Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 2): 131408, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604426

RESUMEN

Using the optimal extraction conditions determined by response surface optimisation, the yield of soluble dietary fibre (SDF) modified by superfine grinding combined with enzymatic modification (SE-SDF) was significantly increased from 4.45 % ±â€¯0.21 % (natural pea dietary fibre) to 16.24 % ±â€¯0.09 %. To further analyse the modification mechanism, the effects of three modification methods-superfine grinding (S), enzymatic modification (E), and superfine grinding combined with enzymatic modification (SE)-on the structural, physicochemical, and functional properties of pea SDF were studied. Nuclear magnetic resonance spectroscopy results showed that all four SDFs had α- and ß-glycosidic bonds. Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy results showed that the crystal structure of SE-SDF was most severely damaged. The Congo red experimental results showed that none of the four SDFs had a triple-helical structure. Scanning electron microscopy showed that SE-SDF had a looser structure and an obvious honeycomb structure than other SDFs. Thermogravimetric analysis, particle size, and zeta potential results showed that SE-SDF had the highest thermal stability, smallest particle size, and excellent solution stability compared with the other samples. The hydration properties showed that SE-SDF had the best water solubility capacity and water-holding capacity. All three modification methods (S, E, and SE) enhanced the sodium cholate adsorption capacity, cholesterol adsorption capacity, cation exchange capacity, and nitrite ion adsorption capacity of pea SDF. Among them, the SE modification had the greatest effect. This study showed that superfine grinding combined with enzymatic modification can effectively improve the SDF content and the physicochemical and functional properties of pea dietary fibre, which gives pea dietary fibre great application potential in functional foods.


Asunto(s)
Fibras de la Dieta , Manipulación de Alimentos , Alimentos Funcionales , Pisum sativum , Pisum sativum/química , Pisum sativum/ultraestructura , Solubilidad , Enzimas/química , Manipulación de Alimentos/métodos
2.
Plant Physiol ; 188(1): 81-96, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662407

RESUMEN

Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/ultraestructura , Plastidios/fisiología , Plastidios/ultraestructura , Avena/crecimiento & desarrollo , Avena/ultraestructura , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Modelos Teóricos , Pisum sativum/crecimiento & desarrollo , Pisum sativum/ultraestructura , Phaseolus/crecimiento & desarrollo , Phaseolus/ultraestructura , Programas Informáticos , Zea mays/crecimiento & desarrollo , Zea mays/ultraestructura
3.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063012

RESUMEN

Single-walled carbon nanotubes (SWCNTs) emerge as promising novel carbon-based nanoparticles for use in biomedicine, pharmacology and precision agriculture. They were shown to penetrate cell walls and membranes and to physically interact and exchange electrons with photosynthetic complexes in vitro. Here, for the first time, we studied the concentration-dependent effect of foliar application of copolymer-grafted SWCNTs on the structural and functional characteristics of intact pea plants. The lowest used concentration of 10 mg L-1 did not cause any harmful effects on the studied leaf characteristics, while abundant epicuticular wax generation on both leaf surfaces was observed after 300 mg L-1 treatment. Swelling of both the granal and the stromal regions of thylakoid membranes was detected after application of 100 mg L-1 and was most pronounced after 300 mg L-1. Higher SWCNT doses lead to impaired photosynthesis in terms of lower proton motive force generation, slower generation of non-photochemical quenching and reduced zeaxanthin content; however, the photosystem II function was largely preserved. Our results clearly indicate that SWCNTs affect the photosynthetic apparatus in a concentration-dependent manner. Low doses (10 mg L-1) of SWCNTs appear to be a safe suitable object for future development of nanocarriers for substances that are beneficial for plant growth.


