Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 193: 106780, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969189

RESUMEN

This study was designed to assess the possibility of using bacteriophage-encoded endolysins for controlling planktonic and biofilm cells. The endolysins, LysEP114 and LysEP135, were obtained from plasmid vectors containing the endolysin genes derived from Escherichia coli phages. The high identity (>96 %) was observed between LysEP114 and LysEP135. LysEP114 and LysEP135 were characterized by pH, thermal, and lactic acid stability, lytic spectrum, antibacterial activity, and biofilm eradication. The molecular masses of LysEP114 and LysEP135 were 18.2 kDa, identified as muramidases. LysEP114 and LysEP135 showed high lytic activity against the outer membrane-permeabilized E. coli KCCM 40405 at below 37 °C, between pH 5 to 11, and below 70 mM of lactic acid. LysEP114 and LysEP135 showed the broad rang of lytic activity against E. coli KACC 10115, S. Typhimurium KCCM 40253, S. Typhimurium CCARM 8009, tetracycline-resistant S. Typhimurium, polymyxin B-resistant S. Typhimurium, chloramphenicol-resistant S. Typhimurium, K. pneumoniae ATCC 23357, K. pneumoniae CCARM 10237, and Shigella boydii KACC 10792. LysEP114 and LysEP135 effectively reduced the numbers of planktonic E. coli KCCM by 1.7 and 2.1 log, respectively, when treated with 50 mM lactic acid. The numbers of biofilm cells were reduced from 7.3 to 4.1 log CFU/ml and 2.2 log CFU/ml, respectively, when treated with LysEP114- and LysEP135 in the presence of 50 mM lactic acid. The results suggest that the endolysins in combination with lactic acid could be potential alternative therapeutic agents for controlling planktonic and biofilm cells.


Asunto(s)
Antibacterianos , Biopelículas , Endopeptidasas , Escherichia coli , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Endopeptidasas/farmacología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Plancton/efectos de los fármacos , Plancton/virología , Colifagos/genética , Colifagos/fisiología , Ácido Láctico/farmacología , Bacteriófagos/genética , Temperatura , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Proteínas Virales/genética , Proteínas Virales/farmacología , Proteínas Virales/metabolismo
2.
Nature ; 616(7958): 783-789, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076623

RESUMEN

DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.


Asunto(s)
Organismos Acuáticos , Virus Gigantes , Herpesviridae , Océanos y Mares , Filogenia , Plancton , Animales , Ecosistema , Eucariontes/virología , Genoma Viral/genética , Virus Gigantes/clasificación , Virus Gigantes/genética , Herpesviridae/clasificación , Herpesviridae/genética , Plancton/virología , Metagenómica , Metagenoma , Luz Solar , Transcripción Genética/genética , Organismos Acuáticos/virología
3.
J Virol ; 96(17): e0106322, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000841

RESUMEN

Bacteriophages (phages) are an integral part of the human oral microbiome. Their roles in modulating bacterial physiology and shaping microbial communities have been discussed but remain understudied due to limited isolation and characterization of oral phage. Here, we report the isolation of LC001, a lytic phage targeting human oral Schaalia odontolytica (formerly known as Actinomyces odontolyticus) strain XH001. We showed that LC001 attached to and infected surface-grown, but not planktonic, XH001 cells, and it displayed remarkable host specificity at the strain level. Whole-genome sequencing of spontaneous LC001-resistant, surface-grown XH001 mutants revealed that the majority of the mutants carry nonsense or frameshift mutations in XH001 gene APY09_05145 (renamed ltg-1), which encodes a putative lytic transglycosylase (LT). The mutants are defective in LC001 binding, as revealed by direct visualization of the significantly reduced attachment of phage particles to the XH001 spontaneous mutants compared that to the wild type. Meanwhile, targeted deletion of ltg-1 produced a mutant that is defective in LC001 binding and resistant to LC001 infection even as surface-grown cells, while complementation of ltg-1 in the mutant background restored the LC001-sensitive phenotype. Intriguingly, similar expression levels of ltg-1 were observed in surface-grown and planktonic XH001, which displayed LC001-binding and nonbinding phenotypes, respectively. Furthermore, the overexpression of ltg-1 failed to confer an LC001-binding and -sensitive phenotype to planktonic XH001. Thus, our data suggested that rather than directly serving as a phage receptor, ltg-1-encoded LT may increase the accessibility of phage receptor, possibly via its enzymatic activity, by cleaving the peptidoglycan structure for better receptor exposure during peptidoglycan remodeling, a function that can be exploited by LC001 to facilitate infection. IMPORTANCE The evidence for the presence of a diverse and abundant phage population in the host-associated oral microbiome came largely from metagenomic analysis or the observation of virus-like particles within saliva/plaque samples, while the isolation of oral phage and investigation of their interaction with bacterial hosts are limited. Here, we report the isolation of LC001, the first lytic phage targeting oral Schaalia odontolytica. Our study suggested that LC001 may exploit the host bacterium-encoded lytic transglycosylase function to gain access to the receptor, thus facilitating its infection.


