their therapeutic value, aligning with historical reliance on plants for medicine and nutrition. This study investigates the medicinal potential of native weed species in Bangladesh, specifically pigments, antioxidants, and free radical scavenging abilities. Twenty different medicinal weed species were collected from the vicinity of Khulna Agricultural University and processed in the Crop Botany Department Laboratory. Pigment levels were determined using spectrophotometer analysis, and phenolics, flavonoids, and DPPH were quantified accordingly. Chlorophyll levels in leaves ranged from 216.70 ± 9.41 to 371.14 ± 28.67 µg g-1 FW, and in stems from 51.98 ± 3.21 to 315.89 ± 17.19 µg g-1 FW. Flavonoid content also varied widely, from 1,624.62 ± 102.03 to 410.00 ± 115.58 mg CE 100 g-1 FW in leaves, and from 653.08 ± 32.42 to 80.00 ± 18.86 mg CE 100 g-1 FW in stems. In case of phenolics content Euphorbia hirta L. displaying the highest total phenolic content in leaves (1,722.33 ± 417.89 mg GAE 100 g-1 FW) and Ruellia tuberosa L. in stems (977.70 ± 145.58 mg GAE 100 g-1 FW). The lowest DPPH 2.505 ± 1.028 mg mL-1was found in Heliotropium indicum L. leaves. Hierarchical clustering links species with pigment, phenolic/flavonoid content, and antioxidant activity. PCA, involving 20 species and seven traits, explained 70.07% variability, with significant PC1 (14.82%) and PC2 (55.25%). Leaves were shown to be superior, and high-performing plants such as E. hirta and H. indicum stood out for their chemical composition and antioxidant activity. Thus, this research emphasizes the value of efficient selection while concentrating on the therapeutic potential of native weed species.


Asunto(s)
Antioxidantes , Depuradores de Radicales Libres , Malezas , Plantas Medicinales , Bangladesh , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/farmacología , Malezas/química , Depuradores de Radicales Libres/química , Plantas Medicinales/química , Hojas de la Planta/química , Flavonoides/análisis , Flavonoides/química , Fenoles/análisis , Fenoles/química , Extractos Vegetales/química , Pigmentos Biológicos/química , Pigmentos Biológicos/análisis , Clorofila/análisis
14.
Adv Appl Microbiol ; 128: 1-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059841

RESUMEN

In Chile, as in the rest of the world, only a small fraction of the fungal diversity inhabiting the wide variety of its ecosystems is known. This diversity must hide an inestimable richness of species with interesting biotechnological potential, including fungal pigment producers. Recently, interest in filamentous fungi has increased significantly due to their importance as alternative sources of pigments and colorants that are environmentally and human health friendly. As a result, fungal pigments are gaining importance in various industrial applications, such as food, textiles, pharmaceuticals, cosmetics, etc. The increasing consumer demand for "green label" natural colorants requires the exploration of different ecosystems in search of new fungal species that are efficient producers of different pigment with a wide range of colors and ideally without the co-production of mycotoxins. However, advances are also needed in pigment production processes through fermentation, scale-up from laboratory to industrial scale, and final product formulation and marketing. In this respect, the journey is still full of challenges for scientists and entrepreneurs. This chapter describes studies on pigment-producing fungi collected in the forests of central-southern Chile. Aspects such as the exploration of potential candidates as sources of extracellular pigments, the optimization of pigment production by submerged fermentation, methods of pigment extraction and purification for subsequent chemical characterization, and formulation (by microencapsulation) for potential cosmetic applications are highlighted. This potential use is due to the outstanding bioactivity of most fungal pigments, making them interesting functional ingredients for many applications. Finally, the use of fungal pigments for textile and spalting applications is discussed.


Asunto(s)
Bosques , Hongos , Pigmentos Biológicos , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/química , Chile , Hongos/metabolismo , Hongos/genética , Hongos/clasificación , Fermentación
15.
Food Chem ; 460(Pt 1): 140514, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047471

RESUMEN

Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.