Asunto(s)
Cloroplastos/ultraestructura , Nanotubos de Carbono/química , Fotosíntesis , Pisum sativum/fisiología , Pisum sativum/ultraestructura , Hojas de la Planta/anatomía & histología , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Permeabilidad de la Membrana Celular , Clorofila/metabolismo , Fluorescencia , Nanotubos de Carbono/ultraestructura , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/ultraestructura , Protones , Tilacoides/metabolismo , Factores de Tiempo , Xantófilas/metabolismo
4.
Nat Plants ; 7(4): 514-523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33875833

RESUMEN

Etioplasts are photosynthetically inactive plastids that accumulate when light levels are too low for chloroplast maturation. The etioplast inner membrane consists of a paracrystalline tubular lattice and peripheral, disk-shaped membranes, respectively known as the prolamellar body and prothylakoids. These distinct membrane regions are connected into one continuous compartment. To date, no structures of protein complexes in or at etioplast membranes have been reported. Here, we used electron cryo-tomography to explore the molecular membrane landscape of pea and maize etioplasts. Our tomographic reconstructions show that ATP synthase monomers are enriched in the prothylakoids, and plastid ribosomes in the tubular lattice. The entire tubular lattice is covered by regular helical arrays of a membrane-associated protein, which we identified as the 37-kDa enzyme, light-dependent protochlorophyllide oxidoreductase (LPOR). LPOR is the most abundant protein in the etioplast, where it is responsible for chlorophyll biosynthesis, photoprotection and defining the membrane geometry of the prolamellar body. Based on the 9-Å-resolution volume of the subtomogram average, we propose a structural model of membrane-associated LPOR.


Asunto(s)
Cloroplastos/ultraestructura , Membranas Intracelulares/ultraestructura , Pisum sativum/ultraestructura , Zea mays/ultraestructura , Tomografía con Microscopio Electrónico
5.
Nat Plants ; 6(10): 1300-1305, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020607

RESUMEN

The ability of photosynthetic organisms to use sunlight as a sole source of energy is endowed by two large membrane complexes-photosystem I (PSI) and photosystem II (PSII). PSI and PSII are the fundamental components of oxygenic photosynthesis, providing oxygen, food and an energy source for most living organisms on Earth. Currently, high-resolution crystal structures of these complexes from various organisms are available. The crystal structures of megadalton complexes have revealed excitation transfer and electron-transport pathways within the various complexes. PSI is defined as plastocyanin-ferredoxin oxidoreductase but a high-resolution structure of the entire triple supercomplex is not available. Here, using a new cryo-electron microscopy technique, we solve the structure of native plant PSI in complex with its electron donor plastocyanin and the electron acceptor ferredoxin. We reveal all of the contact sites and the modes of interaction between the interacting electron carriers and PSI.


Asunto(s)
Ferredoxinas/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Pisum sativum/ultraestructura , Plastocianina/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Electrones , Ferredoxinas/química , Modelos Moleculares , Complejo de Proteína del Fotosistema I/química , Plastocianina/química , Conformación Proteica
6.
Carbohydr Polym ; 231: 115738, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31888846

RESUMEN

The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain ß-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.


Asunto(s)
Estructura Molecular , Pectinas/química , Pisum sativum/química , Arabinosa/química , Galactanos/química , Galactosa/química , Glicósido Hidrolasas/química , Ácidos Hexurónicos/química , Pisum sativum/ultraestructura , Pectinas/ultraestructura , Polisacáridos/química , Ramnosa/química , Xilosa/química
7.
Plant Physiol Biochem ; 139: 191-196, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30904720

RESUMEN

Pea (Pisum sativum) root cap releases a large number of living border cells that secrete abundant mucilage into the extracellular medium. Mucilage contains a complex mixture of polysaccharides, proteins and secondary metabolites important for its structure and function in defense. Unlike xyloglucan and cellulose, pectin and arabinogalactan proteins have been investigated in pea root and shown to be major components of border cell walls and mucilage. In this study, we investigated the occurrence of xyloglucan and cellulose in pea border cells and mucilage using cytochemical staining, immunocytochemistry and laser scanning confocal microscopy. Our data show that i) unlike cellulose, xyloglucan is highly present in the released mucilage as a dense fibrillary network enclosing border cells and ii) that xyloglucan and cellulose form molecular cross-bridges that tether cells and maintain them attached together. These findings suggest that secreted xyloglucan is essential for mucilage strengthening and border cell attachment and functioning.