Asunto(s)
Actinomycetaceae , Bacteriófagos , Glicosiltransferasas , Actinomycetaceae/enzimología , Actinomycetaceae/virología , Receptores de Bacteriógrafos/metabolismo , Bacteriófagos/enzimología , Bacteriófagos/genética , Bacteriófagos/fisiología , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Especificidad del Huésped , Humanos , Microbiota , Boca/microbiología , Boca/virología , Mutación , Peptidoglicano/metabolismo , Plancton/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Science ; 376(6598): 1202-1208, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679415

RESUMEN

DNA viruses are increasingly recognized as influencing marine microbes and microbe-mediated biogeochemical cycling. However, little is known about global marine RNA virus diversity, ecology, and ecosystem roles. In this study, we uncover patterns and predictors of marine RNA virus community- and "species"-level diversity and contextualize their ecological impacts from pole to pole. Our analyses revealed four ecological zones, latitudinal and depth diversity patterns, and environmental correlates for RNA viruses. Our findings only partially parallel those of cosampled plankton and show unexpectedly high polar ecological interactions. The influence of RNA viruses on ecosystems appears to be large, as predicted hosts are ecologically important. Moreover, the occurrence of auxiliary metabolic genes indicates that RNA viruses cause reprogramming of diverse host metabolisms, including photosynthesis and carbon cycling, and that RNA virus abundances predict ocean carbon export.


Asunto(s)
Plancton , Virus ARN , Agua de Mar , Viroma , Ciclo del Carbono , Ecosistema , Océanos y Mares , Plancton/clasificación , Plancton/metabolismo , Plancton/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Agua de Mar/virología , Viroma/genética
5.
Viruses ; 12(7)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679656

RESUMEN

The lytic and lysogenic life cycles of marine phages are influenced by environmental conditions such as solar radiation, temperature, and host abundance. Temperature can regulate phage infection, but its role is difficult to discern in oligotrophic waters where there is typically low host abundance and high temperatures. Here, we study the temporal variability of viral dynamics and the occurrence of lysogeny using mitomycin C in a eutrophic coastal lagoon in the oligotrophic Red Sea, which showed strong seasonality in terms of temperature (22.1-33.3 °C) and large phytoplankton blooms. Viral abundances ranged from 2.2 × 106 to 1.5 × 107 viruses mL-1 and were closely related to chlorophyll a (chl a) concentration. Observed high virus-to-bacterium ratio (VBR) (4-79; 16 ± 4 (SE)) suggests that phages exerted a tight control of their hosts as indicated by the significant decrease in bacterial abundance with increasing virus concentration. Heterotrophic bacterial abundance also showed a significant decrease with increasing temperature. However, viral abundance was not related to temperature changes and the interaction of water temperature, suggesting an indirect effect of temperature on decreased host abundance, which was observed at the end of the summertime. From the estimated burst size (BS), we observed lysogeny (undetectable to 29.1%) at low percentages of 5.0% ± 1.2 (SE) in half of the incubations with mitomycin C, while it increased to 23.9% ± 2.8 (SE) when the host abundance decreased. The results suggest that lytic phages predominate, switching to a moderate proportion of temperate phages when the host abundance reduces.


