Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.024
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892448

RESUMEN

Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.


Asunto(s)
Muerte Celular , Hipocampo , Células Piramidales , Convulsiones , Canales Catiónicos TRPC , Animales , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Ratones , Células Piramidales/metabolismo , Células Piramidales/patología , Hipocampo/metabolismo , Hipocampo/patología , Convulsiones/metabolismo , Convulsiones/patología , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Estado Epiléptico/inducido químicamente , Masculino , Neuronas/metabolismo , Pilocarpina , Potenciación a Largo Plazo , Ratones Noqueados , Ratones Endogámicos C57BL , Plasticidad Neuronal
2.
Nanomedicine ; 59: 102752, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740358

RESUMEN

Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.


Asunto(s)
Quitosano , Epilepsia del Lóbulo Temporal , Flavonoles , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Nanopartículas , Pilocarpina , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Animales , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/metabolismo , Quitosano/química , Quitosano/farmacología , Flavonoles/farmacología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Nanopartículas/química , Masculino , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Flavonoides/farmacología , Flavonoides/administración & dosificación , Conducta Animal/efectos de los fármacos , Anticonvulsivantes/farmacología , Fármacos Neuroprotectores/farmacología
3.
Epilepsy Behav ; 156: 109832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761450

RESUMEN

Crack cocaine is a highly addictive and potent stimulant drug. Animal studies have shown that the cholinergic system plays a role in neurotoxicity induced by cocaine or its active metabolites inhalation. Behavioral alterations associated with crack cocaine use include hyperactivity, depressed mood, and decreased seizure threshold. Here we evaluate the acetylcholinesterase (AChE) and reactive oxygen species (ROS) activity, behavioral profile, and the threshold for epileptic seizures in rats that received intrahippocampal pilocarpine (H-PILO) followed by exposure to crack cocaine (H-PILO + CRACK). Animals exposed to H-PILO + CRACK demonstrated increased severity and frequency of limbic seizures. The AChE activity was reduced in the groups exposed to crack cocaine alone (CRACK) and H-PILO + CRACK, whereas levels of ROS remained unchanged. In addition, crack cocaine exposure increased vertical locomotor activity, without changing water and sucrose intake. Short-term memory consolidation remained unchanged after H-PILO, H-PILO + CRACK, and CRACK administration. Overall, our data suggest that crack cocaine inhalation reduced the threshold for epileptic seizures in rats submitted to low doses of pilocarpine through the inhibition of AChE. Taken together, our findings can be useful in the development of effective strategies for preventing and treating the harmful effects of cocaine and crack cocaine on the central nervous system.


Asunto(s)
Acetilcolinesterasa , Cocaína Crack , Pilocarpina , Ratas Wistar , Convulsiones , Animales , Masculino , Acetilcolinesterasa/metabolismo , Ratas , Pilocarpina/toxicidad , Convulsiones/inducido químicamente , Administración por Inhalación , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Actividad Motora/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
4.
Biomed Phys Eng Express ; 10(4)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38744259

RESUMEN

Objective.Detection of the epileptogenic zone is critical, especially for patients with drug-resistant epilepsy. Accurately mapping cortical regions exhibiting high activity during spontaneous seizure events while detecting neural activity up to 500 Hz can assist clinicians' surgical decisions and improve patient outcomes.Approach.We designed, fabricated, and tested a novel hybrid, multi-scale micro-electrocorticography (micro-ECoG) array with a unique embedded configuration. This array was compared to a commercially available microelectrode array (Neuronexus) for recording neural activity in rodent sensory cortex elicited by somatosensory evoked potentials and pilocarpine-induced seizures.Main results.Evoked potentials and spatial maps recorded by the multi-scale array ('micros', 'mesos', and 'macros' refering to the relative electrode sizes, 40 micron, 1 mm, and 4 mm respectively) were comparable to the Neuronexus array. The SSEPs recorded with the micros had higher peak amplitudes and greater signal power than those recorded by the larger mesos and macro. Seizure onset events and high-frequency oscillations (∼450 Hz) were detected on the multi-scale, similar to the commercially available array. The micros had greater SNR than the mesos and macro over the 5-1000 Hz frequency range during seizure monitoring. During cortical stimulation experimentation, the mesos successfully elicited motor effects.Significance.Previous studies have compared macro- and microelectrodes for localizing seizure activity in adjacent regions. The multi-scale design validated here is the first to simultaneously measure macro- and microelectrode signals from the same overlapping cortical area. This enables direct comparison of microelectrode recordings to the macroelectrode recordings used in standard neurosurgical practice. Previous studies have also shown that cortical regions generating high-frequency oscillations are at an increased risk for becoming epileptogenic zones. More accurate mapping of these micro seizures may improve surgical outcomes for epilepsy patients.