Asunto(s)
Celulosa/metabolismo , Glucanos/metabolismo , Pisum sativum/metabolismo , Raíces de Plantas/citología , Xilanos/metabolismo , Microscopía Confocal , Pisum sativum/ultraestructura , Mucílago de Planta/metabolismo , Cápsula de Raíz de Planta/citología , Cápsula de Raíz de Planta/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura
8.
FEBS Lett ; 593(6): 565-572, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30775779

RESUMEN

Protein import into chloroplasts is carried out by the protein translocons at the outer and inner envelope membranes (TOC and TIC). Detailed structures for these translocons are lacking, with only a low-resolution TOC complex structure available. Recently, we showed that the TOC/TIC translocons can import folded proteins, a rather unique feat for a coupled double membrane system. We also determined the maximum functional TOC/TIC pore size to be 30-35 Å. Here, we discuss how such large pores could form and compare the structural dynamics of the pore-forming Toc75 subunit to its bacterial/mitochondrial Omp85 family homologs. We put forward structural models that can be empirically tested and also briefly review the pore dynamics of other protein translocons with known structures.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/química , Precursores de Proteínas/química , Arabidopsis/ultraestructura , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cloroplastos/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Pisum sativum/ultraestructura , Proteínas de Plantas/metabolismo , Pliegue de Proteína , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Homología Estructural de Proteína
9.
Biochemistry ; 57(15): 2278-2288, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29577715

RESUMEN

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].


Asunto(s)
Diglicéridos/química , Complejos de Proteína Captadores de Luz/química , Membrana Dobles de Lípidos/química , Pisum sativum/enzimología , Complejos de Proteína Captadores de Luz/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Confocal , Pisum sativum/ultraestructura
10.
Methods Mol Biol ; 1670: 87-95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28871538

RESUMEN

For structural and respiratory studies, isolation of intact and active mitochondria is essential. Here, we describe an isolation method which gave good yield and intact mitochondria from 2-week-old pea (Pisum sativum) roots grown hydroponically under standard growth conditions. We used Percoll gradient centrifugation for this isolation procedure. The yield of purified mitochondria was 50 µg/g FW. Isolated mitochondria maintained their structure which was observed by using MitoTracker green in confocal microscope and scanning electron microscopy (SEM). Intact mitochondria are clearly visible in SCM images. Taken together this isolation method can be used for physiological and microscopic studies on mitochondria.


Asunto(s)
Fraccionamiento Celular/métodos , Mitocondrias/ultraestructura , Pisum sativum/metabolismo , Raíces de Plantas/metabolismo , Germinación , Microscopía Confocal , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Pisum sativum/crecimiento & desarrollo , Pisum sativum/ultraestructura , Fenotipo , Raíces de Plantas/ultraestructura
11.
New Phytol ; 216(1): 193-204, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28748561

RESUMEN

In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.


Asunto(s)
Ácidos Indolacéticos/farmacología , Pisum sativum/metabolismo , Semillas/anatomía & histología , Almidón/biosíntesis , Ácido 2,4-Diclorofenoxiacético/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Germinación/genética , Mutación/genética , Tamaño de los Órganos/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Pisum sativum/embriología , Pisum sativum/ultraestructura , Fenotipo , Plantas Modificadas Genéticamente , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/ultraestructura , Sacarosa/metabolismo , Factores de Tiempo , Cigoto/efectos de los fármacos , Cigoto/metabolismo
12.
J Oleo Sci ; 66(7): 735-743, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626138

RESUMEN

The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R2>0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g-1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Residuos Industriales , Plomo/aislamiento & purificación , Níquel/aislamiento & purificación , Pisum sativum , Adsorción , Concentración de Iones de Hidrógeno , Microscopía Electroquímica de Rastreo , Pisum sativum/ultraestructura , Soluciones , Temperatura , Termodinámica , Factores de Tiempo , Agua
13.
Nat Plants ; 3: 17014, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248295

RESUMEN

Four elaborate membrane complexes carry out the light reaction of oxygenic photosynthesis. Photosystem I (PSI) is one of two large reaction centres responsible for converting light photons into the chemical energy needed to sustain life. In the thylakoid membranes of plants, PSI is found together with its integral light-harvesting antenna, light-harvesting complex I (LHCI), in a membrane supercomplex containing hundreds of light-harvesting pigments. Here, we report the crystal structure of plant PSI-LHCI at 2.6 Šresolution. The structure reveals the configuration of PsaK, a core subunit important for state transitions in plants, a conserved network of water molecules surrounding the electron transfer centres and an elaborate structure of lipids bridging PSI and its LHCI antenna. We discuss the implications of the structure for energy transfer and the evolution of PSI.