Asunto(s)
Bacteriófagos/fisiología , Lisogenia/fisiología , Plancton/virología , Citometría de Flujo , Calor , Océano Índico , Océanos y Mares , Plancton/fisiología , Temperatura
6.
Microbiologyopen ; 9(6): 1207-1224, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32180355

RESUMEN

The shallow Caroline Seamount is located in the tropical western Pacific Ocean. Its summit is 57 m below the surface and penetrates the euphotic zone. Therefore, it is ideal for the study of the influence of seamount on plankton distribution. Here, virioplankton abundance and distribution were investigated by flow cytometry (FCM) in the Caroline Seamount in August and September 2017. The total abundance of virus-like particles (VLP) was in the range of 0.64 × 106 -18.77 × 106  particles/ml and the average was 5.37 ± 3.75 × 106  particles/ml. Three to four distinct viral subclusters with similar side scatter but different green fluorescence intensities were identified. Above the deep chlorophyll maximum (DCM), two medium fluorescence virus (MFV) subclusters were discriminated. Between the DCM and the deeper layers, only one MFV subcluster was resolved. In general, low fluorescence viruses (LFV) comprised the most abundant subclusters. In the 75-150 m water column, however, the MFV abundance was higher than the LFV abundance. High fluorescence viruses (HFV) constituted the least abundant subcluster throughout the entire water column. Virioplankton abundance was significantly enhanced at the seamount stations. Environmental factors including water temperature and nitrate concentration were the most correlated with the variation in virioplankton abundance at the seamount stations. Interactions between shallow seamounts and local currents can support large virus standing stocks, causing a so-called indirect "seamount effect" on the virioplankton.


Asunto(s)
Plancton/virología , Virus/clasificación , Biodiversidad , Ecosistema , Fluorescencia , Océano Pacífico , Virus/genética , Virus/aislamiento & purificación
7.
Viruses ; 11(11)2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717498

RESUMEN

Viruses are a highly abundant, dynamic, and diverse component of planktonic communities that have key roles in marine ecosystems. We aimed to reveal the diversity and dynamics of marine large dsDNA viruses infecting algae in the Northern Skagerrak, South Norway through the year by metabarcoding, targeting the major capsid protein (MCP) and its correlation to protist diversity and dynamics. Metabarcoding results demonstrated a high diversity of algal viruses compared to previous metabarcoding surveys in Norwegian coastal waters. We obtained 313 putative algal virus operational taxonomic units (vOTUs), all classified by phylogenetic analyses to either the Phycodnaviridae or Mimiviridae families, most of them in clades without any cultured or environmental reference sequences. The viral community showed a clear temporal variation, with some vOTUs persisting for several months. The results indicate co-occurrences between abundant viruses and potential hosts during long periods. This study gives new insights into the virus-algal host dynamics and provides a baseline for future studies of algal virus diversity and temporal dynamics.


Asunto(s)
Eucariontes/virología , Microalgas/virología , Mimiviridae , Phycodnaviridae , Biodiversidad , Proteínas de la Cápside/genética , Virus ADN/aislamiento & purificación , Genes Virales , Interacciones Microbiota-Huesped , Metagenómica , Mimiviridae/clasificación , Mimiviridae/genética , Mimiviridae/aislamiento & purificación , Noruega , Phycodnaviridae/clasificación , Phycodnaviridae/genética , Phycodnaviridae/aislamiento & purificación , Filogenia , Plancton/virología , Estaciones del Año , Agua de Mar/virología
8.
ISME J ; 13(11): 2817-2833, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31320727

RESUMEN

Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 µm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.


Asunto(s)
Hierro/metabolismo , Microbiota , Plancton/genética , Plancton/virología , California , Cilióforos/genética , Cilióforos/metabolismo , Cilióforos/efectos de la radiación , Cilióforos/virología , Diatomeas/genética , Diatomeas/metabolismo , Diatomeas/efectos de la radiación , Diatomeas/virología , Dinoflagelados/genética , Dinoflagelados/metabolismo , Dinoflagelados/efectos de la radiación , Dinoflagelados/virología , Cadena Alimentaria , Haptophyta/genética , Haptophyta/metabolismo , Haptophyta/efectos de la radiación , Haptophyta/virología , Océanos y Mares , Fotosíntesis , Fitoplancton/genética , Fitoplancton/metabolismo , Fitoplancton/efectos de la radiación , Fitoplancton/virología , Plancton/metabolismo , Plancton/efectos de la radiación , Transcripción Genética , Fenómenos Fisiológicos de los Virus , Virus/genética
9.
Appl Microbiol Biotechnol ; 103(1): 315-326, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30397766

