Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Intervalo de año de publicación
1.
Zoolog Sci ; 37(3): 280-294, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32549542

RESUMEN

The Oriental greenfinch, Chloris sinica, is a small seed-eating finch that breeds in the eastern Palearctic region, an area that spans from Russia in the east to China, Korea, and Japan in the south and southwest. Several subspecies have been described based on subtle morphological characteristics, although the taxonomy varies among different authors. Although many ecological studies have been performed, there has been no phylogenetic study that encompasses the species' entire geographical range. We used four regions of mitochondrial DNA to analyze the intraspecies genetic phylogeny and diversity of the Oriental greenfinch. In addition, we performed morphometric analyses using museum specimens. Genetic analysis identified two clades that diverged approximately 1.06 million years ago. These were a population from the Ogasawara Islands, Japan (subspecies kittlitzi, Clade B), and the other populations (Clade A, which could not be subdivided according to geographic context). Morphometric analyses showed that the population on the Kuril Islands (subspecies kawarahiba) had the longest mean wing length, whereas C. s. kittlitzi had the shortest wings. Chloris s. kittlitzi also had the longest mean bill length, probably because it has adapted to feeding on the Ogasawara Islands. Based on molecular phylogeny and morphology analyses, we recommend that C. s. kittlitzi should be treated as a completely distinct species, called the Ogasawara greenfinch, Chloris kittlitzi. It is critically endangered and needs to be specially protected.


Asunto(s)
Pinzones/clasificación , Pinzones/genética , Especiación Genética , Variación Genética , Filogenia , Animales , China , ADN Mitocondrial/análisis , Pinzones/anatomía & histología , Japón , Masculino , República de Corea , Federación de Rusia , Análisis de Secuencia de ADN/veterinaria
2.
Mol Ecol Resour ; 20(2): 544-559, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31912659

RESUMEN

The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne ) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.


Asunto(s)
Aves/genética , Evolución Molecular , Genoma , Gorriones/genética , Animales , Aves/clasificación , Pollos/clasificación , Pollos/genética , Mapeo Cromosómico , Cromosomas/genética , Femenino , Pinzones/clasificación , Pinzones/genética , Ligamiento Genético , Masculino , Polimorfismo de Nucleótido Simple , Gorriones/clasificación
3.
Syst Biol ; 69(4): 739-755, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31860094

RESUMEN

Biotic interactions are hypothesized to be one of the main processes shaping trait and biogeographic evolution during lineage diversification. Theoretical and empirical evidence suggests that species with similar ecological requirements either spatially exclude each other, by preventing the colonization of competitors or by driving coexisting populations to extinction, or show niche divergence when in sympatry. However, the extent and generality of the effect of interspecific competition in trait and biogeographic evolution has been limited by a dearth of appropriate process-generating models to directly test the effect of biotic interactions. Here, we formulate a phylogenetic parametric model that allows interdependence between trait and biogeographic evolution, thus enabling a direct test of central hypotheses on how biotic interactions shape these evolutionary processes. We adopt a Bayesian data augmentation approach to estimate the joint posterior distribution of trait histories, range histories, and coevolutionary process parameters under this analytically intractable model. Through simulations, we show that our model is capable of distinguishing alternative scenarios of biotic interactions. We apply our model to the radiation of Darwin's finches-a classic example of adaptive divergence-and find limited support for in situ trait divergence in beak size, but stronger evidence for convergence in traits such as beak shape and tarsus length and for competitive exclusion throughout their evolutionary history. These findings are more consistent with presympatric, rather than postsympatric, niche divergence. Our modeling framework opens new possibilities for testing more complex hypotheses about the processes underlying lineage diversification. More generally, it provides a robust probabilistic methodology to model correlated evolution of continuous and discrete characters. [Bayesian; biotic interactions; competition; data augmentation; historical biogeography; trait evolution.].


