RESUMEN
The gut microbiota community of individuals is predominated by diverse fiber-utilizing bacteria, and might have distinct fermentation outcomes for a given dietary substrate. In this research, we isolated pea cell walls (PCWs) from cotyledon seeds, and performed the in vitro fecal fermentation by individual Prevotella- and Bacteroides-enterotype inocula. The Prevotella-enterotype inoculum showed a higher fermentation rate and produced more short-chain fatty acids (SCFAs), especially propionate and butyrate, throughout the entire fermentation period from PCW degradation compared with the Bacteroides-enterotype one. Furthermore, the better monosaccharide utilization capacity of Prevotella-enterotype inoculum was shown, compared to the Bacteroides-enterotype inoculum. PCW fermentation with Prevotella- and Bacteroides-enterotype inocula resulted in different microbial changes, and the abundance of Prevotella and Bacteroides was promoted, respectively. These results may contribute to predicting the responses of Prevotella and Bacteroides enterotypes to diets and offer useful information in personalized nutrition.
Asunto(s)
Pared Celular/química , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Pisum sativum/citología , Células Vegetales/química , Polisacáridos/farmacología , Adulto , Bacteroides/metabolismo , Biología Computacional , ADN Bacteriano/genética , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Humanos , Masculino , Polisacáridos/química , Prevotella/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Semillas/citologíaRESUMEN
Plastids and mitochondria have their own small genomes, which do not undergo meiotic recombination and may have evolutionary fates different from each other and that of the nuclear genome. For the first time, we sequenced mitochondrial genomes of pea (Pisum L.) from 42 accessions mostly representing diverse wild germplasm from throughout the wild pea geographical range. Six structural types of the pea mitochondrial genome were revealed. From the same accessions, plastid genomes were sequenced. Phylogenetic trees based on the plastid and mitochondrial genomes were compared. The topologies of these trees were highly discordant, implying not less than six events of hybridisation between diverged wild peas in the past, with plastids and mitochondria differently inherited by the descendants. Such discordant inheritance of organelles could have been driven by plastid-nuclear incompatibility, which is known to be widespread in crosses involving wild peas and affects organellar inheritance. The topology of the phylogenetic tree based on nucleotide sequences of a nuclear gene, His5, encoding a histone H1 subtype, corresponded to the current taxonomy and resembled that based on the plastid genome. Wild peas (Pisum sativum subsp. elatius s.l.) inhabiting Southern Europe were shown to be of hybrid origin, resulting from crosses of peas related to those presently inhabiting the eastern Mediterranean in a broad sense. These results highlight the roles of hybridisation and cytonuclear conflict in shaping plant microevolution.
Asunto(s)
Evolución Molecular , Genoma Mitocondrial/genética , Filogenia , Pisum sativum/citología , Pisum sativum/genética , Plastidios/genética , Núcleo Celular/genética , Citoplasma/genética , Europa (Continente) , Hibridación GenéticaRESUMEN
BACKGROUND: Soil acidity (and associated Al toxicity) is a major factor limiting crop production worldwide and threatening global food security. Electrostatic layer-by-layer (LBL) self-assembly provides a convenient and versatile method to form an extracellular silica nanocoat, which possess the ability to protect cell from the damage of physical stress or toxic substances. In this work, we have tested a hypothesis that extracellular silica nanocoat formed by LBL self-assembly will protect root border cells (RBCs) and enhance their resistance to Al toxicity. RESULTS: Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to compare the properties of RBCs surface coated with nanoshells with those that were exposed to Al without coating. The accumulation of Al, reactive oxygen species (ROS) levels, and the activity of mitochondria were detected by a laser-scanning confocal microscopy. We found that a crystal-like layer of silica nanoparticles on the surface of RBCs functions as an extracellular Al-proof coat by immobilizing Al in the apoplast and preventing its accumulation in the cytosol. The silica nanoshells on the RBCs had a positive impact on maintaining the integrity of the plasma and mitochondrial membranes, preventing ROS burst and ensuring higher mitochondria activity and cell viability under Al toxicity. CONCLUSIONS: The study provides evidence that silica nanoshells confers RBCs Al resistance by restraining of Al in the silica-coat, suggesting that this method can be used an efficient tool to prevent multibillion-dollar losses caused by Al toxicity to agricultural crop production.
