Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.503
Filtrar
1.
Plant Cell Rep ; 43(10): 238, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316270

RESUMEN

KEY MESSAGE: Boron is essential for plants, but excess can induce toxicity. Boron (B) is a vital micronutrient for plants, but excess B can induce toxicity symptoms and reduce crop yields. B bioavailability depends on soil properties, including clay type, pH, and organic matter content. Symptoms of B toxicity include reduced shoot and root growth, leaf chlorosis and necrosis, impaired photosynthesis, and disrupted pollen development. This review paper examines the current knowledge on B toxicity mechanisms, tolerance strategies, and management approaches in plants. This review covers (1) factors affecting B bioavailability; (2) toxicity symptoms in plants; (3) uptake, transport, and detoxification mechanisms; and (4) strategies. To mitigate toxicity, plants reduce B uptake, activate efflux transporters, compartmentalize B, and enhance antioxidant systems. On the basis of this review, future research should focus on identifying novel tolerance mechanisms, exploring genetic strategies for improved B management, and developing innovative agronomic interventions. These insights will facilitate the breeding and management of crops for enhanced productivity under B toxicity stress.


Asunto(s)
Boro , Boro/toxicidad , Boro/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Productos Agrícolas/efectos de los fármacos , Estrés Fisiológico , Suelo/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transporte Biológico , Habilidades de Afrontamiento
2.
J Hazard Mater ; 479: 135774, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255660

RESUMEN

Although extensive research has been conducted on the environmental impact of microplastics (MPs), their effects on microorganisms during the composting process and on the compost-soil system remain unclear. Our research investigates the microbial response to polylactic acid microplastics (PLAMPs) during aerobic composting and examines how compost enriched with PLAMPs affects plants. Our findings reveal that PLAMPs play a dual role in the composting process, influencing microorganisms differently depending on the composting phase. PLAMPs reduce the relative abundance of sensitive bacterial ASVs, specifically those belonging to Limnochordaceae and Enterobacteriaceae, during composting, while increasing the relative abundance of ASVs belonging to Steroidobacteriaceae and Bacillaceae. The impact of PLAMPs on microbial community assembly and niche width was found to be phase-dependent. In the stabilization phase (S5), the presence of PLAMPs caused a shift in the core microbial network from bacterial dominance to fungal dominance, accompanied by heightened microbial antagonism. Additionally, these intricate microbial interactions can be transferred to the soil ecosystem. Our study indicates that composting, as a method of managing PLAMPs, is also influenced by PLAMPs. This influence is transferred to the soil through the use of compost, resulting in severe oxidative stress in plants. Our research is pivotal for devising future strategies for PLAMPs management and predicting the subsequent changes in compost quality and environmental equilibrium.


Asunto(s)
Bacterias , Compostaje , Microplásticos , Poliésteres , Microbiología del Suelo , Contaminantes del Suelo , Microplásticos/toxicidad , Poliésteres/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Ecosistema , Microbiota/efectos de los fármacos , Hongos/metabolismo , Suelo/química , Plantas/metabolismo , Plantas/efectos de los fármacos
3.
Environ Sci Pollut Res Int ; 31(39): 51114-51125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39120815

RESUMEN

Agrochemicals are substances used to prevent, destroy, or mitigate any pest. Their indiscriminate use can cause serious problems in ecosystems, contaminating surface and groundwater and affecting surrounding biota. However, in the environment, various natural processes such as biological degradation and photodegradation can mitigate their persistence and, consequently, their ecotoxicological impact. In this regard, this study aimed to obtain relevant data on the cytotoxic effects produced by pesticides on bioindicator plants. As observed in the literature review, cellular inhibition, nuclear anomalies, and micronucleus index are some of the different impacts commonly known from pesticides. These chemical substances can cause cytogenetic alterations in a plant bioassay. Plant bioindicators such as Allium cepa L, Vicia faba L, Pisum sativum L, Lactuca sativa L, and Lens culinaris Med are very important and effective experimental models for identifying the cytogenotoxicity of pesticides. These have been available for many years. However, they are still used today for their effectiveness in detecting and monitoring chemical substances such as agrochemicals.