Asunto(s)
Evolución Biológica , Clasificación/métodos , Modelos Biológicos , Animales , Simulación por Computador , Pinzones/clasificación
5.
Syst Biol ; 68(2): 347-357, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371872

RESUMEN

Island biotas have become paradigms for illustrating many evolutionary processes. The fauna of the Galapagos Islands includes several taxa that have been focal points for evolutionary studies. Perhaps their most famous inhabitants, Darwin's finches, represent a go-to icon when thinking about how species originate and adapt to the environment. However, unlike other adaptive radiations, past morphological and molecular studies of Darwin's finches have yielded inconsistent hypotheses of species limits and phylogenetic relationships. Expecting that idiosyncrasies of prior data and analytic methods explained different proposed classifications, we were surprised to observe that three new phylogenetic hypotheses derived mostly from the same genomics data were topologically inconsistent. We found that the differences between some of these genomics trees were as great as one would expect between two random trees with the same number of taxa. Thus, the phylogeny of Darwin's finches remains unresolved, as it has for more than a century. A component of phylogenetic uncertainty comes from unclear species limits, under any species concept, in the ground finches (Geospiza) and tree finches (Camarhynchus). We suggest that past authors should have tested the species limits of Lack, rather than uncritically accepting them. In fact, the impressive amount of genomics data do not provide unambiguous hypotheses of the number of species of Geospiza or Camarhynchus, although they imply greater species diversity than Lack's taxonomy. We suggest that insufficient sampling of species populations across islands (35.6% for morphometrics and 20.4% for genomics) prevents accurate diagnoses of species limits. However, it is unknown whether samples from a greater number of islands might result in bridging differences between species, or reveal many new ones. We conclude that attempts to interpret patterns of variation among the finches under standard evolutionary paradigms have obscured some major messages, most specifically the ongoing reciprocal interactions between geographic isolation and lineage divergence, and dispersal and gene flow caused by the volatile ecological conditions in the islands. Although the finches provide textbook examples of natural selection, better understanding of species limits and a robust phylogenetic hypothesis are required to corroborate past hypotheses of speciation and adaptive radiation in the finches of the Galapagos.


Asunto(s)
Ecosistema , Pinzones/clasificación , Filogenia , Animales , Ecuador , Pinzones/genética , Variación Genética , Genoma/genética , Especificidad de la Especie
6.
Microbiome ; 6(1): 167, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30231937

RESUMEN

BACKGROUND: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS: This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.


Asunto(s)
Bacterias/aislamiento & purificación , Pinzones/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Evolución Biológica , Clima , ADN Bacteriano/genética , Ecuador , Heces/microbiología , Pinzones/clasificación , Pinzones/genética , Tracto Gastrointestinal/microbiología , Filogenia , ARN Ribosómico 16S/genética , Estaciones del Año
7.
Mol Ecol ; 27(22): 4350-4367, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30014549

RESUMEN

Genetic introgression among closely related species is a widespread phenomenon across the Tree of Life and could be an important source of adaptive variation during early stages of diversification. In particular, genomic studies have revealed that many rapidly radiating clades tend to have complex, reticulate evolutionary histories. Although rapid radiations appear to be susceptible to introgression, they present special challenges for its detection because formal tests require accurate phylogenies, and paradoxically, introgression itself may obscure evolutionary relationships. To address this methodological challenge, we assessed introgression in a recent, rapid avian radiation in the Andes, the South American siskins (Spinus). Using ~45,000 SNPs, we estimated the Spinus phylogeny using multiple analytical approaches and recovered four strongly conflicting topologies. We performed a series of complimentary introgression tests that included valid tests for each of the likely species trees. From the consilience of test results, we inferred multiple introgression events among Andean Spinus in a way that was robust to phylogenetic uncertainty in the species tree. Positive tests for introgression were corroborated by independent population structure and ancestral assignment analyses, as well as a striking geographic pattern of mitochondrial haplotype sharing among species. The methodological approach we describe could be applied using any genomewide data, including SNP data, for clades without fully resolvable species trees. Our discovery of multiple introgression events within the Andean radiation of Spinus siskins is consistent with an emerging paradigm, that introgression tends to accompany the early stages of diversification.


Asunto(s)
Evolución Biológica , Pinzones/clasificación , Filogenia , Animales , Genes Mitocondriales , Genética de Población , Técnicas de Genotipaje , Funciones de Verosimilitud , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur , Incertidumbre
8.
J Am Assoc Lab Anim Sci ; 56(6): 802-806, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29256376

