Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 648
Filtrar
1.
Int J Food Microbiol ; 426: 110921, 2025 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39332235

RESUMEN

Contamination of black pepper (Piper nigrum) with Salmonella is a frequent problem in retail and imported shipments. However, there is scarce information about the prevalence of the pathogen in the initial stages of black pepper production chain. This study sought to bridge this gap in research by determining the prevalence, as well as quantifying, and identifying the main Salmonella serovars present during black pepper primary production and processing. Black pepper (233) and environmental (175) samples were collected from farms (354) and processing plants (54) in Espirito Santo, Brazil. The pathogen was detected in soil (16.7 %), drying waste (20.4 %), fallen berries (3.7 %), threshed berries (14.3 %), and dried peppercorns (22.2 %) collected from farms. Salmonella was also detected in samples of raw material (11.1 %), export products (16.7 %), and processing waste (16.7 %) collected from processing plants. A total of 12 serotypes were identified, and Salmonella Javiana showed the highest prevalence (38.8 %). According to the results, contamination occurring in the post-harvest phase is not eliminated or reduced during processing. Therefore, the adoption of good agricultural and manufacturing practices, supported by hazard analysis and critical control points (HACCP), is crucial to mitigate this kind of contamination. These practices should be combined with decontamination treatments to ensure the safety of the final product.


Asunto(s)
Contaminación de Alimentos , Manipulación de Alimentos , Piper nigrum , Salmonella , Piper nigrum/microbiología , Salmonella/aislamiento & purificación , Salmonella/clasificación , Brasil , Contaminación de Alimentos/análisis , Granjas , Microbiología de Alimentos , Frutas/microbiología , Serogrupo
2.
World J Microbiol Biotechnol ; 40(11): 330, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358481

RESUMEN

Trichoderma spp. is primarily applied to manage biotic stresses in plants. Still, they also can mitigate abiotic stresses by the stimulation of antioxidative protective mechanisms and enhanced synthesis of secondary metabolites. The study optimized the conditions to enhance peptaibol production by novel Trichoderma spp, characterized and quantified peptaibol- alamethicin using HPLC and LC MS-MS. The present study investigated these isolates efficacy in enhancing growth and the associated physio-biochemical changes in black pepper plants under moisture stress. Under in vitro conditions, out of 51 isolates studied, six isolates viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) showed tolerance to low moisture levels (5, 10 and 20%) and higher temperatures (35 and 40 °C). In vivo evaluation on black pepper plants maintained under four different moisture levels (Field capacity [FC]; 75%, 50%, and 25%) showed that the plants inoculated with Trichoderma accumulated greater quantities of secondary metabolites viz., proline, phenols, MDA and soluble proteins at low moisture levels (50% and 25% FC). In the present study, plants inoculated with T. asperellum and T. harzianum showed significantly increased growth compared to uninoculated plants. The shortlisted Trichoderma isolates exhibited differences in peptaibol production and indicated that the peptide might be the key factor for their efficiency as biocontrol agents. The present study also demonstrated that Trichoderma isolates T. harzianum and T. asperellum (IISR APT2 & NAIMCC 0049) enhanced the drought-tolerant capabilities of black pepper by improving plant growth and secondary metabolite production.


Asunto(s)
Peptaiboles , Piper nigrum , Estrés Fisiológico , Trichoderma , Piper nigrum/microbiología , Peptaiboles/metabolismo , Trichoderma/fisiología , Trichoderma/metabolismo , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Alameticina/metabolismo , Alameticina/farmacología , Temperatura , Metabolismo Secundario
3.
Sci Rep ; 14(1): 25417, 2024 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455689

RESUMEN

Visible imaging is a fast, cheap, and accurate technique in the assessment of food quality and safety. The technique was used in the present research to detect sea foam adulterant levels in black and red peppers. The fraud levels included 0, 5, 15, 30, and 50%. Sample preparation, image acquisition and preprocessing, and feature engineering (feature extraction, selection, and classification) were the conducted steps in the present research. The efficient features were classified using artificial neural networks and support vector machine methods. The classifiers were evaluated using the specificity, sensitivity, precision, and accuracy metrics. The artificial neural networks had better results than the support vector machine method for the classification of different adulterant levels in black pepper with the metrics' values of 98.89, 95.67, 95.56, and 98.22%, respectively. Reversely, the support vector machine method had higher metrics' values (99.46, 98.00, 97.78, and 99.11%, respectively) for red pepper. The results showed the ability of visible imaging and machine learning methods to detect fraud levels in black and red pepper.