Asunto(s)
Plaguicidas , Plaguicidas/toxicidad , Plantas/efectos de los fármacos , Cebollas/efectos de los fármacos
4.
Sci Total Environ ; 951: 175748, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182770

RESUMEN

Tropospheric ozone (O3) pollution often accompanies droughts and heatwaves, which could collectively reduce plant productivity. Previous research suggested that O3 pollution can alter plant responses to drought by interfering with stomatal closure while drought can reduce stomatal conductance and provide protection against O3 stress. However, the interactions between O3 pollution and drought stress remain poorly understood at ecosystem scales with diverse plant functional types. To address this research gap, we used 10-year (2012-2021) satellite near-infrared reflectance of vegetation (NIRv) observations, reanalysis data of vapor pressure deficit (VPD), soil moisture (SM), and air temperature (Ta), along with O3 measurements and reanalysis data across the Northern Hemisphere to statistically disentangle the interconnections between NIRv, VPD, SM, and Ta under varying O3 levels. We found that high O3 concentrations significantly exacerbate the sensitivity of NIRv to VPD while have no notable impacts on the sensitivity of NIRv to Ta or SM for all plant functional types, indicating an enhanced combined impact of VPD and O3 on plants. Specifically, the sensitivity of NIRv to VPD increased by >75 % when O3 anomalies increased from the lowest 10 to the highest 10 percentiles across diverse plant functional types. This is likely because long-term exposure to high O3 concentrations can inhibit stomatal closure and photosynthetic enzyme activities, resulting in reduced water use efficiency and photosynthetic efficiency. This study highlights the need to consider O3 in understanding plant responses to climate factors and that O3 can alter plant responses to VPD independently of Ta and SM.


Asunto(s)
Contaminantes Atmosféricos , Ecosistema , Ozono , Presión de Vapor , Sequías , Desarrollo de la Planta/efectos de los fármacos , Monitoreo del Ambiente , Plantas/efectos de los fármacos , Atmósfera/química
5.
Ecotoxicol Environ Saf ; 283: 116844, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128455

RESUMEN

Microplastics, as emerging contaminants, pose a serious threat to terrestrial ecosystems, yet their impact on plant communities remains largely unexplored. This study utilized the soil seed bank to establish naturally germinated plant communities and investigated the effects of polyethylene (PE) and polypropylene (PP) on community characteristics. Additionally, the study aimed to elucidate the mechanisms by which variations in soil properties influenced plant community. The results indicated that microplastics led to a significant increase in soil available potassium (AK), likely due to alterations in soil microorganism proliferation. Furthermore, microplastics caused a decrease in soil salinity, total phosphorus (TP), and ammonium nitrogen (AN). Additionally, plant community composition shifted, resulting in reduced stability and niche breadth of dominant species. Microplastics also impacted niche overlap and interspecific associations among dominant species, possibly due to the reduced accessibility of resources for dominant species. Salinity, AK, and TP were identified as major drivers of changes in niche breadth, niche overlap, and community stability, with TP exerting the strongest impact on plant community composition. These findings provide valuable insights for the restoration of plant communities in coastal saline-alkali wetland contaminated by microplastics.


Asunto(s)
Microplásticos , Fósforo , Plantas , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Microplásticos/análisis , Plantas/efectos de los fármacos , Fósforo/análisis , Salinidad , Nitrógeno/análisis , Polipropilenos , Polietileno , Potasio/análisis , Ecosistema , Humedales
6.
Plant Cell Rep ; 43(9): 216, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145796

