Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39164839

RESUMEN

The use of plant growth-promoting rhizobacteria (PGPR) in agriculture is one of the most promising approaches to improve plants' growth under salt stress and to support sustainable agriculture under climate change. In this context, our goal was to grow and enhance quinoa growth using native rhizobacteria that can withstand salt stress. To achieve this objective, we isolated rhizobacteria from three saline localities in a semi-arid region in Tunisia, which are characterized by different halophyte species and tested their plant growth-promoting (PGP) activities. Then, we inoculated quinoa seedlings cultivated on 300 mM NaCl with the three most efficient rhizobacteria. A positive effect of the three-salt tolerant rhizobacteria on the growth of quinoa under salinity was observed. In fact, the results of principal component analysis indicated that the inoculation of quinoa by salt-tolerant PGPR under high salinity had a prominent beneficial effect on various growth and physiological parameters of stressed plant, such as the biomass production, the roots length, the secondary roots number, proline content and photosynthesis activities. Three rhizobacteria were utilized in this investigation, and the molecular identification revealed that strain 1 is related to the Bacillus inaquosorum species, strain 2 to Bacillus thuringiensis species and strain 3 to Bacillus proteolyticus species. We can conclude that the saline soil, especially the halophytic rhizosphere, is a potential source of salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR), which stimulate the growth of quinoa and improve its tolerance to salinity.


Asunto(s)
Chenopodium quinoa , Raíces de Plantas , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Chenopodium quinoa/fisiología , Chenopodium quinoa/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/fisiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Microbiología del Suelo , Túnez , Bacillus/fisiología , Plantones/microbiología , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Biomasa
2.
Sci Rep ; 14(1): 16737, 2024 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033227

RESUMEN

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.


Asunto(s)
Salinidad , Vicia faba , Vicia faba/crecimiento & desarrollo , Vicia faba/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Fijación del Nitrógeno , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Tamaricaceae/microbiología , Tamaricaceae/crecimiento & desarrollo , Chenopodiaceae/microbiología , Chenopodiaceae/crecimiento & desarrollo , Microbiología del Suelo , Tolerancia a la Sal , Fosfatos/metabolismo
3.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967784

RESUMEN

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Asunto(s)
Bacterias , Productos Agrícolas , Estrés Salino , Microbiología del Suelo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Desarrollo de la Planta , Tolerancia a la Sal , Reguladores del Crecimiento de las Plantas/metabolismo , Suelo/química , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Salinidad
4.
Nat Commun ; 15(1): 5872, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997287

RESUMEN

How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.


Asunto(s)
Diploidia , Raíces de Plantas , Plantas Tolerantes a la Sal , Raíces de Plantas/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/genética , Vigor Híbrido/genética , Filogenia , Genoma Fúngico , Ascomicetos/genética , Ascomicetos/metabolismo , Regulación Fúngica de la Expresión Génica , Endófitos/genética , Endófitos/metabolismo , Estrés Fisiológico/genética , Fenotipo , Tolerancia a la Sal/genética , Hibridación Genética
5.
Plant Physiol Biochem ; 214: 108921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991594

RESUMEN

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.


Asunto(s)
Aminoácidos , Cadmio , Chenopodiaceae , Glucólisis , Micorrizas , Reguladores del Crecimiento de las Plantas , Micorrizas/fisiología , Micorrizas/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Chenopodiaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Aminoácidos/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/microbiología , Hongos
6.
Environ Res ; 261: 119707, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084507

RESUMEN

Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.


Asunto(s)
Rizosfera , Salinidad , Plantas Tolerantes a la Sal , Microbiología del Suelo , Suelo , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología , Suelo/química , Ecosistema , Microbiota
7.
Artículo en Inglés | MEDLINE | ID: mdl-38832855