RESUMEN

Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia: sodium pentobarbital (NaP) given intracoelomically with physical restraint but no anesthesia; isoflurane anesthesia followed by intracoelomic injection of NaP; and CO2 asphyxiation at 20%, 40%, and 80% chamber displacement rates (percentage of chamber volume per minute). Birds undergoing euthanasia were videorecorded and scored by 2 observers for behaviors potentially related to discomfort or distress. Time to recumbency and time until respiratory arrest (RA) were also assessed. RA was achieved faster by using NaP in a conscious bird compared to using isoflurane anesthesia followed by NaP; however, neither method caused behaviors that might affect animal welfare, such as open-mouth breathing, to any appreciable extent. Among the CO2 treatment groups, there was an inverse correlation between the chamber displacement rate used and the duration of open-mouth breathing, onset of head retroflexion, and time to RA. The results demonstrate that the intracoelomic administration of NaP in an awake, restrained zebra finch is a rapid and effective method of euthanasia. If CO2 is used to euthanize these birds, a high displacement rate (for example, 80%) will minimize the duration of the procedure and associated behaviors.


Asunto(s)
Bienestar del Animal , Dióxido de Carbono/administración & dosificación , Eutanasia Animal/métodos , Pinzones/fisiología , Isoflurano/administración & dosificación , Pentobarbital/administración & dosificación , Animales , Animales de Laboratorio , Femenino , Pinzones/clasificación , Masculino
9.
Genome Res ; 27(6): 1004-1015, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28442558

RESUMEN

Genomic comparisons of closely related species have identified "islands" of locally elevated sequence divergence. Genomic islands may contain functional variants involved in local adaptation or reproductive isolation and may therefore play an important role in the speciation process. However, genomic islands can also arise through evolutionary processes unrelated to speciation, and examination of their properties can illuminate how new species evolve. Here, we performed scans for regions of high relative divergence (FST) in 12 species pairs of Darwin's finches at different genetic distances. In each pair, we identify genomic islands that are, on average, elevated in both relative divergence (FST) and absolute divergence (dXY). This signal indicates that haplotypes within these genomic regions became isolated from each other earlier than the rest of the genome. Interestingly, similar numbers of genomic islands of elevated dXY are observed in sympatric and allopatric species pairs, suggesting that recent gene flow is not a major factor in their formation. We find that two of the most pronounced genomic islands contain the ALX1 and HMGA2 loci, which are associated with variation in beak shape and size, respectively, suggesting that they are involved in ecological adaptation. A subset of genomic island regions, including these loci, appears to represent anciently diverged haplotypes that evolved early during the radiation of Darwin's finches. Comparative genomics data indicate that these loci, and genomic islands in general, have exceptionally low recombination rates, which may play a role in their establishment.


Asunto(s)
Pinzones/genética , Flujo Génico , Especiación Genética , Genoma , Filogenia , Adaptación Fisiológica/genética , Distribución Animal , Animales , Ecuador , Pinzones/clasificación , Sitios Genéticos , Islas Genómicas , Haplotipos , Repeticiones de Microsatélite , Polimorfismo Genético , Selección Genética , Simpatría
10.
Gen Comp Endocrinol ; 246: 249-257, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28039066

RESUMEN

Medullary bone, a non-structural osseous tissue, serves as a temporary storage site for calcium that is needed for eggshell production in a number of avian species. Previous research focusing primarily on domesticated species belonging to the Anseriformes, Galliformes, and Columbiformes has indicated that rising estrogen levels are a key signal stimulating medullary bone formation; Passeriformes (which constitute over half of extant bird species and are generally small) have received little attention. In the current study, we examined the influence of estrogen on medullary bone and cortical bone in two species of Passeriformes: the Pine Siskin (Spinus pinus) and the House Finch (Haemorhous mexicanus). Females of these species received either an estradiol implant or were untreated as a control. After 4.5-5months, reproductive condition was assessed and leg (femora) and wing (humeri) bones were collected for analysis using high-resolution (10µm) micro-computed tomography scanning. We found that in both species estradiol-treated females had significantly greater medullary bone quantity in comparison to untreated females, but we found no differences in cortical bone quantity or microarchitecture. We were also able to examine medullary bone density in the pine siskins and found that estradiol treatment significantly increased medullary bone density. Furthermore, beyond the effect of the estradiol treatment, we observed a relationship between medullary bone quantity and ovarian condition that suggests that the timing of medullary bone formation may be related to the onset of yolk deposition in these species. Further research is needed to better understand the precise timing and endocrine regulation of medullary bone formation in Passerines and to determine the extent to which female Passerines rely on medullary bone calcium during the formation of calcified eggshells.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Estrógenos/farmacología , Pinzones/fisiología , Microtomografía por Rayos X/métodos , Animales , Corticosterona/sangre , Femenino , Pinzones/clasificación
11.
Science ; 352(6284): 470-4, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27102486

RESUMEN

Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin's finches on Daphne Major in the Galápagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin's finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin's finches.