Asunto(s)
Electrocorticografía , Potenciales Evocados Somatosensoriales , Microelectrodos , Convulsiones , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Animales , Convulsiones/diagnóstico , Ratas , Masculino , Electrodos Implantados , Corteza Somatosensorial , Diseño de Equipo , Ratas Sprague-Dawley , Mapeo Encefálico/métodos , Pilocarpina , Epilepsia
5.
Eur Arch Otorhinolaryngol ; 281(7): 3727-3733, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38573515

RESUMEN

PURPOSE: This study aims to investigate the efficacy of lower dose pilocarpine in alleviating late dry mouth symptoms in head and neck cancer patients received radiotherapy. METHODS: Eighteen head and neck cancer patients experiencing persistent dry mouth were enrolled in this study. All participants started pilocarpine treatment a median of 6 months post-radiotherapy. Initially, patients received pilocarpine at 5 mg/day, with a gradual increase to the recommended dose of 15 mg/day. A Patient-Reported Outcome Measurement (PROMs) questionnaire assessed symptoms' severity related to hyposalivation. RESULTS: All patients reported symptomatic dry mouth above grade 2 before starting the medication. Pilocarpine treatment continued based on patients' self-assessment, with a median duration of 12 months (range, 3-36 months). The median daily maintenance dose was 10 mg (range, 5 to 20 mg). Total PROMs scores significantly decreased following medication, from 13 points (range 7-18 points) to 7 points (range 4-13 points) (p = 0.001). Significant improvements were observed in questions related to dry mouth (p < 0.001), water intake during eating (p = 0.01), carrying water (p = 0.01), taste (p < 0.001), and water intake during speech (p < 0.001). Initial and maintenance doses of pilocarpine were lower, and the duration of pilocarpine usage was shorter in patients treated with intensity-modulated radiation therapy compared to conformal radiotherapy (12 months vs. 25 months, p = 0.04). CONCLUSION: Pilocarpine may be considered at doses lower for late-term dry mouth. With modern radiotherapy techniques effectively preserving the parotid gland, short-term use may be recommended in these patients. Future studies may enhance the development of a more robust patient selection criteria model.


Asunto(s)
Neoplasias de Cabeza y Cuello , Agonistas Muscarínicos , Medición de Resultados Informados por el Paciente , Pilocarpina , Traumatismos por Radiación , Xerostomía , Humanos , Xerostomía/etiología , Pilocarpina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Neoplasias de Cabeza y Cuello/radioterapia , Anciano , Agonistas Muscarínicos/uso terapéutico , Agonistas Muscarínicos/administración & dosificación , Adulto , Resultado del Tratamiento
6.
ACS Chem Neurosci ; 15(9): 1937-1947, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630556

RESUMEN

The development of antiepileptic drugs is still a long process. In this study, heparin-modified superparamagnetic iron oxide nanoparticles (UFH-SPIONs) were prepared, and their antiepileptic effect and underlying mechanism were investigated. UFH-SPIONs are stable, homogeneous nanosystems with antioxidant enzyme activity that are able to cross the blood-brain barrier (BBB) and enriched in hippocampal epileptogenic foci. The pretreatment with UFH-SPIONs effectively prolonged the onset of seizures and reduced seizure severity after lithium/pilocarpine (LP)-induced seizures in rats. The pretreatment with UFH-SPIONs significantly decreased the expression of inflammatory factors in hippocampal tissues, including IL-6, IL-1ß, and TNF-α. LP-induced oxidative stress in hippocampal tissues was in turn reduced upon pretreatment with UFH-SPIONs, as evidenced by an increase in the levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and a decrease in the level of lipid peroxidation (MDA). Moreover, the LP-induced upregulation of apoptotic cells was decreased upon pretreatment with UFH-SPIONs. Together, these observations suggest that the pretreatment with UFH-SPIONs ameliorates LP-induced seizures and downregulates the inflammatory response and oxidative stress, which exerts neuronal protection during epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Heparina , Inflamación , Cloruro de Litio , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Pilocarpina , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Cloruro de Litio/farmacología , Heparina/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Ratas Sprague-Dawley , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Anticonvulsivantes/farmacología
7.
Int J Dev Neurosci ; 84(4): 328-341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631684

RESUMEN

According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.