Asunto(s)
Microbioma Gastrointestinal , Pigmentos Biológicos , Pigmentos Biológicos/química , Animales , Humanos , Industria de Alimentos , Valor Nutritivo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
16.
Mar Drugs ; 22(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921552

RESUMEN

Developing novel, safe, and efficient proangiogenic drugs is an important approach for the prevention and treatment of cardiovascular diseases. In this study, 4 new compounds, including 3 azaphilones (1-3) and 1 dihydroisocoumarin (4), as well as 13 known compounds (5-17), were isolated from the sea-mud-derived fungus Neopestalotiopsis sp. HN-1-6 from the Beibu Gulf of China. The structures of the new compounds were determined by NMR, MS, ECD, and NMR calculations. Compounds 3, 5, and 7 exhibited noteworthy proangiogenic activities in a zebrafish model at a concentration of 40 µM, without displaying cytotoxicity toward five human cell lines. In addition, some compounds demonstrated antibacterial effects against Staphylococcus aureus, Escherichia coli, and Candida albicans, with MIC values ranging from 64 µg/mL to 256 µg/mL.


Asunto(s)
Antibacterianos , Benzopiranos , Pruebas de Sensibilidad Microbiana , Pigmentos Biológicos , Pez Cebra , Animales , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Humanos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/aislamiento & purificación , Pigmentos Biológicos/química , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Organismos Acuáticos , Escherichia coli/efectos de los fármacos , China , Línea Celular
17.
Curr Opin Chem Biol ; 81: 102477, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878611

RESUMEN

Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.


Asunto(s)
Colorantes de Alimentos , Ingeniería Metabólica , Colorantes de Alimentos/metabolismo , Colorantes de Alimentos/química , Ingeniería Metabólica/métodos , Fermentación , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/química , Bacterias/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892117

RESUMEN

While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.


Asunto(s)
Lípidos , Microalgas , Algas Marinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/química , Lípidos/análisis , Algas Marinas/química , Microalgas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Aminacrina/química , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química , Spirulina/química
19.
Food Res Int ; 188: 114442, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823830

RESUMEN

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Asunto(s)
Antocianinas , Fermentación , Pectinas , Taninos , Vino , Antocianinas/química , Antocianinas/análisis , Pectinas/química , Vino/análisis , Taninos/química , Color , Manipulación de Alimentos/métodos , Pigmentos Biológicos/química , Polímeros/química
20.
Plant Physiol ; 196(1): 446-460, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38829803

RESUMEN

A unique family of decarboxylated betalains derived from dopamine has recently been discovered. Due to the lack of chemical standards, the existence and distribution of decarboxylated betalains in nature remain unknown. Traditional betalains contain L-dihydroxyphenylalanine as the starting point of the biosynthetic pathway and betalamic acid as a structural and functional unit, while the recently discovered betalains rely on dopamine. Here, 30 dopamine-derived betalains were biotechnologically produced, purified, and characterized, creating an unprecedented library to explore their properties and presence in nature. The maximum absorbance wavelengths for the pigments ranged between 461 and 485 nm. HPLC analysis showed retention times between 0.6 and 2.2 min higher than traditional betalains due to their higher hydrophobicity. The presence of decarboxybetalains in nature was screened using HPLC-ESI-Q-TOF mass spectrometry in various species of the Amaranthaceae family: beetroot (Beta vulgaris subsp. vulgaris), Swiss chard (B. vulgaris var. cicla), celosia (Celosia argentea var. plumosa), and quinoa (Chenopodium quinoa). The latter species had the highest content of decarboxybetalains (28 compounds in its POEQ-143 variety). Twenty-nine pigments were found distributed among the different analyzed plant sources. The abundance of decarboxybetalains demonstrated in this work highlights these pigments as an important family of phytochemicals in the order Caryophyllales.


Asunto(s)
Betalaínas , Dopamina , Pigmentos Biológicos , Betalaínas/química , Betalaínas/metabolismo , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/química , Cromatografía Líquida de Alta Presión , Dopamina/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...