Asunto(s)
Pico/anatomía & histología , Sequías , Pinzones/anatomía & histología , Pinzones/genética , Sitios de Carácter Cuantitativo , Selección Genética , Animales , Tamaño Corporal/genética , Ecuador , Femenino , Pinzones/clasificación , Genómica , Genotipo , Proteína HMGA2/genética , Haplotipos , Tamaño de los Órganos/genética , Filogenia
12.
BMC Evol Biol ; 15: 265, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627847

RESUMEN

BACKGROUND: Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system. RESULTS: Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies. CONCLUSIONS: Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences.


Asunto(s)
Pinzones/genética , Animales , Australia , Pinzones/clasificación , Pinzones/inmunología , Frecuencia de los Genes , Flujo Genético , Genética de Población , Haplotipos , Indonesia , Datos de Secuencia Molecular , NADH Deshidrogenasa/genética , Polimorfismo Genético
13.
Mol Ecol ; 24(12): 2901-3, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26095582

RESUMEN

Taxonomy is being increasingly informed by genomics. Traditionally, taxonomy has relied extensively on phenotypic traits for the identification and delimitation of species, though with a growing influence from molecular phylogenetics in recent decades. Now, genomics opens up new and more powerful tools for analysing the evolutionary history and relatedness among species, as well as understanding the genetic basis for phenotypic traits and their role in reproductive isolation. New insights gained from genomics will therefore have major effects on taxonomic classifications and species delimitation. How a genomics approach can inform a flawed taxonomy is nicely exemplified by Mason & Taylor () in this issue of Molecular Ecology. They studied redpolls, which comprise a genus (Acanthis) of fringillid finches with a wide distribution in the Holarctic region, and whose species taxonomy has been a matter of much controversy for decades (Fig. ). Current authoritative checklists classify them into one, two or three species, and five or six subspecies, based largely on geographical differences in phenotypic traits. Previous studies, including a recent one of the subspecies on Iceland (Amouret et al. ), have found no evidence of differentiation between these taxa in conventional molecular markers. The lack of genetic structure has been interpreted as incomplete lineage sorting among rapidly evolving lineages. Now Mason & Taylor (), using a large data set of genomewide SNPs, verify that they all belong to a single gene pool with a common evolutionary history, and with little or no geographical structuring. They also show that phenotypic traits used in taxonomic classifications (plumage and bill morphology) are closely associated with polygenic patterns of gene expression, presumably driven by ecological selection on a few regulatory genes. Several lessons can be learned from this study. Perhaps the most important one for taxonomy is the risk of taxonomic inflation resulting from overemphasizing phenotypic traits under local adaptation and ignoring a lack of phylogenetic signal in molecular markers.


Asunto(s)
Pinzones/clasificación , Fenotipo , Animales , Femenino , Masculino
14.
Braz J Biol ; 75(1): 191-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945637

RESUMEN

Suitability of degraded areas as breeding habitats can be tested through assessment of nest predation rates. In this study we estimated nest success in relation to several potential predictors of nest survival in the Stripe-tailed Yellow-finch (Sicalis citrina) breeding in abandoned mining pits at Brasília National Park. We monitored 73 nests during the 2007-breeding season. Predation was the main cause of nest failure (n = 48, 66%); while six nests were abandoned (8%) and 19 nests produced young (26%). Mayfield's daily survival rates and nest success were 0.94 and 23%, respectively. Our results from nest survival models on program MARK indicated that daily survival rates increase linearly towards the end of the breeding season and decrease as nests aged. None of the nest individual covariates we tested - nest height, nest size, nest substrate, and edge effect - were important predictors of nest survival; however, nests placed on the most common plant tended to have higher survival probabilities. Also, there was no observer effect on daily survival rates. Our study suggests that abandoned mining pits may be suitable alternative breeding habitats for Striped-tailed Yellow-finches since nest survival rates were similar to other studies in the central cerrado region.