Asunto(s)
Degeneración Nerviosa , Ratas Wistar , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Ratas , Masculino , Degeneración Nerviosa/patología , Degeneración Nerviosa/inducido químicamente , Estriado Ventral/patología , Neuronas/patología , Animales Recién Nacidos , Pilocarpina/toxicidad , Modelos Animales de Enfermedad , Cloruro de Litio/toxicidad , Factores de Edad , Fluoresceínas
8.
Cell Rep ; 43(5): 114144, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38656874

RESUMEN

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Asunto(s)
Pilocarpina , Proteínas Proto-Oncogénicas c-abl , Convulsiones , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología
9.
Clin Sci (Lond) ; 138(9): 555-572, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38602323

RESUMEN

Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.


Asunto(s)
Enfermedades Neuroinflamatorias , Pilocarpina , Bazo , Estado Epiléptico , Animales , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Bazo/inmunología , Bazo/patología , Masculino , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/inmunología , Esplenectomía , Ratas Sprague-Dawley , Hipocampo/patología , Modelos Animales de Enfermedad , Linfocitos T/inmunología , Corteza Piriforme/patología , Neuronas/patología
10.
Proc Natl Acad Sci U S A ; 121(17): e2319607121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635635

RESUMEN

The development of seizures in epilepsy syndromes associated with malformations of cortical development (MCDs) has traditionally been attributed to intrinsic cortical alterations resulting from abnormal network excitability. However, recent analyses at single-cell resolution of human brain samples from MCD patients have indicated the possible involvement of adaptive immunity in the pathogenesis of these disorders. By exploiting the MethylAzoxyMethanol (MAM)/pilocarpine (MP) rat model of drug-resistant epilepsy associated with MCD, we show here that the occurrence of status epilepticus and subsequent spontaneous recurrent seizures in the malformed, but not in the normal brain, are associated with the outbreak of a destructive autoimmune response with encephalitis-like features, involving components of both cell-mediated and humoral immune responses. The MP brain is characterized by blood-brain barrier dysfunction, marked and persisting CD8+ T cell invasion of the brain parenchyma, meningeal B cell accumulation, and complement-dependent cytotoxicity mediated by antineuronal antibodies. Furthermore, the therapeutic treatment of MP rats with the immunomodulatory drug fingolimod promotes both antiepileptogenic and neuroprotective effects. Collectively, these data show that the MP rat could serve as a translational model of epileptogenic cortical malformations associated with a central nervous system autoimmune response. This work indicates that a preexisting brain maldevelopment predisposes to a secondary autoimmune response, which acts as a precipitating factor for epilepsy and suggests immune intervention as a therapeutic option to be further explored in epileptic syndromes associated with MCDs.


Asunto(s)
Epilepsia , Acetato de Metilazoximetanol/análogos & derivados , Pilocarpina , Ratas , Humanos , Animales , Autoinmunidad , Epilepsia/inducido químicamente , Epilepsia/patología , Convulsiones/patología , Encéfalo/patología , Modelos Animales de Enfermedad
11.
Brain Res ; 1836: 148882, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521160

RESUMEN

Ferroptosis is a newly identified form of non-apoptotic regulated cell death (RCD) andplaysanimportantrole in epileptogenesis. The p38 mitogen-activated protein kinase (p38 MAPK) pathway has been confirmed to be involved in ferroptosis. The mitochondria-targeting antioxidant Elamipretide (SS-31) can reduce the generation of lipid peroxidation and the buildup of reactive oxygen species (ROS). Collectively, our present study was to decipher whether SS-31 inhibits ferroptosis via the p38 MAPK signaling pathway in the rat epilepsy model induced by pilocarpine (PILO).Adult male Wistar rats were randomly divided into four groups: control group (CON group), epilepsy group (EP group), SS-31 treatment group (SS group), and p38 MAPK inhibitor (SB203580) treatment group (SB group). Our results demonstrated that the rat hippocampal neurons after epilepsy were followed by accumulated iron and malondialdehyde (MDA) content, upregulated phosphorylated p38 MAPK protein (P-p38) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels, reduced glutathione peroxidase 4 (Gpx4) content, and depleted glutathione (GSH) activity. Morphologically, mitochondrial ultrastructural damage under electron microscopy was manifested by a partial increase in outer membrane density, disappearance of mitochondrial cristae, and mitochondrial shrinkage. SS-31 and SB203580 treatment blocked the initiation and progression of ferroptosis in the hippocampus of epileptic rats via reducing the severity of epileptic seizures, reversing the expression of Gpx4, P-p38 , decreasing the levels of iron and MDA, as well as increasing the activity of GSH and Nrf2. To summarize, our findings proved that ferroptosis was coupled with the pathology of epilepsy, and SS-31 can inhibit PILO-induced seizures by preventing ferroptosis, which may be connected to the inhibition of p38 MAPK phosphorylation, highlighting the potential therapeutic value for targeting ferroptosis process in individuals with seizure-related diseases.