RESUMEN

Urinary tract infections are one of the most common infectious diseases worldwide. Uropathogenic Escherichia coli (UPEC) is a major cause of unary tract infection. Due to increasing prevalence of multidrug resistance, alternative methods to eradicate the UPECs are urgently needed. In this respect, phage therapy has been demonstrated to be a good candidate. Here, we described a novel bacteriophage named vB_EcoP-EG1, which can infect several strains of UPEC. Phage morphology and genome sequencing analysis show that vB_EcoP-EG1 belongs to the T7-like Podoviridae. vB_EcoP-EG1 possesses a genome (39,919 bp) containing 51 predicted genes and 149 bp terminal repeats. vB_EcoP-EG1 genome does not encode toxic proteins or proteins related to lysogeny. And no known virulent proteins were found in purified phage particles by mass spectrometry. vB_EcoP-EG1 appeared to be relatively specific and sensitive to clinical UPEC strains, which could infect 10 out of 21 clinical multidrug-resistant UPEC strains. In addition, vB_EcoP-EG1 suspension can eliminate biofilm formed by E. coli MG1655 and multidrug-resistant UPEC strain 390G7. Therefore, we concluded that vB_EcoP-EG1 has desirable characteristics for potential therapy, which may serve as an alternative to antibiotic therapy against urinary tract infections caused by multidrug-resistant UPEC.


Asunto(s)
Podoviridae/fisiología , Escherichia coli Uropatógena/virología , Bacteriólisis , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Genoma Viral , Especificidad del Huésped , Humanos , Terapia de Fagos , Filogenia , Plancton/virología , Podoviridae/genética , Podoviridae/patogenicidad , Escherichia coli Uropatógena/aislamiento & purificación , Proteínas Estructurales Virales/genética
10.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29776929

RESUMEN

Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 µg/ml of LysGH15, and the MICs ranged from 8 µg/ml to 32 µg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 µg/ml. At a higher dose (100 µg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 µg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 µg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


Asunto(s)
Biopelículas , Terapia de Fagos , Plancton/fisiología , Plancton/virología , Infecciones Estafilocócicas/terapia , Fagos de Staphylococcus/fisiología , Staphylococcus/fisiología , Staphylococcus/virología , Animales , Bacteriemia/microbiología , Bacteriemia/terapia , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Plancton/genética , Plancton/crecimiento & desarrollo , Infecciones Estafilocócicas/microbiología , Staphylococcus/genética , Staphylococcus/crecimiento & desarrollo
11.
PLoS One ; 13(3): e0194419, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29543885

RESUMEN

Decades of research have demonstrated the crucial importance of viruses in freshwater ecosystems. However, few studies have focused on the seasonal dynamics and potential hosts of RNA viruses. We surveyed microbial-sized (i.e. 5-0.2 µm) mixed community plankton transcriptomes for RNA viral genomes and investigated their distribution between microbial and macrobial plankton over a seasonal cycle across three temperate lakes by quantitative reverse transcriptase PCR (qRT-PCR). A total of 30 contigs bearing similarity to RNA viral genomes were recovered from a global assembly of 30 plankton RNA libraries. Of these, only 13 were found in >2 libraries and recruited >100 reads (of 9.13 x 107 total reads), representing several picornaviruses, two tobamoviruses and a reovirus. We quantified the abundance of four picornaviruses and the reovirus monthly from August 2014 to May 2015. Patterns of viral abundance in the >5 µm size fraction and representation in microbial-sized community RNA libraries over time suggest that one picornavirus genotype (TS24835) and the reovirus (TS148892) may infect small (<5 µm) eukaryotic microorganisms, while two other picornaviruses (TS24641 and TS4340) may infect larger (>5 µm) eukaryotic microorganisms or metazoa. Our data also suggest that picornavirus TS152062 may originate from an allochthonous host. All five viral genotypes were present in at least one size fraction across all 3 lakes during the year, suggesting that RNA viruses may easily disperse between adjacent aquatic habitats. Our data therefore demonstrate that RNA viruses are widespread in temperate lacustrine ecosystems, and may provide evidence of viral infection in larger eukaryotes (including metazoa) inhabiting the lakes.