Asunto(s)
Capsicum , Redes Neurales de la Computación , Piper nigrum , Máquina de Vectores de Soporte , Fraude/prevención & control , Contaminación de Alimentos/análisis , Calidad de los Alimentos
4.
Mymensingh Med J ; 33(4): 1002-1008, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39351717

RESUMEN

Antibiotic resistance (AMR) represents a serious threat to public health and poses challenges in disease prevention and treatment despite various efforts to combat it. Evaluation of the in vitro antibacterial activity of aqueous extracts of black pepper seeds (Piper nigrum L.) against two infectious pathogens: Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The Department of Pharmacology and Therapeutics and the Department of Microbiology of Mymensingh Medical College conducted the study from Octy 2022 to June 2023. The antibacterial activity of Aqueous black pepper seed extract (ABPE) was evaluated at different doses using disk diffusion and broth dilution methods. The extract was prepared using 10.0% dimethyl sulfoxide (DMSO) and water as solvent. The commonly used antibiotic ciprofloxacin was used in the broth dilution method and the results were compared with those for aqueous extracts. To confirm a more precise range of antimicrobial susceptibility of the extracts, ABPE was used at seven different concentrations (100, 80, 60, 40, 20, 10 and 5 mg/mL). Selected concentrations were then used as needed. ABPE showed an inhibitory effect on the above bacteria at doses of 90 mg/ml and higher. The Minimum inhibitory concentration (MIC) values for Escherichia coli and Staphylococcus aureus were 85 and 90 mg/ml ABPE, respectively. The MIC of ciprofloxacin against Staphylococcus aureus and Escherichia coli was currently 1µg/ml. The MIC of ciprofloxacin was lowest for the organisms tested compared to the MIC of ABPE. This work clearly demonstrates the antibacterial sensitivity of Staphylococcus aureus and Escherichia coli to an aqueous extract of black pepper seeds.


Asunto(s)
Antibacterianos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Piper nigrum , Extractos Vegetales , Semillas , Staphylococcus aureus , Piper nigrum/química , Extractos Vegetales/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Semillas/química , Ciprofloxacina/farmacología
5.
BMC Genomics ; 25(1): 910, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350031

RESUMEN

INTRODUCTION: Black pepper (Piper nigrum L.) is a non-model spice crop of significant agricultural and biological importance. The 'quick wilt' disease caused by the oomycete Phytophthora capsici is a major threat, leading to substantial crop loss. The molecular mechanisms governing the plant immune responses to this pathogen remain unclear. This study employs RNA sequencing and transcriptome analysis to explore the defense mechanisms of P. nigrum against P. capsici. RESULTS: Two-month-old P. nigrum plantlets were subjected to infection with P. capsici, and leaf samples were collected at 6- and 12-hours post-inoculation. RNA was extracted, sequenced, and the resulting data were processed and assembled. Differential gene expression analysis was conducted to identify genes responding to the infection. Additionally, the study investigated the involvement of Salicylic acid (SA), Jasmonic acid (JA), and Ethylene (ET) signalling pathways. Our transcriptome assembly comprised 64,667 transcripts with 96.7% completeness, providing valuable insights into the P. nigrum transcriptome. Annotation of these transcripts identified functional categories and domains, provided details on molecular processes. Gene expression analysis identified 4,714 transcripts at 6 h post-infection (hpi) and 9,416 at 12 hpi as differentially expressed, revealing dynamic regulation of immune-related genes. Furthermore, the study investigated key genes involved in biosynthesis pathways of Salicylic acid, Jasmonic acid, and Ethylene signalling. Notably, we found differential regulation of critical genes associated with these pathways while comparing data before and after infection, thereby shedding light on their roles in defense mechanism in P. nigrum defense. CONCLUSIONS: This comprehensive transcriptome analysis of P. nigrum response to P. capsici attack provides valuable insights into the plant defense mechanisms. The dynamic regulation of innate immunity and the involvement of key signalling pathways highlight the complexity of the plant-pathogen interaction. This study contributes to our understanding of plant immunity and offers potential strategies for enhancing P. nigrum resistance to this harmful pathogen.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Phytophthora , Piper nigrum , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Phytophthora/patogenicidad , Phytophthora/fisiología , Piper nigrum/genética , Piper nigrum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Transducción de Señal/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Resistencia a la Enfermedad/genética , Oxilipinas/metabolismo , Ciclopentanos
6.
BMC Complement Med Ther ; 24(1): 343, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342176