RESUMEN

During a study on the diversity of culturable actinobacteria from coastal halophytes in Thailand, strain LSe6-5T was isolated from leaves of sea purslane (Sesuvium portulacastrum L.), and a polyphasic approach was employed to determine its taxonomic position. The 16S rRNA gene sequences analysis indicated that the strain was most closely related to Klenkia brasiliensis Tu 6233T (99.2 %), Klenkia marina YIM M13156T (99.1 %), and Klenkia terrae PB261T (98.7 %). The genome of strain LSe6-5T was estimated to be 4.33 Mbp in size, with DNA G+C contents of 74.3%. A phylogenomic tree based on whole-genome sequences revealed that strain LSe6-5T formed a clade with Klenkia marina DSM 45722T, indicating their close relationship. However, the average nucleotide identity (ANI)-blast, ANI-MUMmer, and dDDH values between strain LSe6-5T with K. marina DSM 45722T (87.1, 88.9, and 33.0 %) were below the thresholds of 95-96 % ANI and 70 % dDDH for identifying a novel species. Furthermore, strain LSe6-5T showed morphological and chemotaxonomic characteristics of the genus Klenkia. Cells were motile, rod-shaped, and Gram-stain-positive. Optimal growth of strain LSe6-5T occurred at 28 °C, pH 7.0, and 0-3 % NaCl. The whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid, with galactose, glucose, mannose, and ribose as whole-cell sugars. The predominant menaquinones were MK-9(H4) and MK-9(H0). The polar lipid profile was composed of diphosphatidylglycerol, hydroxyphosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified phospholipid, and an unidentified lipid. Major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, and iso-C17 : 0. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, it is supported that strain LSe6-5T represents a novel species of the genus Klenkia, for which the name Klenkia sesuvii sp. nov. is proposed. The type strain is strain LSe6-5T (=TBRC 16417T= NBRC 115929T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , Hojas de la Planta , ARN Ribosómico 16S , Plantas Tolerantes a la Sal , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Hojas de la Planta/microbiología , Tailandia , Plantas Tolerantes a la Sal/microbiología , ADN Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfolípidos/análisis , Secuenciación Completa del Genoma , Genoma Bacteriano
8.
Artículo en Inglés | MEDLINE | ID: mdl-38805028

RESUMEN

A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , Hojas de la Planta , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2 , ARN Ribosómico 16S/genética , Hojas de la Planta/microbiología , ADN Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Ácidos Grasos/química , Ácidos Grasos/análisis , Tailandia , Plantas Tolerantes a la Sal/microbiología , Sedimentos Geológicos/microbiología , Fosfolípidos/análisis , Fosfolípidos/química , Humedales , Bacteria Gordonia/genética , Bacteria Gordonia/clasificación , Bacteria Gordonia/aislamiento & purificación
9.
mSphere ; 9(5): e0022624, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682927

RESUMEN

Soil microbial community composition and diversity are often affected by nutrient enrichment, which may influence soil microbes to affect nutrient cycling and plant community structure. However, the response of soil bacteria to nitrogen (N) and phosphorus (P) addition and whether it is influenced by plants remains unclear. By 16S rRNA sequencing, we investigated the response of the rhizosphere and bulk soil bacterial communities of different halophytes (salt-rejecting, salt-absorbing, and salt-secreting plant) in the Yellow River Delta to short-term N and P addition. The response of rhizosphere bacterial diversity to N and P addition was opposite in Phragmites communis and Suaeda salsa. N addition increased the rhizosphere soil bacterial α-diversity of S. salsa and Aeluropus sinensis, while P addition decreased the rhizosphere bacterial α-diversity bacteria of S. salsa. The N and P addition had a weak effect on the rhizosphere bacterial community composition and a significant effect on the bulk soil bacterial community composition of halophytes. The S. salsa and P. communis bulk soil bacterial community were mainly influenced by P addition, while it was influenced by N addition in A. sinensis. N and P addition reduced the difference in bacterial community composition between the two types of soil. N and P addition increased the eutrophic taxa (Proteobacteria and Bacteroidetes) and decreased the oligotrophic taxa (Acidobacteria). Redundancy analysis showed that soil organic matter, salt, and total N content had significant effects on the bacterial community composition. The results clarify that the response of soil bacterial communities to N and P additions is inconsistent across the three halophyte soils, and the effect of plant species on the bacterial community was stronger than short-term N and P addition. IMPORTANCE: The bulk soil bacterial community was more affected by nutrient addition. Nitrogen (N) and phosphorus (P) have different effects on bacterial community. Soil organic matter is a key factor influencing the response of bacterial community to nutrient addition. N and P influence on bacterial community changes with plants.