Asunto(s)
Lagos/virología , Virus ARN/genética , ARN Viral/genética , Estaciones del Año , Ecosistema , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Genoma Viral/genética , Genotipo , New York , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Plancton/virología , Virus ARN/clasificación , Reoviridae/clasificación , Reoviridae/genética , Tobamovirus/clasificación , Tobamovirus/genética
12.
Environ Microbiol ; 20(2): 477-491, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28925544

RESUMEN

Viral concentrates (VCs), containing bioinformative DNA and proteins, have been used to study viral diversity, viral metagenomics and virus-host interactions in natural ecosystems. Besides viruses, VCs also contain many noncellular biological components including diverse functional proteins. Here, we used a shotgun proteomic approach to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum (DCM) of the South China Sea. Proteins of viruses infecting picophytoplankton, that is, cyanobacteria and prasinophytes, and heterotrophic bacterioplankton, such as SAR11 and SAR116, dominated the viral proteome. Almost no proteins from RNA viruses or known gene transfer agents were detected, suggesting that they were not abundant at the sampling site. Remarkably, nonviral proteins made up about two thirds of VC proteins, including overwhelmingly abundant periplasmic transporters for nutrient acquisition and proteins for diverse cellular processes, that is, translation, energy metabolism and one carbon metabolism. Interestingly, three 56 kDa selenium-binding proteins putatively involved in peroxide reduction from gammaproteobacteria were abundant in the VCs, suggesting active removal of peroxide compounds at DCM. Our study demonstrated that metaproteomics provides a valuable avenue to explore the diversity and structure of the viral community and also the pivotal biological functions affiliated with microbes in the natural environment.


Asunto(s)
Proteínas Periplasmáticas/aislamiento & purificación , Agua de Mar/virología , Proteínas Virales/aislamiento & purificación , Bacterias/virología , Proteínas Bacterianas/aislamiento & purificación , Clorofila , Cianobacterias/virología , Gammaproteobacteria/metabolismo , Océanos y Mares , Plancton/virología , Proteómica , Agua de Mar/microbiología , Proteínas de Unión al Selenio/aislamiento & purificación
13.
Methods Mol Biol ; 1693: 33-41, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29119430

RESUMEN

The in vitro activity of bacteriophages against planktonic cultures and biofilms is commonly evaluated by culture methods. However, these methods can lead to an underestimation of total bacterial cells when they undergo different physiological states.This chapter describes the methodology used to assess the in vitro activity of bacteriophages against planktonic cultures of bacteria in different metabolic states and biofilm populations by flow cytometry.


Asunto(s)
Bacterias/virología , Fenómenos Fisiológicos Bacterianos , Bacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Citometría de Flujo/métodos , Plancton/crecimiento & desarrollo , Plancton/virología
14.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29099976

RESUMEN

Viruses are the most abundant biological entities on Earth and play an important role in microbial community dynamics and biogeochemical cycling, yet their ecological characteristics in estuarine ecosystems are unclear. Here, virioplankton communities in a typical subtropical estuary, the Jiulong River estuary (JRE) in China, were investigated. The abundance of virioplankton ranged from 1.01 ± 0.05 × 107 to 1.62 ± 0.09 × 107 particles mL-1 in JRE, and the population size of viruses was correlated with temperature and nutrient levels. Three tailed viral morphotypes (myovirus, siphovirus and podovirus) were observed. Phylogenetic analysis showed that most of the g23 sequences in the JRE fell into three previously established groups (Marine, Paddy and Lake Groups) and two potential Estuary Groups. This demonstrates the co-existence of typical freshwater and marine T4-like myoviruses in the estuarine ecosystem, suggesting the movement of viruses and their hosts among biomes. Additionally, the spatial variation of g23 sequences suggests a geographic distribution pattern of T4-like myoviruses in the JRE, which might be shaped by the environmental gradient and/or their host distribution. These results provide valuable insights into the abundance, diversity and distribution patterns of virioplankton, as well as the factors influencing them, in subtropical estuarine ecosystems.