Asunto(s)
Epilepsia , Ferroptosis , Hipocampo , Mitocondrias , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Masculino , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Ferroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Dipéptidos/farmacología , Pilocarpina , Imidazoles/farmacología , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Oligopéptidos
12.
Cell Tissue Res ; 396(3): 371-397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499882

RESUMEN

Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Hipocampo , Estado Epiléptico , Ubiquinona , Animales , Ferroptosis/efectos de los fármacos , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Estado Epiléptico/inducido químicamente , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Pilocarpina , Ratas Sprague-Dawley , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos
13.
CNS Neurosci Ther ; 30(3): e14656, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38439573

RESUMEN

AIMS: In this study, the anticonvulsant action of closed-loop, low-frequency deep brain stimulation (DBS) was investigated. In addition, the changes in brain rhythms and functional connectivity of the hippocampus and prefrontal cortex were evaluated. METHODS: Epilepsy was induced by pilocarpine in male Wistar rats. After the chronic phase, a tripolar electrode was implanted in the right ventral hippocampus and a monopolar electrode in medial prefrontal cortex (mPFC). Subjects' spontaneous seizure behaviors were observed in continuous video recording, while the local field potentials (LFPs) were recorded simultaneously. In addition, spatial memory was evaluated by the Barnes maze test. RESULTS: Applying hippocampal DBS, immediately after seizure detection in epileptic animals, reduced their seizure severity and duration, and improved their performance in Barnes maze test. DBS reduced the increment in power of delta, theta, and gamma waves in pre-ictal, ictal, and post-ictal periods. Meanwhile, DBS increased the post-ictal-to-pre-ictal ratio of theta band. DBS decreased delta and increased theta coherences, and also increased the post-ictal-to-pre-ictal ratio of coherence. In addition, DBS increased the hippocampal-mPFC coupling in pre-ictal period and decreased the coupling in the ictal and post-ictal periods. CONCLUSION: Applying closed-loop, low-frequency DBS at seizure onset reduced seizure severity and improved memory. In addition, the changes in power, coherence, and coupling of the LFP oscillations in the hippocampus and mPFC demonstrate low-frequency DBS efficacy as an antiepileptic treatment, returning LFPs to a seemingly non-seizure state in subjects that received DBS.


Asunto(s)
Epilepsia , Pilocarpina , Humanos , Masculino , Ratas , Animales , Pilocarpina/toxicidad , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/terapia , Anticonvulsivantes , Hipocampo , Aprendizaje por Laberinto
14.
Planta Med ; 90(6): 426-439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452806

RESUMEN

Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.


Asunto(s)
Alcaloides , Oftalmopatías , Humanos , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Oftalmopatías/tratamiento farmacológico , Atropina/farmacología , Pilocarpina , Plantas Medicinales/química , Cafeína/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Reserpina/farmacología
15.
Epilepsy Res ; 202: 107355, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555654