Asunto(s)
Aluminio/química , Nanoestructuras , Pisum sativum/citología , Raíces de Plantas/citología , Dióxido de Silicio/química , Supervivencia Celular , Potencial de la Membrana Mitocondrial , Pisum sativum/química , Raíces de Plantas/química , Especies Reactivas de Oxígeno/metabolismo , Electricidad EstáticaRESUMEN
In order to investigate the nutritional quality of industrial-scale sprouted versus unsprouted chickpeas and green peas, before and after cooking, the ultrastructure, chemical composition, antioxidant capacity, starch digestibility, mineral content and accessibility were analysed. Sprouting did not deeply affect raw seed structure, although after cooking starch granules appeared more porous and swelled. Chemical composition of raw sprouted seeds was not strongly affected, excepting an increase in protein (both pulses), and in free sugars (in peas; +10% and +80%, respectively, p < .05). The industrial sprouting favoured phytic acid leaching in cooking water (-35% in seeds, compared to unsprouted cooked ones, p < .05), and promoted antioxidant capacity reductions in raw and cooked seeds (-10% and -37%, respectively, p < .05). In conclusion, sprouting on an industrial-scale induced mild structural modifications in chickpeas and peas, sufficient to reduce antinutritional factors, without strongly influencing their nutritional quality. These products could represent nutritionally interesting ingredients for different dietary patterns as well as for enriched cereal-based foods.
Asunto(s)
Culinaria/métodos , Valor Nutritivo , Pisum sativum/química , Semillas/química , Antioxidantes/análisis , Fibras de la Dieta/análisis , Digestión , Minerales/análisis , Pisum sativum/citología , Ácido Fítico/análisis , Plantones/química , Semillas/citología , Almidón/química , Temperatura , Factores de TiempoRESUMEN
The effect of melatonin on respiration and production (release) of hydrogen peroxide during succinate oxidation in mitochondria isolated from lupine cotyledons and epicotyls of pea seedlings was studied. It was shown for the first time that melatonin (10-7-10-3 M) had a significant inhibitory effect on the production of peroxide by plant mitochondria, which was characterized by concentration dependence and species specificity. At the same time, melatonin (at a concentration of up to 100 µM) had virtually no effect on mitochondrial respiration rate and respiratory control coefficient. The results confirm the antioxidant function of melatonin and indicate that it is involved in the regulation of ROS levels and maintenance of redox balance in plant mitochondria.
Asunto(s)
Lupinus/citología , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxidos/metabolismo , Pisum sativum/citología , Relación Dosis-Respuesta a Droga , Lupinus/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Ácido Succínico/metabolismoRESUMEN
Expansive growth is a process by which walled cells of plants, algae, and fungi use turgor pressure to mediate irreversible wall deformation and regulate their shape and volume. The molecular structure of the primary cell wall must therefore perform multiple functions simultaneously, including providing structural support by combining elastic and irreversible deformation and facilitating the deposition of new material during growth. This is accomplished by a network of microfibrils and tethers composed of complex polysaccharides and proteins that can dynamically mediate the network topology via periodic detachment and reattachment events. Lockhart and Ortega have provided crucial macroscopic understanding of the expansive growth process through global biophysical models, but these models lack the connection to molecular processes that trigger network rearrangements in the wall. Interestingly, the helical growth of the fungal sporangiophores of Phycomyces blakesleeanus is attributed to a limited region (called the growth zone) where microfibrils are deposited, followed by reorientation and slip. Based on past evidence of dominant shear strain between microfibrils (slippage), we propose a mechanistic model of a network of sliding fibrils connected by tethers. A statistical approach is introduced to describe the population behavior of tethers that have elastic properties and the ability to break and reform in time. These properties are responsible for global cell wall mechanics such as creep and stress relaxation. Model predictions are compared with experiments from literature on stress relaxation and turgor pressure step up for the growing cells of P. blakesleeanus, which are later extended to incised pea (Pisum sativus L.) and the algae Chara corallina using the unique dimensionless number Πpe for each species. To our knowledge, this research is the first attempt to use a statistical approach to model the cell wall during expansive growth, and we believe it provides critical insights on cell wall dynamics at a molecular level.