Asunto(s)
Estuarios , Myoviridae/aislamiento & purificación , Plancton/virología , Podoviridae/aislamiento & purificación , Siphoviridae/aislamiento & purificación , China , Ecosistema , Lagos/virología , Myoviridae/clasificación , Myoviridae/genética , Filogenia , Podoviridae/clasificación , Podoviridae/genética , Ríos/virología , Siphoviridae/clasificación , Siphoviridae/genética
15.
PLoS One ; 12(7): e0180838, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28700707

RESUMEN

METHODS: Phages isolated from environmental waters in Bangladesh were tested for their host specificity towards V. cholerae O1 and O139, and the ability to disperse V. cholerae biofilms formed in the laboratory. Representative phages were further characterized by electron microscopy and whole genome sequencing. Selected phages were then introduced in various combinations to biofilms of toxigenic V. cholerae added to samples of river water, and the dispersion of biofilms as well as the growth kinetics of V. cholerae and the phages were monitored. RESULTS: A phage cocktail composed of three different phages isolated from surface waters in Bangladesh and designated as JSF7, JSF4, and JSF3 could significantly influence the distribution and concentration of the active planktonic form and biofilm associated form of toxigenic V. cholerae in water. While JSF7 showed a biofilm degrading activity and dispersed cells from both V. cholerae O1 and O139 derived biofilms thus increasing the concentration of planktonic V. cholerae in water, JSF4 and JSF3 showed strong bactericidal activity against V. cholerae O1 and O139 respectively. A mixture of all three phages could effectively reduce both biofilm-associated and planktonic V. cholerae in river water microcosms. SIGNIFICANCE: Besides potential applicability in phage-mediated control of cholera, our results have relevance in appreciating possible intricate role of diverse environmental phages in the epidemiology of the disease, since both biofilms and phages influence the prevalence and infectivity of V. cholerae in a variety of ways.


Asunto(s)
Bacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Plancton/virología , Vibrio cholerae/virología , Cólera/epidemiología , Vibrio cholerae O1/virología , Vibrio cholerae O139/virología , Microbiología del Agua
16.
Res Microbiol ; 168(5): 413-418, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28263904

RESUMEN

There is a constant need for direct counting of biotic nanoparticles such as viruses to unravel river functioning. We used, for the first time in freshwater, a new method based on interferometry differentiating viruses from other particles such as membrane vesicles. In the French Marne River, viruses represented between 42 and 72% of the particles. A spring monitoring in 2014 revealed their increase (2.1 × 107 to 2.1 × 108 mL-1) linked to an increase in algal biomass and diversity of bacterial plankton. Predicted virus size distributions were in agreement with transmission electron microscopy analysis suggesting a dominance of large viruses (≥60 nm).


Asunto(s)
Microscopía de Interferencia , Ríos/virología , Virus/aislamiento & purificación , Virus/ultraestructura , Biomasa , Cianobacterias/virología , Agua Dulce/virología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Plancton/virología , Estaciones del Año
17.
J Theor Biol ; 412: 27-35, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27693364

RESUMEN

Viruses are known to impact blooms of phytoplankton in the ocean, in some cases causing the bloom to crash. Here, using a population model that includes viral infection, we investigate the conditions under which the presence of a virus significantly impacts the population dynamics. A major focus is how spatial variability influences the spread of an epidemic in a stirring and mixing field. The combination of viral infection and diffusion can cause waves of the epidemic to sweep through the domain, with the epidemic lasting much longer than in the homogeneous case. Stirring by the fluid flow can greatly increase this effect causing an increase in the fraction of the bloom that is affected and in certain circumstances (high diffusion and stirring) can totally suppress the bloom. The fluid environment affects the relative spatial structure of the components of the system. High values of the concentrations of the virus and infected phytoplankton are found in thin filaments along fronts of uninfected (susceptible) phytoplankton.