RESUMEN

BACKGROUND: The hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN1) is predominantly located in key regions associated with epilepsy, such as the neocortex and hippocampus. Under normal physiological conditions, HCN1 plays a crucial role in the excitatory and inhibitory regulation of neuronal networks. In temporal lobe epilepsy, the expression of HCN1 is decreased in the hippocampi of both animal models and patients. However, whether HCN1 expression changes during epileptogenesis preceding spontaneous seizures remains unclear. OBJECTIVE: The aim of this study was to determine whether the expression of HCN1 is altered during the epileptic prodromal phase, thereby providing evidence for its role in epileptogenesis. METHODS: We utilized a cobalt wire-induced rat epilepsy model to observe changes in HCN1 during epileptogenesis and epilepsy. Additionally, we also compared HCN1 alterations in epileptogenic tissues between cobalt wire- and pilocarpine-induced epilepsy rat models. Long-term video EEG recordings were used to confirm seizures development. Transcriptional changes, translation, and distribution of HCN1 were assessed using high-throughput transcriptome sequencing, total protein extraction, membrane and cytoplasmic protein fractionation, western blotting, immunohistochemistry, and immunofluorescence techniques. RESULTS: In the cobalt wire-induced rat epilepsy model during the epileptogenesis phase, total HCN1 mRNA and protein levels were downregulated. Specifically, the membrane expression of HCN1 was decreased, whereas cytoplasmic HCN1 expression showed no significant change. The distribution of HCN1 in the distal dendrites of neurons decreased. During the epilepsy period, similar HCN1 alterations were observed in the neocortex of rats with cobalt wire-induced epilepsy and hippocampus of rats with lithium pilocarpine-induced epilepsy, including downregulation of mRNA levels, decreased total protein expression, decreased membrane expression, and decreased distal dendrite expression. CONCLUSIONS: Alterations in HCN1 expression and distribution are involved in epileptogenesis beyond their association with seizure occurrence. Similarities in HCN1 alterations observed in epileptogenesis-related tissues from different models suggest a shared pathophysiological pathway in epileptogenesis involving HCN1 dysregulation. Therefore, the upregulation of HCN1 expression in neurons, maintenance of the HCN1 membrane, and distal dendrite distribution in neurons may represent promising disease-modifying strategies in epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Hipocampo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales de Potasio , Ratas Sprague-Dawley , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Epilepsia/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Epilepsia/fisiopatología , Ratas , Hipocampo/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/genética , Pilocarpina/toxicidad , Cobalto/farmacología , Electroencefalografía , Neuronas/metabolismo , Neocórtex/metabolismo
16.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38458969

RESUMEN

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Asunto(s)
Bencimidazoles , Carbocianinas , Enfermedades Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Pilocarpina/toxicidad , Factor de Necrosis Tumoral alfa/genética , Caspasas/metabolismo , Interleucina-6 , Transducción de Señal , Inflamación/metabolismo
17.
J Oral Biosci ; 66(2): 447-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38336259

RESUMEN

OBJECTIVES: Typical agonists of G protein-coupled receptors (GPCRs), including muscarinic acetylcholine receptors (mAChRs), activate both G-protein and ß-arrestin signaling systems, and are termed balanced agonists. In contrast, biased agonists selectively activate a single pathway, thereby offering therapeutic potential for the specific activation of that pathway. The mAChR agonists carbachol and pilocarpine are known to induce phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2) via G-protein-dependent and -independent pathways, respectively. We investigated the involvement of ß-arrestin and its downstream mechanisms in the ERK1/2 phosphorylation induced by carbachol and pilocarpine in the human salivary ductal cell line, HSY cells. METHODS: HSY cells were stimulated with pilocarpine or carbachol, with or without various inhibitors. The cell lysates were analyzed by western blotting using the antibodies p44/p42MAPK and phosphor-p44/p42MAPK. RESULTS: Western blot analysis revealed that carbachol elicited greater stimulation of ERK1/2 phosphorylation compared to pilocarpine. ERK1/2 phosphorylation was inhibited by atropine and gefitinib, suggesting that mAChR activation induces transactivation of epidermal growth factor receptors (EGFR). Moreover, inhibition of carbachol-mediated ERK1/2 phosphorylation was achieved by GF-109203X (a PKC inhibitor), a ßARK1/GRK2 inhibitor, barbadin (a ß-arrestin inhibitor), pitstop 2 (a clathrin inhibitor), and dynole 34-2 (a dynamin inhibitor). In contrast, pilocarpine-mediated ERK1/2 phosphorylation was only inhibited by barbadin (a ß-arrestin inhibitor) and PP2 (a Src inhibitor). CONCLUSION: Carbachol activates both G-protein and ß-arrestin pathways, whereas pilocarpine exclusively activates the ß-arrestin pathway. Additionally, downstream of ß-arrestin, carbachol activates clathrin-dependent internalization, while pilocarpine activates Src.