Asunto(s)
Transporte de Electrón , Transferencia de Energía , Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Pisum sativum/ultraestructura , Cristalografía por Rayos X , Tilacoides
14.
Biochim Biophys Acta Bioenerg ; 1858(5): 360-365, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28237493

RESUMEN

Energization of thylakoid membranes brings about the acidification of the lumenal aqueous phase, which activates important regulatory mechanisms. Earlier Jajoo and coworkers (2014 FEBS Lett. 588:970) have shown that low pH in isolated plant thylakoid membranes induces changes in the excitation energy distribution between the two photosystems. In order to elucidate the structural background of these changes, we used small-angle neutron scattering on thylakoid membranes exposed to low p2H (pD) and show that gradually lowering the p2H from 8.0 to 5.0 causes small but well discernible reversible diminishment of the periodic order and the lamellar repeat distance and an increased mosaicity - similar to the effects elicited by light-induced acidification of the lumen. Our data strongly suggest that thylakoids dynamically respond to the membrane energization and actively participate in different regulatory mechanisms.


Asunto(s)
Difracción de Neutrones , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Pisum sativum/metabolismo , Dispersión del Ángulo Pequeño , Tilacoides/metabolismo , Transferencia de Energía , Concentración de Iones de Hidrógeno , Fluidez de la Membrana , Pisum sativum/ultraestructura , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/ultraestructura , Hojas de la Planta/metabolismo , Tilacoides/ultraestructura
15.
Tsitologiia ; 58(1): 52-9, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-27220252

RESUMEN

The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO3(0.2 mM) and Na2SO4(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.


Asunto(s)
Lluvia Ácida/toxicidad , Fotosíntesis/efectos de los fármacos , Pisum sativum/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Tilacoides/efectos de los fármacos , Anhidrasas Carbónicas/metabolismo , Clorofila/antagonistas & inhibidores , Clorofila/química , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Concentración de Iones de Hidrógeno , Luz , Microscopía Electrónica de Transmisión , Nitratos/toxicidad , Pisum sativum/metabolismo , Pisum sativum/ultraestructura , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Sulfatos/toxicidad , Tilacoides/metabolismo , Tilacoides/ultraestructura
16.
Methods ; 98: 74-81, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26678796

RESUMEN

Methods for the localization of cellular components such as nucleic acids, proteins, cellular vesicles and more, and the localization of microorganisms including viruses, bacteria and fungi have become an important part of any research program in biological sciences that enable the visualization of these components in fixed and live tissues without the need for complex processing steps. The rapid development of microscopy tools and technologies as well as related fluorescent markers and fluorophores for many cellular components, and the ability to design DNA and RNA sequence-based molecular probes and antibodies which can be visualized fluorescently, have rapidly advanced this field. This review will focus on some of the localizations methods which have been used in plants and insect pests in agriculture, and other microorganisms, which are rapidly advancing the research in agriculture-related fields.


Asunto(s)
Botrytis/ultraestructura , Dípteros/ultraestructura , Hibridación Fluorescente in Situ/métodos , Pisum sativum/ultraestructura , ARN Mensajero/química , Gorgojos/ultraestructura , Animales , Botrytis/genética , Botrytis/metabolismo , Digoxigenina/química , Dípteros/microbiología , Dípteros/virología , Colorantes Fluorescentes/química , Regulación de la Expresión Génica , Oligonucleótidos/química , Pisum sativum/microbiología , Pisum sativum/virología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relación Señal-Ruido , Simbiosis , Fijación del Tejido/métodos , Transcripción Genética , Gorgojos/microbiología , Gorgojos/virología , Wolbachia/genética , Wolbachia/metabolismo , Wolbachia/ultraestructura
17.
Protoplasma ; 252(6): 1505-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25743038

RESUMEN

Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise beneficial strain of Rhizobium as a pathogen.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Pisum sativum/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/microbiología , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Factores de Transcripción/genética , Genotipo , Glucanos/metabolismo , Inmunohistoquímica , Lípidos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Fijación del Nitrógeno , Pisum sativum/genética , Pisum sativum/metabolismo , Pisum sativum/ultraestructura , Pectinas/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/ultraestructura , Microbiología del Suelo , Factores de Tiempo
18.
Biophys J ; 108(4): 844-853, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25692589