RESUMEN

Acute leukemia is characterized by abnormal white blood cell proliferation with rapid onset and severe complications. Natural compounds, which are alternative treatments, are widely used in cancer treatment. Piperine, an alkaloid compound from black pepper, exerts anticancer effects through the cell death signaling pathway. Autophagy and senescence signaling pathways are considered target signaling pathways for cancer treatment. In this study, we investigated the effects of piperine via autophagy and senescence signaling pathways in NB4 and MOLT-4 cells. The MTT assay results demonstrated that piperine significantly decreased the viability of NB4 and MOLT-4 cells. Piperine induced autophagy by increasing LC3, Beclin-1 and ULK1 and decreasing mTOR and NF-κB1 expression in NB4 and MOLT-4 cells. In addition, piperine increased senescence-associated beta-galactosidase fluorescence intensity by increasing p21 and IL-6 expression while decreasing CDK2 expression in NB4 and MOLT-4 cells. In conclusion, our study provides additional information about the induction of autophagy and senescence by piperine in acute leukemia.


Asunto(s)
Alcaloides , Autofagia , Benzodioxoles , Senescencia Celular , Interleucina-6 , FN-kappa B , Piper nigrum , Piperidinas , Alcamidas Poliinsaturadas , Alcamidas Poliinsaturadas/farmacología , Humanos , Piperidinas/farmacología , Alcaloides/farmacología , Autofagia/efectos de los fármacos , Benzodioxoles/farmacología , Senescencia Celular/efectos de los fármacos , Piper nigrum/química , Línea Celular Tumoral , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Leucemia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
7.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337340

RESUMEN

Black pepper (Piper nigrum L.), a prominent spice crop, known as the "king of spices", originated from India. The growth and development of black pepper are influenced by various environmental conditions. MYB transcription factors play a crucial role in controlling metabolic processes, abiotic stress management, and plant growth and development. In this study, we identified 160 PnMYB transcription factors in the black pepper genome. Phylogenetic analysis was performed using 125 R2R3-MYB proteins from black pepper and Arabidopsis thaliana, resulting in the mapping of 20 groups on the phylogenetic tree, each containing members from both species. Most members of the PnMYB family possess two introns, and motif 3 and motif 4 are conserved in all members. The number of genes on each chromosome ranges from 1 to 10. Collinear analysis indicated the creation of new members through gene fragments and tandem replication. The Ka/Ks ratio indicated that purifying selection and positive selection acted on PnMYB of pepper. The majority of pepper PnMYB family members were in the nucleus. Significant differences in gene expression levels were observed between different species and infection periods when Piper nigrum L. and Piper flaviflorum were infected with Phytophthora capsici. These findings are valuable for future studies on the biological role and molecular mechanism of the PnMYB gene.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Piper nigrum , Proteínas de Plantas , Factores de Transcripción , Piper nigrum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta
8.
Molecules ; 29(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275027

RESUMEN

Using sous-vide technology in combination with essential oils offers the potential to extend the preservation of food items while preserving their original quality. This method aligns with the growing consumer demand for safer and healthier food production practices. This study aimed to assess the suitability of minimal processing of game meat and the effectiveness of vacuum packaging in combination with Piper nigrum essential oil (PNEO) treatment to preserve red deer meat samples inoculated with Listeria monocytogenes. Microbial analyses, including total viable count (TVC) for 48 h at 30 °C, coliform bacteria (CB) for 24 h at 37 °C, and L. monocytogenes count for 24 h at 37 °C, were conducted. The cooking temperature of the sous-vide was from 50 to 65 °C and the cooking time from 5 to 20 min. Additionally, the study monitored the representation of microorganism species identified through mass spectrometry. The microbiological quality of red deer meat processed using the sous-vide method was monitored over 14 days of storage at 4 °C. The results indicated that the TVC, CB, and L. monocytogenes counts decreased with the temperature and processing time of the sous-vide method. The lowest counts of individual microorganism groups were observed in samples treated with 1% PNEO. The analysis revealed that PNEO, in combination with the sous-vide method, effectively reduced L. monocytogenes counts and extended the shelf life of red deer meat. Kocuria salsicia, Pseudomonas taetrolens, and Pseudomonas fragi were the most frequently isolated microorganism species during the 14-day period of red deer meat storage prepared using the sous-vide method.


Asunto(s)
Listeria monocytogenes , Aceites Volátiles , Piper nigrum , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper nigrum/química , Piper nigrum/microbiología , Animales , Ciervos/microbiología , Conservación de Alimentos/métodos , Microbiología de Alimentos , Almacenamiento de Alimentos/métodos , Embalaje de Alimentos/métodos , Carne Roja/microbiología , Culinaria , Antibacterianos/farmacología , Antibacterianos/química
9.
J Agric Food Chem ; 72(36): 19800-19811, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39116367

RESUMEN

Pepper (Piper nigrum L.) is a widely used spice plant known for its fruits and roots, which serve as flavor enhancers in culinary applications and hold significant economic value. Despite the popularity of pepper fruits, their roots remain relatively understudied, with limited research conducted on their bioactive components. This study focused on discovering and separating the primary bioactive amide alkaloids found in pepper roots. The process involved using the antioxidant activity of crude fractions and the Global Natural Products Social Molecular Networking analysis platform. The process led to the discovery of 23 previously unknown hydroxyl-amide alkaloids. Notably, compounds 11, 12, and 14 showed excellent antioxidant activity, while compound 11 exhibited significant inhibitory effects on mushroom tyrosinase. Theoretical exploration of enzyme-ligand interactions was conducted through molecular docking and molecular dynamics simulation. The findings of this study highlight the potential of hydroxyl-amide alkaloids as antioxidant products and natural food preservatives in the pharmaceutical and food cosmetic industries.


Asunto(s)
Agaricales , Alcaloides , Amidas , Antioxidantes , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Piper nigrum , Extractos Vegetales , Raíces de Plantas , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Raíces de Plantas/química , Alcaloides/química , Alcaloides/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Piper nigrum/química , Agaricales/química , Agaricales/enzimología , Amidas/química , Amidas/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Estructura Molecular
10.
Life Sci ; 354: 122943, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39117139

RESUMEN

Despite significant advancements in chemotherapy, effective treatments for advanced cancer stages remain largely elusive due to chemoresistance. Resistance to anticancer agents in cancer cells can arise through various mechanisms, including multi-drug resistance, inhibition of apoptosis, modification of drug targets, and enhancement of DNA repair capabilities. Consequently, there is a critical need for agents that can suppress the molecular signatures responsible for drug resistance. Piperine, an active alkaloid extracted from Piper nigrum L. (black pepper), is one such agent that has been extensively studied for its potential in addressing chronic diseases, including cancer. Piperine's antineoplastic properties are mediated through the regulation of numerous key cellular signaling pathways and the modulation of various biological processes. Its capability to enhance drug bioavailability and counteract mechanisms of drug resistance, such as the inhibition of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP-1), emphasizes its potential as an adjunct in cancer therapy. Research across various cancer types has demonstrated piperine's role in chemosensitization by targeting P-gp and MRP-1 and altering drug-metabolizing enzymes. This review provides a comprehensive analysis of piperine's pharmacological characteristics and its capacity to modulate several cellular signaling pathways involved in drug resistance. Furthermore, the review emphasizes how piperine, when used in conjunction with other chemotherapeutic agents or natural compounds, can enhance therapeutic effects, leading to improved outcomes in cancer treatment.