Asunto(s)
Carbacol , Agonistas Muscarínicos , Pilocarpina , Receptores Muscarínicos , Transducción de Señal , Humanos , Fosforilación/efectos de los fármacos , Receptores Muscarínicos/metabolismo , Pilocarpina/farmacología , Carbacol/farmacología , Agonistas Muscarínicos/farmacología , Transducción de Señal/efectos de los fármacos , Conductos Salivales/metabolismo , beta-Arrestinas/metabolismo , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Western Blotting , Arrestinas/metabolismo
18.
Sci Rep ; 14(1): 4835, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418461

RESUMEN

An increasing number of studies have focused on the role of NEDD4-2 in regulating neuronal excitability and the mechanism of epilepsy. However, the exact mechanism has not yet been elucidated. Here, we explored the roles of NEDD4-2 and the CLC-2 channel in regulating neuronal excitability and mesial temporal lobe epilepsy (MTLE) pathogenesis. First, chronic MTLE models were induced by lithium-pilocarpine in developmental rats. Coimmunoprecipitation analysis revealed that the interaction between CLC-2 and NEDD4-2. Western blot analyses indicated that NEDD4-2 expression was downregulated, while phosphorylated (P-) NEDD4-2 and CLC-2 expression was upregulated in adult MTLE rats. Then, the primary hippocampal neuronal cells were isolated and cultured, and the NEDD4-2 was knocked down by shRNA vector, resulting in decreased protein levels of CLC-2. While CLC-2 absence caused increased NEDD4-2 in cells. Next, in an epileptic cell model induced by a Mg2+-free culture, whole-cell current-clamp recording demonstrated that NEDD4-2 deficiency inhibited the spontaneous action potentials of cells, and CLC-2 absence caused more significant decrease in the spontaneous action potentials of cells. In conclusion, we herein revealed that NEDD4-2 regulates the expression of CLC-2, which is involved in neuronal excitability, and participates in the pathogenesis of MTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Ratas , Canales de Cloruro CLC-2 , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Pilocarpina/efectos adversos
19.
Eur J Med Res ; 29(1): 121, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355613

RESUMEN

INTRODUCTION: Epilepsy is a common neurological disorder that presents with challenging mechanisms and treatment strategies. This study investigated the neuroprotective effects of quinpirole on lithium chloride pilocarpine-induced epileptic rats and explored its potential mechanisms. METHODS: Lithium chloride pilocarpine was used to induce an epileptic model in rats, and the effects of quinpirole on seizure symptoms and cognitive function were evaluated. The Racine scoring method, electroencephalography, and Morris water maze test were used to assess seizure severity and learning and memory functions in rats in the epileptic group. Additionally, immunohistochemistry and Western blot techniques were used to analyze the protein expression levels and morphological changes in glutamate receptor 2 (GluR2; GRIA2), BAX, and BCL2 in the hippocampi of rats in the epileptic group. RESULTS: First, it was confirmed that the symptoms in rats in the epileptic group were consistent with features of epilepsy. Furthermore, these rats demonstrated decreased learning and memory function in the Morris water maze test. Additionally, gene and protein levels of GluR2 in the hippocampi of rats in the epileptic group were significantly reduced. Quinpirole treatment significantly delayed seizure onset and decreased the mortality rate after the induction of a seizure. Furthermore, electroencephalography showed a significant decrease in the frequency of the spike waves. In the Morris water maze test, rats from the quinpirole treatment group demonstrated a shorter latency period to reach the platform and an increased number of crossings through the target quadrant. Network pharmacology analysis revealed a close association between quinpirole and GluR2 as well as its involvement in the cAMP signaling pathway, cocaine addiction, and dopaminergic synapses. Furthermore, immunohistochemistry and Western blot analysis showed that quinpirole treatment resulted in a denser arrangement and a more regular morphology of the granule cells in the hippocampi of rats in the epileptic group. Additionally, quinpirole treatment decreased the protein expression of BAX and increased the protein expression of BCL2. CONCLUSION: The current study demonstrated that quinpirole exerted neuroprotective effects in the epileptic rat model induced by lithium chloride pilocarpine. Additionally, it was found that the treatment not only alleviated the rats' seizure symptoms, but also improved their learning and memory abilities. This improvement was linked to the modulation of protein expression levels of GLUR2, BAX, and BCL2. These findings provided clues that would be important for further investigation of the therapeutic potential of quinpirole and its underlying mechanisms for epilepsy treatment.


Asunto(s)
Epilepsia , Fármacos Neuroprotectores , Ratas , Animales , Pilocarpina/toxicidad , Pilocarpina/uso terapéutico , Cloruro de Litio/uso terapéutico , Fármacos Neuroprotectores/efectos adversos , Quinpirol/efectos adversos , Proteína X Asociada a bcl-2/uso terapéutico , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Modelos Animales de Enfermedad
20.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38307381

RESUMEN

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Asunto(s)
Epilepsia del Lóbulo Temporal , Estado Epiléptico , Ratas , Animales , Pilocarpina , Vía de Señalización Wnt/fisiología , Litio/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Sulindac/efectos adversos , Sulindac/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...