RESUMEN

Protonation of the lumen-exposed residues of some photosynthetic complexes in the grana membranes occurs under conditions of high light intensity and triggers a major photoprotection mechanism known as energy dependent nonphotochemical quenching. We have studied the role of protonation in the structural reorganization and thermal stability of isolated grana membranes. The macroorganization of granal membrane fragments in protonated and partly deprotonated state has been mapped by means of atomic force microscopy. The protonation of the photosynthetic complexes has been found to induce large-scale structural remodeling of grana membranes-formation of extensive domains of the major light-harvesting complex of photosystem II and clustering of trimmed photosystem II supercomplexes, thinning of the membrane, and reduction of its size. These events are accompanied by pronounced thermal destabilization of the photosynthetic complexes, as evidenced by circular dichroism spectroscopy and differential scanning calorimetry. Our data reveal a detailed nanoscopic picture of the initial steps of nonphotochemical quenching.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Tilacoides/química , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Pisum sativum/química , Pisum sativum/enzimología , Pisum sativum/ultraestructura , Desnaturalización Proteica , Tilacoides/enzimología
19.
Micron ; 67: 10-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25004847

RESUMEN

Cell wall components such as hydroxyproline-rich glycoproteins (HRGPs, extensins) have been proposed to be involved in aluminum (Al) resistance mechanisms in plants. We have characterized the distribution of extensin in pea (Pisum sativum L.) root nodules apoplast under short (for 2 and 24h) Al stress. Monoclonal antibodie LM1 have been used to locate extensin protein epitope by immunofluorescence and immunogold labeling. The nodules were shown to respond to Al stress by thickening of plant and infection thread (IT) walls and disturbances in threads growth and bacteria endocytosis. Immunoblot results indicated the presence of a 17-kDa band specific for LM1. Irrespective of the time of Al stress, extensin content increased in root nodules. Further observation utilizing fluorescence and transmission electron microscope showed that LM1 epitope was localized in walls and intercellular spaces of nodule cortex tissues and in the infection threads matrix. Al stress in nodules appears to be associated with higher extensin accumulation in matrix of enlarged thick-walled ITs. In addition to ITs, thickened walls and intercellular spaces of nodule cortex were also associated with intense extensin accumulation. These data suggest that Al-induced extensin accumulation in plant cell walls and ITs matrix may have influence on the process of IT growth and tissue and cell colonization by Rhizobium bacteria.


Asunto(s)
Aluminio/toxicidad , Glicoproteínas/metabolismo , Pisum sativum/química , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/química , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Glicoproteínas/fisiología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Pisum sativum/metabolismo , Pisum sativum/ultraestructura , Proteínas de Plantas/fisiología , Nódulos de las Raíces de las Plantas/ultraestructura , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología
20.
Plant Cell Physiol ; 55(7): 1296-303, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793749

RESUMEN

Using the mass-measuring capability of scanning transmission electron microscopy, we demonstrate that membrane crystals of the main light-harvesting complex of plants possess the ability to undergo light-induced dark-reversible disassociations, independently of the photochemical apparatus. This is the first direct visualization of light-driven reversible reorganizations in an isolated photosynthetic antenna. These reorganizations, identified earlier by circular dichroism (CD), can be accounted for by a biological thermo-optic transition: structural changes are induced by fast heat transients and thermal instabilities near the dissipation, and self-association of the complexes in the lipid matrix. A comparable process in native membranes is indicated by earlier findings of essentially identical kinetics, and intensity and temperature dependences of the ΔCD in granal thylakoids.


Asunto(s)
Adaptación Fisiológica , Complejos de Proteína Captadores de Luz/química , Pisum sativum/química , Tilacoides/química , Cationes/metabolismo , Dicroismo Circular , Oscuridad , Calor , Luz , Complejos de Proteína Captadores de Luz/ultraestructura , Magnesio/metabolismo , Lípidos de la Membrana , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Pisum sativum/efectos de la radiación , Pisum sativum/ultraestructura , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/ultraestructura , Hojas de la Planta/química , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Tilacoides/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...