Asunto(s)
Ecosistema , Pinzones/fisiología , Comportamiento de Nidificación/fisiología , Reproducción/fisiología , Animales , Brasil , Femenino , Pinzones/clasificación , Masculino , Estaciones del Año
15.
Mol Phylogenet Evol ; 87: 28-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25796324

RESUMEN

Time-calibrated molecular phylogenies can help us to understand the origins of the diverse and unique Andean avifauna. Previous studies have shown that the tempo of diversification differed between the Andes and adjacent lowland regions of South America. Andean taxa were found to have speciated more recently and to have avoided the decelerated diversification that is typical of Neotropical lowland clades. The South American siskins, a Pleistocene finch radiation, may typify this Andean pattern. We investigated the phylogenetic biogeography of all the New World siskins and goldfinches in new detail. To understand the specific role of the Andes in siskin diversification, we asked: (1) Was diversification faster in Andean siskin lineages relative to non-Andean ones? (2) Did siskin lineages move into and out of the Andes at different rates? We found that siskin lineages in the Andes had higher diversification rates and higher outward dispersal rates than siskin lineages outside the Andes. We conclude that páramo expansion and contraction in response to Pleistocene climatic cycles caused accelerated diversification and outward dispersal in Andean siskins. The younger average age of bird species in the Andes compared to lowland South America may be attributable to bursts of recent diversification in siskins and several other vagile, open-habitat clades.


Asunto(s)
Evolución Biológica , Pinzones/clasificación , Passeriformes/clasificación , Filogenia , Animales , Teorema de Bayes , Ecosistema , Genes Mitocondriales , Intrones , Funciones de Verosimilitud , Modelos Genéticos , Filogeografía , Análisis de Secuencia de ADN , América del Sur
16.
Mol Ecol ; 24(12): 3009-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25735539

RESUMEN

Understanding the patterns and processes that contribute to phenotypic diversity and speciation is a central goal of evolutionary biology. Recently, high-throughput sequencing has provided unprecedented phylogenetic resolution in many lineages that have experienced rapid diversification. The Holarctic redpoll finches (Genus: Acanthis) provide an intriguing example of a recent, phenotypically diverse lineage; traditional sequencing and genotyping methods have failed to detect any genetic differences between currently recognized species, despite marked variation in plumage and morphology within the genus. We examined variation among 20 712 anonymous single nucleotide polymorphisms (SNPs) distributed throughout the redpoll genome in combination with 215 825 SNPs within the redpoll transcriptome, gene expression data and ecological niche modelling to evaluate genetic and ecological differentiation among currently recognized species. Expanding upon previous findings, we present evidence of (i) largely undifferentiated genomes among currently recognized species; (ii) substantial niche overlap across the North American Acanthis range; and (iii) a strong relationship between polygenic patterns of gene expression and continuous phenotypic variation within a sample of redpolls from North America. The patterns we report may be caused by high levels of ongoing gene flow between polymorphic populations, incomplete lineage sorting accompanying very recent or ongoing divergence, variation in cis-regulatory elements, or phenotypic plasticity, but do not support a scenario of prolonged isolation and subsequent secondary contact. Together, these findings highlight ongoing theoretical and computational challenges presented by recent, rapid bouts of phenotypic diversification and provide new insight into the evolutionary dynamics of an intriguing, understudied non-model system.


Asunto(s)
Pinzones/clasificación , Fenotipo , Animales , Regiones Árticas , Pico/anatomía & histología , Ecosistema , Plumas/anatomía & histología , Femenino , Pinzones/anatomía & histología , Flujo Génico , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Lineales , Masculino , Modelos Genéticos , América del Norte , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Transcriptoma
17.
Braz. j. biol ; 75(1): 191-197, Jan-Mar/2015. tab
Artículo en Inglés | LILACS | ID: lil-744339

RESUMEN

Suitability of degraded areas as breeding habitats can be tested through assessment of nest predation rates. In this study we estimated nest success in relation to several potential predictors of nest survival in the Stripe-tailed Yellow-finch (Sicalis citrina) breeding in abandoned mining pits at Brasília National Park. We monitored 73 nests during the 2007-breeding season. Predation was the main cause of nest failure (n = 48, 66%); while six nests were abandoned (8%) and 19 nests produced young (26%). Mayfield’s daily survival rates and nest success were 0.94 and 23%, respectively. Our results from nest survival models on program MARK indicated that daily survival rates increase linearly towards the end of the breeding season and decrease as nests aged. None of the nest individual covariates we tested - nest height, nest size, nest substrate, and edge effect - were important predictors of nest survival; however, nests placed on the most common plant tended to have higher survival probabilities. Also, there was no observer effect on daily survival rates. Our study suggests that abandoned mining pits may be suitable alternative breeding habitats for Striped-tailed Yellow-finches since nest survival rates were similar to other studies in the central cerrado region.