Asunto(s)
Modelos Biológicos , Plancton/virología , Virosis , Virus , Animales , Océanos y Mares , Dinámica Poblacional
18.
Colloids Surf B Biointerfaces ; 139: 87-94, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26700237

RESUMEN

In earlier work we have demonstrated the effect that nano-emulsions have on bacterial growth, and most importantly the enhanced bacteriophage infectivity against Staphylococcus aureus in planktonic culture when phage are carried in nano-emulsions. However, the mechanisms of enhancement of the bacteriophage killing effect are not specifically understood. This work focuses on the investigation of the possible interactions between emulsion droplets and bacterial cells, between emulsion droplets and bacteriophages, and finally interactions between all three components: nano-emulsion droplets, bacteria, and bacteriophages. The first approach consists of simple calculations to determine the spatial distribution of the components, based on measurements of particle size. It was found that nano-emulsion droplets are much more numerous than bacteria or bacteriophage, and due to their size and surface area they must be covering the surface of both cells and bacteriophage particles. Stabilisation of bacteriophages due to electrostatic forces and interaction with nano-emulsion droplets is suspected, since bacteriophages may be protected against inactivation due to 'charge shielding'. Zeta potential was measured for the individual components in the system, and for all of them combined. It was concluded that the presence of nano-emulsions could be reducing electrostatic repulsion between bacterial cells and bacteriophage, both of which are very negatively 'charged'. Moreover, nano-emulsions lead to more favourable interaction between bacteriophages and bacteria, enhancing the anti-microbial or killing effect. These findings are relevant since the physicochemical properties of nano-emulsions (i.e. particle size distribution and zeta potential) are key in determining the efficacy of the formulation against infection in the context of responsive burn wound dressings-which is the main target for this work.


Asunto(s)
Bacteriófagos/patogenicidad , Nanoestructuras/química , Staphylococcus aureus/virología , Bacteriófagos/fisiología , Emulsiones , Tamaño de la Partícula , Plancton/virología , Electricidad Estática
19.
Mikrobiologiia ; 85(5): 588-597, 2016 Sep.
Artículo en Ruso | MEDLINE | ID: mdl-29364606

RESUMEN

Interactions of the main components of microbial planktonic food web (bacteria, heterotrophic nanoflagellates, and viruses) were studied in a protected overgrown littoral zone of the Rybinsk Reservoir (Upper Volga).. The effect of bird colonial, settlements (the Laridae family) on these processes was deter- mined. The following systems exhibited significant negative correlations: "heterotrophic nanoflagellates- large rod-shaped bacteria" ("predator-prey"), "viruses-bacteriophages-bacterial products" ("parasite-. host") and "heterotrophic nanoflagellates-viruses-bacteriophages." Relations between biotic factors con- trolling bacterial development were more pronounced outside the zone affected by colonial bird settlements. Near the bird colony the role of viruses in mortality of planktonic bacteria increased. Reproduction of bacte- rial cells accelerated in response to the increase in feeding activity of heterotrophic nanoflagellates. Viruses- bacteriophages and heterotrophic nanoflagellates probably eliminate different targets until medium-sized cells become predominant in the bacterial community. Then heterotrophic nanoflagellates consume bacterial cells infected with viruses.


Asunto(s)
Bacterias/crecimiento & desarrollo , Charadriiformes/fisiología , Dinoflagelados/crecimiento & desarrollo , Procesos Heterotróficos/fisiología , Plancton/crecimiento & desarrollo , Virus/crecimiento & desarrollo , Animales , Bacterias/virología , Carga Bacteriana , Recuento de Células , Dinoflagelados/microbiología , Dinoflagelados/virología , Ecosistema , Cadena Alimentaria , Plancton/microbiología , Plancton/virología , Estanques/microbiología , Estanques/virología , Federación de Rusia
20.
ISME J ; 9(11): 2386-99, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25848873

RESUMEN

Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus-host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus-host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage-host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host-virus interactions in complex microbial communities.


Asunto(s)
Bacteriófagos/genética , Gammaproteobacteria/virología , Sedimentos Geológicos/microbiología , Plancton/virología , Archaea/virología , Bacteroidetes/virología , ADN Viral/genética , Genoma Arqueal , Genoma Bacteriano , Genómica , Metagenómica , Filogenia , Análisis de la Célula Individual , Verrucomicrobia/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...