Asunto(s)
Modelos Biológicos , Phycomyces/citología , Pisum sativum/citología , Pared Celular/metabolismo , Chara/citologíaRESUMEN
The two-membrane envelope is a defining feature of chloroplasts. Chloroplasts evolved from a Gram-negative cyanobacterial endosymbiont. During evolution, genes of the endosymbiont have been transferred to the host nuclear genome. Most chloroplast proteins are synthesized in the cytosol as higher-molecular-mass preproteins with an N-terminal transit peptide. Preproteins are transported into chloroplasts by the TOC and TIC (translocons at the outer- and inner-envelope membranes of chloroplasts, respectively) machineries1,2, but how TOC and TIC are assembled together is unknown. Here we report the identification of the TIC component TIC236; TIC236 is an integral inner-membrane protein that projects a 230-kDa domain into the intermembrane space, which binds directly to the outer-membrane channel TOC75. The knockout mutation of TIC236 is embryonically lethal. In TIC236-knockdown mutants, a smaller amount of the inner-membrane channel TIC20 was associated with TOC75; the amount of TOC-TIC supercomplexes was also reduced. This resulted in a reduced import rate into the stroma, though outer-membrane protein insertion was unaffected. The size and the essential nature of TIC236 indicate that-unlike in mitochondria, in which the outer- and inner-membrane translocons exist as separate complexes and a supercomplex is only transiently assembled during preprotein translocation3,4-a long and stable protein bridge in the intermembrane space is required for protein translocation into chloroplasts. Furthermore, TIC236 and TOC75 are homologues of bacterial inner-membrane TamB5 and outer-membrane BamA, respectively. Our evolutionary analyses show that, similar to TOC75, TIC236 is preserved only in plants and has co-evolved with TOC75 throughout the plant lineage. This suggests that the backbone of the chloroplast protein-import machinery evolved from the bacterial TamB-BamA protein-secretion system.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Pisum sativum/citología , Unión Proteica , Precursores de Proteínas/metabolismo , Transporte de ProteínasRESUMEN
PREMISE OF THE STUDY: Root border cells are programmed to separate from the root cap as it penetrates the soil environment, where the cells actively secrete >100 extracellular proteins into the surrounding mucilage. The detached cells function in defense of the root tip by an extracellular trapping process that also requires DNA, as in mammalian white blood cells. Trapping in animals and plants is reversed by treatment with DNase, which results in increased infection. The goal of this study was to evaluate the role of DNA in the structural integrity of extracellular structures released as border cells disperse from the root tip upon contact with water. METHODS: DNA stains including crystal violet, toluidine blue, Hoechst 33342, DAPI, and SYTOX green were added to root tips to visualize the extracellular mucilage as it absorbed water and border cell populations dispersed. DNase I was used to assess structural changes occurring when extracellular DNA was degraded. KEY RESULTS: Complex masses associated with living border cells were immediately evident in response to each stain, including those that are specific for DNA. Treating with DNase I dramatically altered the appearance of the extracellular structures and their association with border cells. No extracellular DNA was found in association with border cells killed by freezing or high-speed centrifugation. This observation is consistent with the hypothesis that, as with border cell extracellular proteins, DNA is secreted by living cells. CONCLUSION: DNA is an integral component of border cell extracellular traps.
Asunto(s)
ADN de Plantas/química , Meristema/citología , Pisum sativum/citología , Raíces de Plantas/citología , Zea mays/citología , Meristema/crecimiento & desarrollo , Pisum sativum/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrolloRESUMEN
The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes.
Asunto(s)
Pared Celular/metabolismo , Pisum sativum/citología , Pisum sativum/metabolismo , Células Vegetales/metabolismo , Vías Biosintéticas/genética , Pared Celular/genética , Epítopos/metabolismo , Esterificación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glicosilación , Meristema/citología , Meristema/metabolismo , Meristema/ultraestructura , Análisis por Micromatrices , Modelos Biológicos , Monosacáridos/análisis , Pisum sativum/genética , Células Vegetales/ultraestructura , Polisacáridos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Transcripción GenéticaRESUMEN
Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. SIGNIFICANCE: The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death.