Asunto(s)
Bacterias , Nitrógeno , Fósforo , ARN Ribosómico 16S , Rizosfera , Plantas Tolerantes a la Sal , Microbiología del Suelo , Fósforo/análisis , Fósforo/metabolismo , Nitrógeno/metabolismo , Nitrógeno/análisis , Plantas Tolerantes a la Sal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , ARN Ribosómico 16S/genética , Microbiota , Chenopodiaceae/microbiología , Suelo/química , Biodiversidad
10.
J Basic Microbiol ; 64(6): e2300767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616707

RESUMEN

In the current study salt tolerant-plant growth-promoting rhizobacteria (ST-PGPR) Pseudomonas atacamensis KSS-6, selected on the basis of prominent plant growth-promoting (PGP) and stress tolerance properties was tested as bioinoculant to improve yield of rice grown in saline soil. The ST-PGPR KSS-6 was capable of maintaining the PGP traits up to 200 mM NaCl, however, higher salt stress conditions affected these activities. The study was designed to determine the effect of developed talc-based bioformulation using KSS-6 along with organic manure (OM) on growth and yield of paddy under saline conditions. Bioformulation broadcasting was also done to examine the effect on soil properties. It was found that the combinatorial treatment showed positive impact on growth and yield of rice under saline conditions. Co-application of KSS-6 with OM showed maximum increment in growth, chlorophyll content, plant fresh weight, and dry weight as compared to untreated control plants. Furthermore, the combinatorial treatment improved the nutrient content (P, K, Zn, Fe, Mg, and Mn) by more than 35% and enhanced the biochemical parameters such as proline, flavonoids, carbohydrates, protein, dietary fiber, and antioxidant content of rice grains by more than 32%. Soil parameters including pH and electrical conductivity (EC), moisture content, total organic carbon, OM, sodium, and chloride ions were also improved upon treatment. There was significant lowering of EC from 7.43 to 4.3 dS/m when combination of OM and bacteria were applied. These findings suggest that the application of KSS-6 in the form of bioinoculant could be a promising strategy to mitigate negative impacts of salt stress and enhance the yield and nutritional properties of rice grown in degraded and saline soil.


Asunto(s)
Estiércol , Oryza , Pseudomonas , Microbiología del Suelo , Suelo , Oryza/crecimiento & desarrollo , Oryza/microbiología , Oryza/metabolismo , Pseudomonas/metabolismo , Pseudomonas/crecimiento & desarrollo , Estiércol/microbiología , Suelo/química , Estrés Salino , Tolerancia a la Sal , Nutrientes/metabolismo , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología , Clorofila/metabolismo , Salinidad , Cloruro de Sodio/farmacología
11.
FEMS Microbiol Ecol ; 98(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36370453

RESUMEN

Halophytes, plants capable of growing under saline conditions, are an important source of bacteria with biotechnological potential for plant growth under extreme conditions. In this study, we evaluated the halophyte Atriplex nummularia bacteriome assemblage from three different salinized sites in northeastern Brazil with different edaphoclimatic characteristics, understanding the participation of the plant in the assembly of its microbiome. We sampled 30 specimens, from which the leaves, roots, and rhizospheric soil were subjected to 16S rRNA gene sequencing, bringing forth patterns of alpha and beta diversity, taxonomical composition, co-occurrence network, and the core microbiome of each compartment. Overall, this species harbors a very restricted set of endophytic microbes, and communities showed an increasing gradient of complexity (soil > root > leaf), reflecting a change in the main selective pressure being active over the microbial community. Although the leaf bacteriome was influenced basically by host factors, the soil community was modulated by the environment, and the root bacteriome was structured by both factors. These results help us understand how plant-microbe interactions occur in saline environments. As these plants shelter microbes that potentially alleviate abiotic stresses, we discuss how culture-independent methods could contribute to the prospection of plant growth promoting bacteria in plants.