RESUMEN

Rare earth elements (REEs) comprises of a uniform group of lanthanides and scandium (Sc) and yttrium (Y) finding their key importance in agriculture sectors, electronic and defense industries, and renewable energy production. The immense application of REEs as plant growth promoters has led to their undesirable accumulation in the soil system raising concerns for REE pollution as upcoming stresses. This review mainly addresses the chemistry of REEs, uptake and distribution and their biphasic responses in plant systems and possible plausible techniques that could mitigate/alleviate REE contamination. It extends beyond the present understanding of the biphasic impacts of rare earth elements (REEs) on physio-biochemical attributes. It not only provides landmarks for further exploration of the interrelated phytohormonal and molecular biphasic nature but also introduces novel approaches aimed at mitigating their toxicities. By delving into innovative strategies such as recycling, substitution, and phytohormone-assisted mitigation, the review expands upon existing knowledge of REEs whilst also offering pathways to tackle the challenges associated with REE utilization.


Asunto(s)
Metales de Tierras Raras , Plantas , Metales de Tierras Raras/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Suelo/química
7.
Plant Cell Rep ; 43(9): 218, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153039

RESUMEN

Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Cadmio/toxicidad , Cadmio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Estrés Fisiológico/efectos de los fármacos , Transporte Biológico , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo
8.
Plant Physiol Biochem ; 215: 109030, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137683

RESUMEN

Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.


Asunto(s)
Metaloides , Poliaminas , Poliaminas/metabolismo , Metaloides/metabolismo , Metaloides/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Metales/metabolismo , Metales/toxicidad , Estrés Fisiológico/efectos de los fármacos
9.
Plant Sci ; 348: 112225, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142607

RESUMEN

Nanotechnology has brought about significant progress through the use of goods based on nanomaterials. However, concerns remain about the accumulation of these materials in the environment and their potential toxicity to living organisms. Plants have the ability to take in nanomaterials (NMs), which can cause changes in their physiology and morphology. On the other hand, nanoparticles (NPs) have been used to increase plant development and control pests in agriculture by including them into agrochemicals. The challenges of the interaction, internalization, and accumulation of NMs within plant tissues are enormous, mainly because of the various characteristics of NMs and the absence of reliable analytical tools. As our knowledge of the interactions between NMs and plant cells expands, we are able to create novel NMs that are tailored, targeted, and designed to be safe, thus minimizing the environmental consequences of nanomaterials. This review provides a thorough examination and comparison of the main microscopy techniques, spectroscopic methods, and far-field super-resolution methodologies used to examine nanomaterials within the cell walls of plants.


Asunto(s)
Nanopartículas , Plantas , Nanopartículas/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Nanotecnología/métodos
10.
Environ Sci Technol ; 58(35): 15755-15765, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163250

RESUMEN

Lithium, as an emerging contaminant, lacks sufficient information regarding its environmental and ecotoxicological implications within soil-plant systems. Employing maize, wheat, pea, and water spinach, we conducted a thorough investigation utilizing a multispecies, multiparameter, and multitechnique approach to assess the pollution characteristics and ecotoxicological effects of lithium. The findings suggested that lithium might persist in an amorphous state, altering surface functional groups and chemical bonds, although semiquantitative analysis was unattainable. Notably, lithium demonstrated high mobility, with a mild acid-soluble fraction accounting for 29.66-97.02% of the total, while a minor quantity of exogenous lithium tended to be a residual fraction. Plant analysis revealed that in 10-80 mg Li/kg soils lithium significantly enhanced certain growth parameters of maize and pea, and the calculated LC50 values for aerial part length across the four plant species varied from 173.58 to 315.63 mg Li/kg. Lithium accumulation in the leaves was up to 1127.61-4719.22 mg/kg, with its inorganic form accounting for 18.60-94.59%, and the cytoplasm fraction (38.24-89.70%) predominantly harbored lithium. Furthermore, the model displayed that growth stimulation might be attributed to the influence of lithium on phytohormone levels. Water spinach exhibited superior accumulation capacity and tolerance to lithium stress and was a promising candidate for phytoremediation strategies. Our findings contribute to a more comprehensive understanding of lithium's environmental behavior within soil-plant systems, particularly within the context of global initiatives toward carbon neutrality.


Asunto(s)
Litio , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/toxicidad , Ecotoxicología , Plantas/efectos de los fármacos
11.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201731

RESUMEN

Aluminum (Al) stress is a dominant obstacle for plant growth in acidic soil, which accounts for approximately 40-50% of the world's potential arable land. The identification and characterization of Al stress response (Al-SR) genes in Arabidopsis, rice, and other plants have deepened our understanding of Al's molecular mechanisms. However, as a crop sensitive to acidic soil, only eight Al-SR genes have been identified and functionally characterized in maize. In this review, we summarize the Al-SR genes in plants, including their classifications, subcellular localizations, expression organs, functions, and primarily molecular regulatory networks. Moreover, we predict 166 putative Al-SR genes in maize based on orthologue analyses, facilitating a comprehensive understanding of the impact of Al stress on maize growth and development. Finally, we highlight the potential applications of alleviating Al toxicity in crop production. This review deepens our understanding of the Al response in plants and provides a blueprint for alleviating Al toxicity in crop production.


Asunto(s)
Aluminio , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Aluminio/toxicidad , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/efectos de los fármacos , Plantas/genética , Plantas/metabolismo , Plantas/efectos de los fármacos , Genes de Plantas
12.
J Hazard Mater ; 477: 135221, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096630

RESUMEN

The co-contamination of soils by microplastics (MPs) and cadmium (Cd), one of the most perilous heavy metals, is emerging as a significant global concern, posing risks to plant productivity and human health. However, there remains a gap in the literature concerning comprehensive evaluations of the combined effects of MPs and Cd on soil-plant-human systems. This review examines the interactions and co-impacts of MPs and Cd in soil-plant-human systems, elucidating their mechanisms and synergistic effects on plant development and health risks. We also review the origins and contamination levels of MPs and Cd, revealing that sewage, atmospheric deposition, and biosolid applications are contributors to the contamination of soil with MPs and Cd. Our meta-analysis demonstrates that MPs significantly (p<0.05) increase the bioavailability of soil Cd and the accumulation of Cd in plant shoots by 6.9 and 9.3 %, respectively. The MPs facilitate Cd desorption from soils through direct adsorption via surface complexation and physical adsorption, as well as indirectly by modifying soil physicochemical properties, such as pH and dissolved organic carbon, and altering soil microbial diversity. These interactions augment the bioavailability of Cd, along with MPs, adversely affect plant growth and its physiological functions. Moreover, the ingestion of MPs and Cd through the food chain significantly enhances the bioaccessibility of Cd and exacerbates histopathological alterations in human tissues, thereby amplifying the associated health risks. This review provides insights into the coexistence of MPs and Cd and their synergistic effects on soil-plant-human systems, emphasizing the need for further research in this critical subject area.


Asunto(s)
Cadmio , Microplásticos , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Humanos , Microplásticos/toxicidad , Plantas/efectos de los fármacos , Plantas/metabolismo , Suelo/química
13.
Physiol Plant ; 176(4): e14445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108184

RESUMEN

Salinity stress threatens global food security, requiring novel and sustainable approaches for its mitigation. Over the past decade, nanomaterials (NMs) have emerged as a promising tool to mitigate salinity stress in plants. However, their use has been questioned in terms of whether they really benefit plants or are phytotoxic. Here, we specifically ask whether NMs can help ameliorate plant salinity stress. We use a multivariate meta-analysis of 495 experiments from 70 publications to assess how NMs interact with plants under salinity stress, with a focus on plant biomass accumulation and yield. We also analyzed the influence of NM type, dosage, application method, plant species and families, and growth media on the NM-plant interaction under salinity stress. We demonstrate that NMs enhance plant performance and mitigate salinity stress when applied at lower dosages. However, NMs are phytotoxic at higher dosages and may worsen salinity stress. Also, plant responses to NMs vary across plant species, families, and NM types. We propose a dose-dependent hypothesis to account for the effect of NMs on plant growth under salinity stress and highlight the knowledge gaps and research needs in this field.


Asunto(s)
Nanoestructuras , Plantas , Estrés Salino , Estrés Salino/fisiología , Plantas/efectos de los fármacos , Plantas/metabolismo , Salinidad , Desarrollo de la Planta/efectos de los fármacos , Biomasa
14.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125673

RESUMEN

The present study was aimed at assessing the impact of azoxystrobin-a fungicide commonly used in plant protection against pathogens (Amistar 250 SC)-on the soil microbiota and enzymes, as well as plant growth and development. The laboratory experiment was conducted in three analytical terms (30, 60, and 90 days) on sandy clay (pH-7.0). Azoxystrobin was applied to soil in doses of 0.00 (C), 0.110 (F) and 32.92 (P) mg kg-1 d.m. of soil. Its 0.110 mg kg-1 dose stimulated the proliferation of organotrophic bacteria and actinobacteria but inhibited that of fungi. It also contributed to an increase in the colony development index (CD) and a decrease in the ecophysiological diversity index (EP) of all analyzed groups of microorganisms. Azoxystrobin applied at 32.92 mg kg-1 reduced the number and EP of microorganisms and increased their CD. PP952051.1 Bacillus mycoides strain (P), PP952052.1 Prestia megaterium strain (P) bacteria, as well as PP952052.1 Kreatinophyton terreum isolate (P) fungi were identified in the soil contaminated with azoxystrobin, all of which may exhibit resistance to its effects. The azoxystrobin dose of 0.110 mg kg-1 stimulated the activity of all enzymes, whereas its 32.92 mg kg-1 dose inhibited activities of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease and stimulated the activity of catalase. The analyzed fungicide added to the soil at both 0.110 and 32.92 mg kg-1 doses inhibited seed germination and elongation of shoots of Lepidium sativum L., Sinapsis alba L., and Sorgum saccharatum L.


Asunto(s)
Fungicidas Industriales , Pirimidinas , Microbiología del Suelo , Estrobilurinas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , Pirimidinas/farmacología , Microbiota/efectos de los fármacos , Hongos/efectos de los fármacos , Suelo/química , Plantas/efectos de los fármacos , Plantas/microbiología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
15.
J Agric Food Chem ; 72(32): 17762-17770, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093601

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase inhibiting herbicides (HIHs) represent a recent class (HRAC group 27) of herbicides that offer many advantages, such as broad-spectrum activity, crop selectivity, and low resistance rates. However, emerging studies have highlighted the potential toxicity of HIHs in the environment. This review aims to provide a comprehensive summary of the toxicity of HIHs toward nontarget organisms, including plants, microorganisms, animals, and humans. Furthermore, the present work discusses the ecological roles of these organisms in the environment and their significance in agriculture. By shedding light on the toxicity of HIHs, this study seeks to raise awareness among end users, including environmentalists, researchers, and farmers, regarding the potential ecological implications of these herbicides. Hopefully, this knowledge can contribute to informed decision-making and sustainable practices in green agriculture and environmental management.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Herbicidas/toxicidad , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Humanos , Animales , Inhibidores Enzimáticos/toxicidad , Plantas/efectos de los fármacos
16.
Environ Res ; 260: 119620, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032619

RESUMEN

Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Plaguicidas , Plaguicidas/toxicidad , Animales , Plantas/efectos de los fármacos , Artrópodos/efectos de los fármacos
17.
Environ Res ; 260: 119665, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39048062

RESUMEN

The intensifying production and release into the environment as well as the increasing potential in agricultural applications make the relationship between plants and nickel nanoparticles (Ni NPs) a relevant and timely topic. The aim of this review is to give an overview and discuss the latest findings about the relationship of Ni NPs and plants. Ni NPs can be synthesized using phytochemicals derived from plant parts in an environmentally friendly manner. There are several ways for these nanoparticles to enter plant cells and tissues. This can be demonstrated through various imaging and chemical mapping approaches (e.g., transmission electron microscopy, X-ray fluorescence spectroscopy etc.). NiO NPs affect plants at multiple levels, including subcellular, cellular, tissue, organ, and whole-plant levels. However, the effects of Ni NPs on plants' ecological partners (e.g., rhizobiome, pollinators) remain largely unknown despite their ecotoxicological significance. The main cause of the Ni NPs-triggered damages is the reactive oxygen species imbalance as a consequence of the modulation of antioxidants. In non-tolerant plants, the toxicity of NiO NPs can be mitigated by exogenous treatments such as the application of silicon, salicylic acid, or jasmonic acid, which induce defense mechanisms whereas Ni-hypertolerant plant species possess endogenous defense systems, such as cell wall modifications and nitrosative signaling against NiO NP stress. Research highlights the role of Ni NPs in managing fungal diseases, showcasing their antifungal properties against specific pathogens. Due to the essentiality of Ni, the application of Ni NPs as nanofertilizers might be promising and has recently started to come into view.


Asunto(s)
Nanopartículas del Metal , Níquel , Níquel/toxicidad , Nanopartículas del Metal/toxicidad , Plantas/efectos de los fármacos , Agricultura , Tecnología Química Verde
18.
Methods Mol Biol ; 2827: 109-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985266

RESUMEN

Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Lactonas/farmacología , Lactonas/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Acetatos/farmacología , Acetatos/metabolismo
19.
Physiol Plant ; 176(4): e14419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973451

RESUMEN

Abiotic stress impairs plant growth and development, thereby causing low yield and inferior quality of crops. Increasing studies reported that strigolactones (SL) are plant hormones that enhance plant stress resistance by regulating plant physiological processes and gene expressions. In this review, we introduce the response and regulatory role of SL in salt, drought, light, heat, cold and cadmium stresses in plants. This review also discusses how SL alleviate the damage of abiotic stress in plants, furthermore, introducing the mechanisms of SL enhancing plant stress resistance at the genetic level. Under abiotic stress, the exogenous SL analog GR24 can induce the biosynthesis of SL in plants, and endogenous SL can alleviate the damage caused by abiotic stress. SL enhanced the stress resistance of plants by protecting photosynthesis, enhancing the antioxidant capacity of plants and promoting the symbiosis between plants and arbuscular mycorrhiza (AM). SL interact with abscisic acid (ABA), salicylic acid (SA), auxin, cytokinin (CK), jasmonic acid (JA), hydrogen peroxide (H2O2) and other signal molecules to jointly regulate plant stress resistance. Lastly, both the importance of SL and their challenges for future work are outlined in order to further elucidate the specific mechanisms underlying the roles of SL in plant responses to abiotic stress.


Asunto(s)
Lactonas , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
20.
Sci Total Environ ; 949: 174961, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067584

RESUMEN

The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.0 %-73.1 % PFOA was found in sediments and submerged plants, however, 52.5 %-53.0 % of PFPeA and 47.0 %-47.5 % of PFBS remained in the water under different treatments. PFOA was more bioavailable than the other substances, as demonstrated by the bioaccumulation factors (BAF) with ranges exposed to PFPeA and PFBS. Bioaccumulation PFASs induced plant oxidative stress which generates enzymes to suppress superoxide, and disturbed the processes of lysine biosynthesis, in which allysine, meso-2,6-diaminoheptanedioate, and Nsuccinyl-2-amino-6-ketopimelate were downregulated. PFASs were detected in the propagator (turions) of an ecological restoration species, where short-chain PFASs (70.1 % and 45.7 % for 2 or 20 µg/L PFAS exposure, respectively) were found to spread further into new individuals and profoundly influence ecological processes shaping populations. PFASs significantly enhanced the number of microbial species in the sediment, but the degree of differentiation in the microbial community structure was not significantly different. This study enhances our understanding of the ecological mechanisms of PFASs in the water-macrophyte-sediment systems and potential threats to the recovery process of macrophytes.


Asunto(s)
Biodegradación Ambiental , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo , Plantas/metabolismo , Plantas/efectos de los fármacos , Hidrocarburos Fluorados/metabolismo , Sedimentos Geológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...