Asunto(s)
Supervivencia Celular , Pisum sativum/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos/inmunología , Supervivencia Celular/inmunología , Metaboloma , Pisum sativum/citología , Pisum sativum/inmunología , Pisum sativum/microbiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Azufre/metabolismo , Simbiosis/inmunologíaRESUMEN
Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-d-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 µM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed.
Asunto(s)
Aparato de Golgi/enzimología , Pisum sativum/citología , Pisum sativum/enzimología , Poligalacturonasa/análisis , Pectinas/biosíntesis , Poligalacturonasa/aislamiento & purificación , Poligalacturonasa/metabolismoRESUMEN
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione.
Asunto(s)
Glutatión/metabolismo , Pisum sativum/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Tiorredoxinas/metabolismo , Técnicas de Cultivo de Célula/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/biosíntesis , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Pisum sativum/citología , Antígeno Nuclear de Célula en Proliferación/genética , Transporte de Proteínas/genética , Tiorredoxinas/genética , Nicotiana/citología , Nicotiana/metabolismoRESUMEN
BACKGROUND: In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. METHODS: Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 â 4)-ß-D-galactan (LM5), (1 â 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. RESULTS: Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. CONCLUSIONS: Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.
Asunto(s)
Mutación/genética , Pectinas/inmunología , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Polisacáridos/inmunología , Semillas/metabolismo , Alelos , Cruzamientos Genéticos , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Pisum sativum/citología , Proteínas de Plantas/metabolismo , Semillas/citologíaRESUMEN
Powdery mildew caused by Erysiphe pisi is one of the important diseases responsible for heavy yield losses in pea crop worldwide. The most effective method of controlling the disease is the use of resistant varieties. The resistance to powdery mildew in pea is recessive and governed by a single gene er1. The objective of present study is to investigate if er1 mediated powdery mildew resistance is associated with changes in the redox status of the pea plant. 16 pea genotypes were screened for powdery mildew resistance in field condition for two years and, also, analyzed for the presence/absence of er1 gene. Histochemical analysis with DAB and NBT staining indicates accumulation of reactive oxygen species (ROS) in surrounding area of powdery mildew infection which was higher in susceptible genotypes as compared to resistant genotypes. A biochemical study revealed that the activity of superoxide dismutase (SOD) and catalase, enzymes involved in scavenging ROS, was increased in, both, resistant and susceptible genotypes after powdery mildew infection. However, both enzymes level was always higher in resistant than susceptible genotypes throughout time course of infection. Moreover, irrespective of any treatment, the total phenol (TP) and malondialdehyde (MDA) content was significantly high and low in resistant genotypes, respectively. The powdery mildew infection elevated the MDA content but decreased the total phenol in pea genotypes. Statistical analysis showed a strong positive correlation between AUDPC and MDA; however, a negative correlation was observed between AUDPC and SOD, CAT and TP. Heritability of antioxidant was also high. The study identified few novel genotypes resistant to powdery mildew infection that carried the er1 gene and provided further clue that er1 mediated defense response utilizes antioxidant machinery to confer powdery mildew resistance in pea.
Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad , Genes de Plantas , Pisum sativum/citología , Pisum sativum/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Análisis de Varianza , Área Bajo la Curva , Catalasa/metabolismo , Genotipo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Oxidación-Reducción , Pisum sativum/genética , Pisum sativum/microbiología , Fenoles/metabolismo , Fenotipo , Superóxido Dismutasa/metabolismoRESUMEN
MAIN CONCLUSION: Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N',N'-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.
Asunto(s)
Lisofosfolípidos/farmacología , Óxido Nítrico/metabolismo , Pisum sativum/metabolismo , Estomas de Plantas/efectos de los fármacos , Esfingosina/análogos & derivados , Ácido Abscísico/farmacología , Análisis de Varianza , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Lisofosfolípidos/metabolismo , Microscopía Confocal , Pisum sativum/citología , Pisum sativum/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Esfingosina/farmacología , Factores de TiempoRESUMEN
MAIN CONCLUSION: Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.