Asunto(s)
Alcaloides , Benzodioxoles , Resistencia a Antineoplásicos , Neoplasias , Piperidinas , Alcamidas Poliinsaturadas , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Humanos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Alcaloides/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Sinergismo Farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Piper nigrum/química
11.
J Environ Manage ; 367: 121752, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067341

RESUMEN

Sustainable management of the Amazon rainforest is fundamental for supporting life on earth because of its crucial role in sequestering carbon. One of the species grown in the forest is açaí (Euterpe oleracea), which is an important food and income source for its inhabitant. The acai seed, resulting from the processing of the fruit, is a solid organic residue, which has been an agent of undesirable environmental impacts such as natural landscape modifications, clogging sewers and water courses, eutrophication of surface waters. In this research, we evaluated the use of wood chips as a source of energy in a rustic oven to produce acai biochar so that family farmers carry out sustainable management of the residue and use biochar to improve soil quality and produce seedlings of native plants to regenerate degraded forests. The experiment was conducted in Pará, Brazil, Amazon region, using a randomized complete block design. A factorial treatment structure was implemented consisting of four biochar particle sizes (3, 5, 7, and 12 mm), 4 application rates (4, 8, 16, and 32 t ha-1), and a biochar-free control, with 5 replications. The results showed that the methodology for biochar production was easy to apply and low cost, allowing its use by family farmers. The combination of biochar rate and particle size affected soil properties and the development of black pepper seedlings in different ways. The soil properties affected were water retention capacity, moisture, fluorescein diacetate hydrolysis and arylsulphatase activity. The growth parameters of the affected black pepper seedlings were height and root system development.


Asunto(s)
Carbón Orgánico , Plantones , Semillas , Suelo , Suelo/química , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Brasil , Piper nigrum
12.
Mymensingh Med J ; 33(3): 649-655, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944702

RESUMEN

Antibiotics' usefulness is threatened by multi-drugs resistance in harmful microorganisms because of abuse and regulatory problems. Emerging microbes, resistance mechanisms and antimicrobial drugs all require extensive investigation. Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. From July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. The solvents Methanol and 10.0% Di-Methyl Sulfoxide (DMSO) were used to make the extract. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized, and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Pseudomonas aeruginosa the MIC were 60 and 70mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and 1.5µg/ml for Pseudomonas aeruginosa. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Pseudomonas aeruginosa are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Asunto(s)
Antibacterianos , Metanol , Pruebas de Sensibilidad Microbiana , Piper nigrum , Extractos Vegetales , Pseudomonas aeruginosa , Semillas , Staphylococcus aureus , Piper nigrum/química , Pseudomonas aeruginosa/efectos de los fármacos , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología
13.
PLoS One ; 19(6): e0305990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38924027

RESUMEN

Despite the economic importance of Piper nigrum (black pepper), a highly valued crop worldwide, development and utilization of genomic resources have remained limited, with diversity assessments often relying on only a few samples or DNA markers. Here we employed restriction-site associated DNA sequencing to analyze 175 P. nigrum accessions from eight main black pepper growing regions in Sri Lanka. The sequencing effort resulted in 1,976 million raw reads, averaging 11.3 million reads per accession, revealing 150,356 high-quality single nucleotide polymorphisms (SNPs) distributed across 26 chromosomes. Population structure analysis revealed two subpopulations (K = 2): a dominant group consisting of 152 accessions sourced from both home gardens and large-scale cultivations, and a smaller group comprising 23 accessions exclusively from native collections in home gardens. This clustering was further supported by principal component analysis, with the first two principal components explaining 35.2 and 12.1% of the total variation. Genetic diversity analysis indicated substantial gene flow (Nm = 342.21) and a low fixation index (FST = 0.00073) between the two subpopulations, with no clear genetic differentiation among accessions from different agro-climatic regions. These findings demonstrate that most current black pepper genotypes grown in Sri Lanka share a common genetic background, emphasizing the necessity to broaden the genetic base to enhance resilience to biotic and abiotic stresses. This study represents the first attempt at analyzing black pepper genetic diversity using high-resolution SNP markers, laying the foundation for future genome-wide association studies for SNP-based gene discovery and breeding.


Asunto(s)
Piper nigrum , Polimorfismo de Nucleótido Simple , Piper nigrum/genética , Sri Lanka , Variación Genética , Genética de Población , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma de Planta , Análisis de Componente Principal
14.
Food Chem ; 456: 139980, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850607

RESUMEN

Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.