A adequação de habitats degradados para reprodução de aves pode ser testada por meio de avaliação das taxas de predação de ninhos. Neste estudo nós estimamos o sucesso de nidificação do canário-rasteiro (Sicalis citrina) e o relacionamos, por meio de modelagem no programa MARK, com diversos fatores que potencialmente afetam a sobrevivência dos ninhos da espécie em antigas áreas de extração de solo (cascalheiras), no Parque Nacional de Brasília, Distrito Federal. Nós monitoramos 73 ninhos da espécie durante a estação reprodutiva de 2007. Predação foi a principal causa da perda de ninhos (n = 48, 66%), enquanto seis foram abandonados (8%) e 19 produziram ao menos um filhote (26%). A taxa diária de sobrevivência e o sucesso total de Mayfield foram 0,94 and 23%, respectivamente. Nossos resultados, obtidos da modelagem de sobrevivência, indicaram que as taxas de sobrevivência diária dos ninhos aumenta linearmente à medida que avança a estação reprodutiva, ao passo que diminui conforme a idade do ninho aumenta. Nenhum dos fatores que testamos – altura do ninhos, tamanho dos ninhos, planta suporte e distância até a borda dos ambientes de cascalheira – mostraram-se importantes como fatores determinantes do sucesso dos ninhos. Entretanto, ninhos construídos nas plantas mais comuns na área de estudo (samambaias) apresentaram maior tendência de sucesso que os demais. Adicionalmente, não houve interferência do observador nas estimativas de sobrevivência dos ninhos. Nossos resultados sugerem que as antigas áreas de cascalheira podem ser adequadas para a reprodução do canário-rasteiro, uma vez que as taxas de sobrevivência que encontramos neste estudo são similares às encontradas em estudos com outras espécies na região central do Cerrado.


Asunto(s)
Animales , Femenino , Masculino , Ecosistema , Pinzones/fisiología , Comportamiento de Nidificación/fisiología , Reproducción/fisiología , Brasil , Pinzones/clasificación , Estaciones del Año
19.
Nature ; 518(7539): 371-5, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25686609

RESUMEN

Darwin's finches, inhabiting the Galápagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.


Asunto(s)
Pico/anatomía & histología , Evolución Molecular , Pinzones/anatomía & histología , Pinzones/genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Ecuador , Femenino , Pinzones/clasificación , Pinzones/embriología , Flujo Génico , Genoma/genética , Haplotipos/genética , Hibridación Genética , Islas del Oceano Índico , Masculino , Datos de Secuencia Molecular , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Biol Rev Camb Philos Soc ; 90(3): 689-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25040800

RESUMEN

The trajectory of speciation involves geographic isolation of ancestral populations followed by divergence by natural selection, genetic drift or sexual selection. Once started, the process may experience fits and starts, as sometimes diverging populations intermittently reconnect. In theory populations might cycle between stages of differentiation and never attain species status, a process we refer to as Sisyphean evolution. We argue that the six putative ground finch species (genus Geospiza) of the Galápagos Islands represent a dramatic example of Sisyphean evolution that has been confused with the standard model of speciation. The dynamic environment of the Galápagos, closely spaced islands, and frequent dispersal and introgression have prevented the completion of the speciation process. We suggest that morphological clusters represent locally adapted ecomorphs, which might mimic, and have been confused with, species, but these ecomorphs do not form separate gene pools and are ephemeral in space and time. Thus the pattern of morphological, behavioural and genetic variation supports recognition of a single species of Geospiza, which we suggest should be recognized as Darwin's ground finch (Geospiza magnirostris). We argue that instead of providing an icon of insular speciation and adaptive radiation, which is featured in nearly every textbook on evolutionary biology, Darwin's ground finch represents a potentially more interesting phenomenon, one of transient morphs trapped in an unpredictable cycle of Sisyphean evolution. Instead of revealing details of the origin of species, the mechanisms underlying the transient occurrence of ecomorphs provide one of the best illustrations of the antagonistic effects of natural selection and introgression.


Asunto(s)
Evolución Biológica , Pinzones/clasificación , Animales , Ecuador , Pinzones/anatomía & histología , Pinzones/genética , Variación Genética , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...