Asunto(s)
Arabidopsis/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Medicago sativa/metabolismo , Pisum sativum/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Membranas Intracelulares/metabolismo , Espectrometría de Masas , Medicago sativa/citología , Medicago sativa/genética , Pisum sativum/citología , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de ProteínasRESUMEN
It is known that two key groups of plant hormones--auxins and cytokinins--play an important role in plant tumor development. The formation of Agrobacterium-induced tumors results from the horizontal transfer of bacterial oncogenes involved in the biosynthesis of these hormones in the plant genome. The role of transcriptional factors in plant tumor development is poorly investigated. It can be assumed that tumor development associated with abnormal cell proliferation can be controlled by the same set of transcription factors that control normal cell proliferation and, in particular, transcription factors that regulate meristem activity. In the present study, we analyzed the histological organization and distribution of proliferating cells in tumors induced by Agrobacterium tumefaciens on pea hypocotyls. In addition, the expression of a set of meristem-specific genes with Agrobacterium tumefaciens-induced tumor development was analyzed. In general, our results indicate that meristematic structures are present in A. tumefaciens-induced tumors and that the development of such tumors is associated with increased expression of a key gene regulating the root apical meristem--the WOX5 gene.
Asunto(s)
Agrobacterium tumefaciens , Meristema/metabolismo , Meristema/microbiología , Pisum sativum/metabolismo , Tumores de Planta/microbiología , Proliferación Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Pisum sativum/citología , Pisum sativum/genética , Pisum sativum/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The effects of nitrogen (N) deprivation were studied in etiolated pea plants (Pisum sativum cv. Zsuzsi) grown in shoot cultures. The average shoot lengths decreased and the stems significantly altered considering their pigment contents, 77 K fluorescence spectra and ultrastructural properties. The protochlorophyllide (Pchlide) content and the relative contribution of the 654-655 nm emitting flash-photoactive Pchlide form significantly decreased. The etioplast inner membrane structure characteristically changed: N deprivation correlated with a decrease in the size and number of prolamellar bodies (PLBs). These results show that N deficiency directly hinders the pigment production, as well as the synthesis of other etioplast inner membrane components in etiolated pea stems.
Asunto(s)
Cloroplastos/ultraestructura , Nitrógeno/metabolismo , Pisum sativum/citología , Brotes de la Planta/citología , Tallos de la Planta/citología , Cloroplastos/metabolismo , Pisum sativum/metabolismo , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Tallos de la Planta/metabolismo , Protoclorofilida/metabolismo , Espectrometría de Fluorescencia , Técnicas de Cultivo de Tejidos/métodosRESUMEN
Plant surfaces form the barrier between a plant and its environment. Upon damage, the wound healing process begins immediately and is accompanied by a rapid production of extracellular reactive oxygen species (ROS), essential in deterring pathogens, signalling responses and cell wall restructuring. Although many enzymes produce extracellular ROS, it is unclear if ROS-producing enzymes act synergistically. We characterised the oxidative burst of superoxide (O2(·-)) and hydrogen peroxide (H2O2) that follows wounding in pea (Pisum sativum L.) seedlings. Rates of ROS production were manipulated by exogenous application of enzyme substrates and inhibitors. The results indicate significant roles for di-amine oxidases (DAO) and peroxidases (Prx) rather than NADPH oxidase. The burst of O2(·-) was strongly dependent on the presence of H2O2 produced by DAO. Potential substrates released from wounded seedlings included linoleic acid that, upon exogenous application, strongly stimulated catalase-sensitive O2(·-) production. Moreover, a 65kD plasma membrane (PM) guaiacol Prx was found in the secretome of wounded seedlings and showed dependence on linoleic acid for O2(·-) production. Lipoxygenases are suggested to modulate O2(·-) production by consuming polyunsaturated fatty acids in the apoplast. Overall, a O2(·-)-producing mechanism involving H2O2-derived from DAO, linoleic acid and a PM-associated Prx is proposed.
Asunto(s)
Amina Oxidasa (conteniendo Cobre)/metabolismo , Lipooxigenasa/metabolismo , Peroxidasas/metabolismo , Pisum sativum/citología , Pisum sativum/enzimología , Estallido Respiratorio , Plantones/metabolismo , Membrana Celular/enzimología , Peróxido de Hidrógeno/metabolismo , Ácido Linoleico/metabolismo , Peroxidación de Lípido , Pisum sativum/metabolismo , Pisum sativum/fisiología , Superóxidos/metabolismoRESUMEN
Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses.