Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.547
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116552, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850694

RESUMEN

In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.


Asunto(s)
Cerio , Nanopartículas , Plantas Medicinales , Salvia miltiorrhiza , Dióxido de Silicio , Suelo , Titanio , Titanio/toxicidad , Salvia miltiorrhiza/efectos de los fármacos , Salvia miltiorrhiza/crecimiento & desarrollo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/crecimiento & desarrollo , Nanopartículas/toxicidad , Suelo/química , Cerio/toxicidad , Rizosfera , Contaminantes del Suelo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo , Antioxidantes/metabolismo , Benzofuranos , Abietanos , Depsidos
2.
Physiol Plant ; 176(4): e14400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945697

RESUMEN

Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.


Asunto(s)
Biotecnología , Plantas Medicinales , Metabolismo Secundario , Técnicas de Cultivo de Tejidos , Plantas Medicinales/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Biotecnología/métodos
3.
Zhongguo Zhong Yao Za Zhi ; 49(8): 1989-1995, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812215

RESUMEN

In the new stage of trans-omics and trans-subjects for medicinal plants, it is an urgent need to integrate big data, provide interactive applications, and form a unified and multi-level research system and big data platform. Dao-di medicinal material, as an important source of medicinal plants, is a unique quality concept and comprehensive standard of tranditional Chinese medicine(TCM). Several databases have been developed in China and abroad, such as the Encyclopedia of Traditional Chinese Medicine(ETCM) and the Global Pharmacopoeia Genome Database(GPGD). Yet, most databases do not provide multi-dimensional data, including geographic data, phenotype data, compound data, and genetic data. Sichuan, known as the hometown of TCM therapies and the treasure trove of TCM, is the most representative region of medicinal plant diversity in China. According to the latest data of the fourth national survey of TCM resources, there are more than 8 000 TCM and 86 Dao-di medicinal materials in Sichuan province. Based on resource census data and relevant achievements, this study constructed the bioinformatics database of medicinal plants and the visual analysis platform of production layout by taking the Dao-di medicinal materials in Sichuan province as an example, covering geographic data, phenotype data, compound data, and genetic data. It effectively integrates multi-dimensional data of Dao-di medicinal materials and provides different levels of data interaction applications. The platform is the first large-scale multi-dimensional database and visual platform of Dao-di medicinal materials in Sichuan province, which serves as an essential resource for germplasm resources identification, decomposition of biosynthetic pathways, molecular breeding of varieties and provides medicinal plant resource information and data support for development and utilization of medicinal plants in China and abroad.


Asunto(s)
Biología Computacional , Bases de Datos Factuales , Plantas Medicinales , Plantas Medicinales/química , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , China , Medicamentos Herbarios Chinos , Medicina Tradicional China
4.
Plant Physiol Biochem ; 212: 108735, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781639

RESUMEN

Plant secondary metabolites (SMs) play a crucial role in shielding plants from pathogens and environmental stressors. These natural products find widespread applications across various industries, including pharmaceutical, food, cosmetic, and healthcare. However, the quantity and quality of these compounds in plants can be influenced by factors such as genetics, morphology, plant age, and the seasonal and daily variations. The timing of harvest holds particular significance for medicinal and aromatic plants (MAPs) as their active compounds peak at a specific moment during the plant growth cycle. Determining the optimal harvest time is essential to ensure the plants meet their intended cultivation goal. In this review, we analyzed how developmental and external factors impact the qualitative and quantitative effectiveness of SMs in MAPs. We examined recent studies on the effects of environmental and developmental factors on SMs of MAPs, compiling relevant data for analysis. The results of this review demonstrate how these factors influence the quantity and quality of plant SMs, underscoring the importance of determining the optimal harvest time (known as the balsamic time) to maximize the utilization of these compounds. Our findings offer crucial insights into the factors affecting SMs, serving as a tool for quality control in MAPs production. Moreover, this review can be a valuable resource for researchers, farmers, and industrial users aiming to optimize plant growth and harvest timing for maximum yield. Overall, our review provides valuable information for devising effective strategies to produce high-quality MAPs products.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Metabolismo Secundario , Plantas/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2128-2137, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812228

RESUMEN

The rhizosphere is an important place for material exchange between medicinal plants and soil. Root exudates are the medium of material and signal exchange between plants and soil and are the key factors in the regulation of rhizosphere microecology. Rhizosphere microorganisms are an important part of the rhizosphere microecology of medicinal plants, and the interaction between root exudates and rhizosphere microorganisms has an important influence on the growth and quality formation of medicinal plants. Rational utilization of the interaction between root exudates and rhizosphere microorganisms of medicinal plants is one of the important ways to ensure the healthy growth of medicinal plants and promote the development of ecological planting of Chinese medicinal materials. In the paper, the research status of root exudates and rhizosphere microorganisms of medicinal plants in recent years was summarized. The interaction mechanism between root exudates and rhizosphere microorganisms of medicinal plants, as well as the influence of rhizosphere microorganisms on the growth of medicinal plants, were analyzed. In addition, the advantages and promoting effects of intercropping ecological planting mode on rhizosphere microecology of medicinal plants and quality improvement of Chinese medicinal materials were explained, providing a good basis for the study of the interaction among medicinal plants, microorganisms, and soil. Furthermore, it could produce important theoretical and practical significance for the ecological planting and sustainable utilization of medicinal plants.


Asunto(s)
Raíces de Plantas , Plantas Medicinales , Rizosfera , Microbiología del Suelo , Plantas Medicinales/metabolismo , Plantas Medicinales/microbiología , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Exudados de Plantas/metabolismo , Exudados de Plantas/química
6.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698337

RESUMEN

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Asunto(s)
Astragalus propinquus , Metabolómica , Fenotipo , Raíces de Plantas , Plantas Medicinales , Transcriptoma , Astragalus propinquus/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Perfilación de la Expresión Génica
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673783

RESUMEN

The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from Artemisia annua L.-sweet wormwood), steviol glycosides (an intense sweetener from Stevia rebaudiana Bert.-stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from Echinacea purpurea (L.) Moench-echinacea and Cichorium intybus L.-chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from Arnica montana L.-mountain arnica), parthenolide ("medieval aspirin" from Tanacetum parthenium (L.) Sch.Bip.-feverfew), and silymarin (liver-protective medicine from Silybum marianum (L.) Gaertn.-milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments.


Asunto(s)
Asteraceae , Metabolismo Secundario , Asteraceae/metabolismo , Asteraceae/crecimiento & desarrollo , Biomasa , Plantas Medicinales/metabolismo , Plantas Medicinales/crecimiento & desarrollo
8.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662176

RESUMEN

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Asunto(s)
Conservación de los Recursos Naturales , Germinación , Plantas Medicinales , Semillas , Swertia , Plantas Medicinales/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Swertia/fisiología , India , Plantones/crecimiento & desarrollo , Ecosistema , Latencia en las Plantas
9.
Braz. j. biol ; 84: e254174, 2024. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1360213

RESUMEN

Anredera cordifolia (Ten.) Steenis is a vine species native to Brazil that is considered an unconventional food plant and a medicinal species whose phenolic compounds exert antioxidant activity. Since the production of metabolites is determined by environmental factors and leaf maturity, it is important to track these changes in order to determine the best time to harvest. This study aimed to verify whether leaf phenology and seasonality cause variations in the amount of phenolic compounds and in the antioxidant activity of this species. The leaves were collected in different seasons between September 2018 and April 2019, and separated according to maturity: young, mature, and senescent. Daily atmospheric temperature and rainfall data were used to characterize the collection period. The total phenolic content (TPC), determined by Folin-Ciocalteu method, was significantly higher in the young leaves collected in winter, a season of lower temperatures. These leaves showed 54.4 mg of gallic acid equivalents per 100 g of dry matter (mg GAE 100 g-1DM). Other results averaged 25.6 mg GAE 100 g-1DM. The highest antioxidant activity, assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, regardless of leaf phenology, was observed in leaves harvested in autumn (73.7%) and winter (71.1%), seasons with lower rainfall. Leaves harvested in summer and spring had lower antioxidant action rates (54.3 e 37.5%, respectively). There was no significant correlation between the total phenolic content and antioxidant activity. Thus, the phenolic composition of A. cordifolia, and consequently its activity on free radicals, varies seasonally in response to temperature and rainfall, and may or may not interact with the age of the leaves.


Anredera cordifolia (Ten.) Steenis é uma trepadeira nativa do Brasil considerada uma planta alimentícia não convencional e uma espécie medicinal, cujos compostos fenólicos exercem ação antioxidante. Como a produção de metabólitos é determinada por fatores ambientais e pela maturidade das folhas, é importante acompanhar essas mudanças a fim de determinar a época de colheita. Neste estudo objetivou-se verificar se a fenologia foliar e a sazonalidade ocasionam variação na quantidade de compostos fenólicos e na ação antioxidante dessa espécie. As folhas foram coletadas em diferentes estações, entre setembro de 2018 e abril de 2019, e separadas conforme a maturidade: jovens, maduras e senescentes. Os dados diários de temperatura atmosférica e pluviosidade foram usados para caracterizar o período de coleta. O conteúdo de fenólicos totais (TPC), determinado pelo método Folin-Ciocalteu, foi significativamente maior nas folhas jovens coletadas no inverno, período caracterizado por temperaturas mais baixas. Estas folhas apresentaram 54,4 mg equivalentes de ácido gálico por 100 g de matéria seca (mg GAE 100 g-1DM) . A média dos outros resultados foi de 25,6 mg GAE 100 g-1DM. A maior ação antioxidante, avaliada pelo método do radical livre 2,2-difenil-1-picrilhidrazil (DPPH), foi observada em folhas colhidas no outono (73,7%) e inverno (71,1%), independentemente da fenologia foliar. Nestes períodos a pluviosidade foi menor. Folhas colhidas no verão e na primavera apresentaram menores percentuais de ação antioxidante (54,3 e 37,5%, respectivamente). Não houve correlação significativa entre o conteúdo de fenólicos totais e a atividade antioxidante. Conclui-se que a composição fenólica de A. cordifolia e, consequentemente, sua ação sobre radicais livres, varia sazonalmente em resposta à temperatura e pluviosidade, podendo ou não interagir com a idade das folhas.


Asunto(s)
Plantas Medicinales/crecimiento & desarrollo , Estaciones del Año , Compuestos Fenólicos , Antioxidantes
10.
Plant Physiol Biochem ; 202: 107927, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544120

RESUMEN

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.


Asunto(s)
Centella , Centella/química , Centella/crecimiento & desarrollo , Centella/fisiología , Riego Agrícola , Biomasa , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/fisiología , Transpiración de Plantas , Conservación de los Recursos Hídricos
11.
Bol. latinoam. Caribe plantas med. aromát ; 21(6): 771-785, nov. 2022. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-1554693

RESUMEN

The aim of this study was to evaluate the effect of light on anatomy, physiology and essential oil content and composition of Varronia curassavica. They were analysed two light conditions (full sunlight and protected environment with 50% shade screen) and five accessions (VCUR-101, VCUR-102, VCUR-201, VCUR-302, VCUR-802). V. curassavica cultivated in full sun presented a greater development of the leaf blade and palisade parenchyma thickness for all accessions. Chlorophyll levels did not differ according to the two light environments. The leaf area was larger in the protected environment. The essential oil yield of the accessions ranged from 0.26 to 0.87 mL/plant in full sun and from 0.34 to 0.53 mL/plant in the protected environment. The composition of the essential oil was influenced by the light and the accession. All accessions presented (E)-caryophyllene and α-humulene. The influence of light on the evaluated variables is genotype dependent.


El objetivo de este estudio fue evaluar el efecto de la luz sobre la anatomía, fisiología, el contenido y composición de aceites esenciales de Varronia curassavica. Se analizaron dos condiciones de luz (pleno sol y ambiente protegido con 50% de pantalla de sombra) y cinco accesiones (VCUR-101, VCUR-102, VCUR-201, VCUR-302, VCUR-802). V. curassavica cultivada a pleno sol presentó mayor desarrollo del limbo foliar y espesor del parénquima en empalizada para todas las accesiones. Los niveles de clorofila no difirieron según los dos entornos de luz. El área foliar fue mayor en el ambiente protegido. El rendimiento de aceite esencial de las accesiones varió de 0,26 a 0,87 mL/planta a pleno sol y de 0,34 a0,53 mL/planta en el ambiente protegido. La composición del aceite esencial fue influenciada por la luz y la accesión. Todas las accesiones presentaron (E)-cariofileno y α-humuleno. La influencia de la luz sobre las variables evaluadas depende del genotipo.


Asunto(s)
Plantas Medicinales/crecimiento & desarrollo , Iluminación , Boraginaceae/crecimiento & desarrollo , Boraginaceae/fisiología , Aceites Volátiles/química , Clorofila/análisis
12.
Bol. latinoam. Caribe plantas med. aromát ; 21(5): 607-619, sept. 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1553743

RESUMEN

Aloe vera is among the world's economically most important medicinal plants, but as the growth of this plant and, consequently, the accumulation of metabolites is slow, we tested the hypothesis that root endophytic bacteria isolated from A. vera plants can promote growth and increase the accumulation of aloin in the gel and latex. For this, we inoculate seedlings with four endophytic bacteria and a combination of them. We confirmed the hypothesis and identified two strains with potential for the formulation of inoculants to improve the cultivation of A. vera. The bacterium 149H Paraburkholderiasp. increases the number of leaves and the accumulation of biomass, but on the other hand, 35V Enterobacter ludwigii inoculation increased the content of aloin in the gel and in the latex. Further research should focus on the association of these two strains in a single inoculant, to both promote growth and increase the synthesis of metabolites.


Aloe vera se encuentra entre las plantas medicinales económicamente más importantes del mundo, pero como el crecimiento de esta planta y, en consecuencia, la acumulación de metabolitos es lento, probamos la hipótesis de que las bacterias endofíticas de raíces aisladas de las plantas de A. vera pueden promover el crecimiento y aumentar la acumulación de aloína en el gel y látex. Para ello, inoculamos plántulas con cuatro bacterias endofíticas y una combinación de ellas. Confirmamos la hipótesis e identificamos dos cepas con potencial para la formulación de inoculantes para mejorar el cultivo de A. vera. La bacteria 149H Paraburkholderia sp. aumenta el número de hojas y la acumulación de biomasa, pero, por otro lado, la inoculación con Enterobacter ludwigii 35V aumentó el contenido de aloína en el gel y en el látex. La investigación adicional debe centrarse en la asociación de estas dos cepas en un solo inoculante, tanto para promover el crecimiento como para aumentar la síntesis de metabolitos


Asunto(s)
Aloe/crecimiento & desarrollo , Endófitos/crecimiento & desarrollo , Plantas Medicinales/crecimiento & desarrollo , Aloe/parasitología
13.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209196

RESUMEN

Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bioprospección , Productos Agrícolas , Fitoquímicos , Plantas Medicinales , Rizosfera , Microbiología del Suelo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Humanos , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología
14.
Ecol Appl ; 32(4): e2545, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35084804

RESUMEN

Medicinal plants contribute substantially to the well-being of people in large parts of the world, providing traditional medicine and supporting livelihoods from trading plant parts, which is especially significant for women in low-income communities. However, the availability of wild medicinal plants is increasingly threatened; for example, the Natal Lily (Clivia miniata), which is one of the most widely traded plants in informal medicine markets in South Africa, lost over 40% of individuals over the last 90 years. Understanding the species' response to individual and multiple pressures is essential for prioritizing and planning conservation actions. To gain this understanding, we simulated the future range and abundance of C. miniata by coupling Species Distribution Models with a metapopulation model (RAMAS-GIS). We contrasted scenarios of climate change (RCP2.6 vs. RCP8.5), land cover change (intensification vs. expansion), and harvesting (only juveniles vs. all life-stages). All our scenarios pointed to continuing declines in suitable habitat and abundance by the 2050s. When acting independently, climate change, land cover change, and harvesting each reduced the projected abundance substantially, with land cover change causing the most pronounced declines. Harvesting individuals from all life stages affected the projected metapopulation size more negatively than extracting only juveniles. When the three pressures acted together, declines of suitable habitat and abundance accelerated but uncertainties were too large to identify whether pressures acted synergistically, additively, or antagonistically. Our results suggest that conservation should prioritize the protection of suitable habitat and ensure sustainable harvesting to support a viable metapopulation under realistic levels of climate change. Inadequate management of C. miniata populations in the wild will likely have negative consequences for the well-being of people relying on this ecosystem service, and we expect there may be comparable consequences relating to other medicinal plants in different parts of the world.


Asunto(s)
Amaryllidaceae/fisiología , Cambio Climático , Plantas Medicinales/fisiología , Amaryllidaceae/crecimiento & desarrollo , Conservación de los Recursos Naturales , Ecosistema , Femenino , Humanos , Medicina Tradicional/métodos , Plantas Medicinales/crecimiento & desarrollo , Pobreza , Sudáfrica
15.
J Sci Food Agric ; 102(2): 472-487, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462916

RESUMEN

Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 µmol m-2  s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Flores/química , Hojas de la Planta/química , Plantas Comestibles/metabolismo , Plantas Medicinales/metabolismo , Verduras/efectos de la radiación , Carotenoides/química , Carotenoides/metabolismo , Producción de Cultivos/instrumentación , Producción de Cultivos/métodos , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/efectos de la radiación , Luz , Fenoles/química , Fenoles/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantas Comestibles/química , Plantas Comestibles/crecimiento & desarrollo , Plantas Comestibles/efectos de la radiación , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/efectos de la radiación , Verduras/química , Verduras/crecimiento & desarrollo , Verduras/metabolismo
16.
Chem Biodivers ; 19(1): e202100608, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786852

RESUMEN

A new globoscinic acid derivative, aspertubin A (1) along with four known compounds, were obtained from the co-culture of Aspergillus tubingensis S1120 with red ginseng. The chemical structures of compounds were characterized by using spectroscopic methods, the calculated and experimental electronic circular dichroism. Panaxytriol (2) from red ginseng, and asperic acid (4) showed significant antifeedant effect with the antifeedant rates of 75 % and 80 % at the concentrations of 50 µg/cm2 . Monomeric carviolin (3) and asperazine (5) displayed weak attractant activity on silkworm. All compounds were assayed for antifungal activities against phytopathogens A. tubingensis, Nigrospora oryzae and Phoma herbarum and the results indicated that autotoxic aspertubin A (1) and panaxytriol (2) possessed selective inhibition against A. tubingensis with MIC values at 8 µg/mL. The co-culture extract showed higher antifeedant and antifungal activities against P. herbarum than those of monoculture of A. tubingensis in ordinary medium. So the medicinal plant and endophyte showed synergistic effect on the plant disease resistance by active compounds from the coculture of A. tubingensis S1120 and red ginseng.


Asunto(s)
Antifúngicos/química , Aspergillus/química , Repelentes de Insectos/química , Panax/química , Animales , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Bombyx/efectos de los fármacos , Bombyx/crecimiento & desarrollo , Enediinos/química , Enediinos/aislamiento & purificación , Enediinos/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Panax/crecimiento & desarrollo , Panax/metabolismo , Phoma/efectos de los fármacos , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo
17.
Mol Biol Rep ; 49(1): 31-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773551

RESUMEN

BACKGROUND: Catharanthus roseus (L.) G. Donis a medicinal plant species belonging to the Apocynaceae family, which produces vinblastine and vincristine along with 100 other monoterpenoid indole alkaloids. The process of biosynthesis of C. roseus alkaloids is complex, in which many genes, enzymes, and regulators are involved. Induced mutations may be considered as a potential source for producing a higher amount of vinblastine and vincristine in this plant species. Therefore, the objective of the present study was to examine the effects of different treatments utilized on the induced genetic changes in C. roseus plants and enzyme activities. METHODS AND RESULTS: Spermine, jasmonic acid, methyjasmonate, putrescine, and cold plasma treatments were used for seed treatments. Different molecular markers, namely inter simple sequence repeat, inter retrotransposon amplified polymorphism, and retrotransposon microsatellite amplified polymorphism were employed to reveal the induced genetic changes. Antioxidant enzyme activities were also studied. The treated plants showed genetic variability and a significant increase in antioxidant enzyme activity compared to the control plants. The putrescine treatment resulted in the highest level of activity in superoxidase. A significant positive correlation occurred between the molecular markers data and antioxidant enzyme activities in treated plants. CONCLUSION: Our data revealed that the different phytohormones and cold plasma treatments could induce both genetic and chemical content changes in C. roseus plants.


Asunto(s)
Catharanthus/crecimiento & desarrollo , Repeticiones de Microsatélite , Reguladores del Crecimiento de las Plantas/farmacología , Gases em Plasma/farmacología , Retroelementos , Acetatos/farmacología , Catharanthus/efectos de los fármacos , Catharanthus/genética , Catharanthus/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxilipinas/farmacología , Proteínas de Plantas/metabolismo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Putrescina/farmacología , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espermina/farmacología , Superóxido Dismutasa/metabolismo
18.
World J Microbiol Biotechnol ; 38(1): 15, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878606

RESUMEN

Pairs polyphylla var. yunnanensis (Paris L.) is a valuable medicinal plant used in traditional Chinese medicine. The market demand for P. polyphylla has increased over time, but it has slow growth and a low natural propagation rate. Endophytic bacteria are bioactive microorganisms that form a mutualistic relationship with host plants in long-term coordinated evolution, and they can promote the growth and accumulation of effective components in host plants. The aims of this study were to identify endophytic bacteria of P. polyphylla and to characterize their properties in promoting plant growth. A total of 10 endophytic bacteria were isolated from rhizomes of P. polyphylla. The isolated endophytes exhibited a variable capacity for indole acetic acid production, phosphate solubilization and nitrogen fixation. To investigate the effects of the endophytes on plant growth, four endophyte strains, G5, J2, G20, and Y2, were selected to compare their ability to promote plant growth. The results indicated that microbial endophytes isolated from P. polyphylla rhizomes play a vital role in improving P. polyphylla plant growth and could be used as inoculants to establish a sustainable crop production system.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Endófitos/fisiología , Melanthiaceae/crecimiento & desarrollo , Melanthiaceae/microbiología , Desarrollo de la Planta , Rizoma/microbiología , ADN Bacteriano , Interacciones Microbiota-Huesped , Ácidos Indolacéticos/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/microbiología , Simbiosis
19.
Sci Rep ; 11(1): 23200, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853350

RESUMEN

Silybum marianum (L.) Gaertn (Astraceae) is a well-reputed medicinal plant mostly utilized for silymarin (Sily) content and oil production, however, the information about Sily contents in achene part is still fragmented under different climatic conditions. In this study four milk thistle ecotypes from Faisalabad (FSD), Gujranwala (GUJ), Quetta (QTA), and Kallar kahar (KK) having an altered achene color were analyzed under salt stress. Application of plant growth promoters (PGPs) is one of the solution for ameliorating the effect of salinity and increasing the quantity and quality traits of milk thistle, so ascorbic acid (AsA), thiourea (TU), and moringa leaf extract (MLE) were soil supplied after developing salinity stress (120 mM with irrigation) at germination stage. Predetermined levels were selected for PGPs such as AsA (500 µM), MLE (3%), and TU (250 µM). Results revealed that all yield related attributes were significantly decreased, while secondary metabolites, pericarp epidermis, pericarp parenchyma, and pericarp seed integument increased under salinity stress. Data suggested that PGPs treatment was helpful to alleviate the deleterious effects of salinity stress and enhance the milk thistle quality and quantity parameters. The ecotypic variations with altered achene color patterns represent an advantage for QTA ecotypes for higher Sily extraction under salt stressed conditions.


Asunto(s)
Silybum marianum/crecimiento & desarrollo , Ácido Ascórbico/metabolismo , Ecotipo , Silybum marianum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/fisiología , Estrés Salino , Suelo/química
20.
Molecules ; 26(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34946527

RESUMEN

L. indica L. cv. Mengzao, a medicinal plant of the Ixeris genus, is rich in flavonoids. In order to thoroughly analyze the the distribution and dynamic change of major flavonoids in its various parts from different growth periods, the flavonoids extracted from L. indica L. cv. Mengzao were identified and quantitatively analyzed by ultra-high-performance liquid chromatography mass spectrometer (LC-MS/MS). Results indicated that 15 flavonoids were identified from L. indica L. cv. Mengzao, and rutin, luteolin, luteolin-7-O-glucoside, kaempferol, quercetin, and apigenin are the major flavonoids in L. indica L. cv. Mengzao. In general, the total flavonoids' content in different parts of L. indica L. cv. Mengzao followed the order flowers > leaves > stems > roots. Flowers and leaves are the main harvesting parts of L. indica L. cv. Mengzao, and the flowering period is the most suitable harvesting period. This study provides valuable information for the development and utilization of L. indica L. cv. Mengzao and determined the best part to harvest and the optimal time for harvesting.


Asunto(s)
Flavonoides/análisis , Lactuca , Componentes Aéreos de las Plantas , Raíces de Plantas , Plantas Medicinales , Lactuca/química , Lactuca/crecimiento & desarrollo , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/química , Plantas Medicinales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...