Asunto(s)
Alcaloides , Benzodioxoles , Piper nigrum , Piperidinas , Extractos Vegetales , Alcamidas Poliinsaturadas , Piper nigrum/química , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/química , Benzodioxoles/farmacología , Benzodioxoles/química , Piperidinas/farmacología , Piperidinas/química , Alcaloides/farmacología , Alcaloides/química , Humanos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología
15.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557509

RESUMEN

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Asunto(s)
Piper nigrum , Staphylococcus aureus , Humanos , Metanol , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Ciprofloxacina , Semillas , Escherichia coli
16.
Food Chem ; 450: 139199, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640539

RESUMEN

Peppers (Piper nigrum L.) are distinguished by their pungent flavor and aroma. Piperine is a major acid-amide alkaloid with a piperidine ring that gives pepper its flavor and scent. In plant metabolomics research, the accessibility of the chemical standards is critical for scientific credibility. We isolated and identified 10 novel dimers of acid amide alkaloids (9-15 and 20-22), along with 12 known monomers (1-6) and dimers (7, 8, 16-19) from black pepper. Subsequently, we found the distribution of monomers and dimers of acid amide alkaloids in black and white peppers by twenty-two acid amide alkaloids which we obtained using the molecular networking technique and multivariate analysis to reveal the molecular relationships between the acid amide alkaloids in black and white peppers. Our research delved into the chemical diversity of acid amide alkaloids in black and white peppers, which could help inform future culinary and potential medicinal utilization of pepper.


Asunto(s)
Alcaloides , Amidas , Piper nigrum , Extractos Vegetales , Piper nigrum/química , Alcaloides/química , Alcaloides/análisis , Extractos Vegetales/química , Amidas/química , Dimerización , Estructura Molecular
17.
Sci Rep ; 14(1): 7331, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538851

RESUMEN

The selection of stable reference genes for the normalization of reverse transcription quantitative real-time PCR (RT-qPCR) is generally overlooked despite being the crucial element in determining the accuracy of the relative expression of genes. In the present study, the stability of seven candidate reference genes: actin (act), α-tubulin (atub), ß-tubulin (btub), translation elongation factor 1-α (ef1), elongation factor 2 (ef2), ubiquitin-conjugating enzyme (ubc) and 40S ribosomal protein S3A (ws21) in Phytophthora capsici has been validated. The validation was performed at six infection time points during its interaction with its susceptible host Piper nigrum, two developmental stages, and for the combined dataset. Four algorithms: geNorm, NormFinder, BestKeeper, and the ΔCt method were compared, and a comprehensive ranking order was produced using RefFinder. The overall analysis revealed that ef1, ws21, and ubc were identified as the three most stable genes in the combined dataset, ef1, ws21, and act were the most stable at the infection stages, and, ef1, btub, and ubc were most stable during the developmental stages. These findings were further corroborated by validating the P. capsici pathogenesis gene NPP1 expression. The findings are significant as this is the first study addressing the stability of reference genes for P. capsici-P. nigrum interaction studies.


Asunto(s)
Phytophthora , Piper nigrum , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Phytophthora/genética , Algoritmos , Genes de Plantas , Estándares de Referencia , Perfilación de la Expresión Génica/métodos
18.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474459

RESUMEN

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Asunto(s)
Artrópodos , Aceites Volátiles , Piper nigrum , Piper , Sesquiterpenos , Animales , Aceites Volátiles/química , Acetilcolinesterasa , Cromatografía de Gases y Espectrometría de Masas , Piper/química , Aceites de Plantas/química
19.
Sci Rep ; 14(1): 5752, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459176

RESUMEN

Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).


Asunto(s)
Foeniculum , Piper nigrum , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Fenol/análisis , Microextracción en Fase Sólida/métodos , Quimiometría , Especias , Monoterpenos/análisis , Éteres , Óxidos , Compuestos Orgánicos Volátiles/análisis
20.
Sci Rep ; 14(1): 5338, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438437

RESUMEN

Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.


Asunto(s)
Fluorocarburos , Nitrilos , Plaguicidas , Ftalimidas , Piper nigrum , Sulfonas , Humanos , Agricultores , Medición de Riesgo , Benzamidas , Plaguicidas/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...