Asunto(s)
Atriplex , Humanos , Masculino , Atriplex/genética , Plantas Tolerantes a la Sal/microbiología , Suelo , ARN Ribosómico 16S/genética , Cloruro de Sodio , Bacterias/genética , Raíces de Plantas/microbiología , Microbiología del Suelo
12.
Artículo en Inglés | MEDLINE | ID: mdl-36232219

RESUMEN

Carbon dioxide (CO2) is the most important greenhouse gas in the atmosphere, which is mainly derived from microbial respiration in soil. Soil bacteria are an important part of the soil ecosystem and play an important role in the process of plant growth, mineralization, and decomposition of organic matter. In this paper, we discuss a laboratory incubation experiment that we conducted to investigate the CO2 emissions and the underlying bacterial communities under the natural succession of halophyte vegetation in the Yellow River Delta by using high-throughput sequencing technology and PICRUSt functional prediction. The results showed that the bacterial abundance and diversity increased significantly along with the succession of halophyte vegetation. Metabolic function is the dominant function of soil bacteria in the study area. With the succession of halophyte vegetation, the rate of CO2 emissions gradually increased, and were significantly higher in soil covered with vegetation than that of the bare land without vegetation coverage. These results helped to better understand the relationships of soil bacterial communities under the background of halophyte vegetation succession, which can help to make efficient strategies to mitigate CO2 emissions and enhance carbon sequestration.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Bacterias/genética , Bacterias/metabolismo , Dióxido de Carbono/análisis , Ecosistema , Gases de Efecto Invernadero/metabolismo , Ríos , Plantas Tolerantes a la Sal/microbiología
13.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943865

RESUMEN

With increasing human global population, increased yield under saline conditions is a desirable trait for major food crops. Use of endophytes, isolated from halophytic hosts, seems to be an exciting approach for conferring salt tolerance to a salt-sensitive crop. Therefore, in the current study, fungal endophytes were isolated from halophytic plants' roots and their ability to withstand in vitro salt stress was evaluated. The fungal endophytes could withstand up to 1M NaCl concentrations and this tolerance was independent of their host or tissue source. When inoculated on salt-sensitive wheat seeds/seedlings, several of the endophytes showed a positive impact on germination and biomass-related parameters upon salt stress, both in vitro and under glasshouse conditions. One of the isolates from dicot plants (identified as Microsphaeropsis arundinis) could successfully colonize wheat and promote its growth under salt and no-salt conditions. Amongst the fungal isolates that are known to be natural endophytes of wheat, Chaetomium globosum was the best performing isolate and has previously been reported to be an effective biocontrol agent. Based on the results of our preliminary study, we suggest that these fungal endophytes could prove beneficial for enhancing the salt stress tolerance of wheat crop.


Asunto(s)
Plantones , Triticum , Endófitos , Humanos , Tolerancia a la Sal , Plantas Tolerantes a la Sal/microbiología , Triticum/microbiología
14.
Microbiol Spectr ; 10(4): e0134922, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35950864

RESUMEN

Root-associated microorganisms are widely recognized as playing an important role in mitigating stress-induced damage to plants, but the responses of rhizosphere microbial communities after inoculation and their relationship with plant responses remain unclear. In this study, the bacterium Providencia vermicola BR68 and the fungus Sarocladium kiliense FS18 were selected from among 91 strains isolated from the halophyte Suaeda salsa to interact with maize seedlings under salt stress. The results showed that compared with NaCl-only treatment, inoculation with strains BR68 and FS18 significantly improved the growth, net photosynthetic rate, and antioxidant enzyme activities of maize; significantly reduced proline content and generation rate of reactive oxygen species (ROS); and alleviated oxidative stress and osmotic stress. Moreover, inoculation with these two strains increased the activities of soil microbiome enzymes such as sucrase, catalase, and fluorescein diacetate hydrolase, which improved maize physiologies and promoted maize growth under salt stress. In addition, these inoculated strains significantly affected the abundance of certain genera, and the correlation trends for these genera with soil properties and maize physiologies were similar to those of these inoculated strains. Strain BR68 was indirectly associated with bacterial communities through BR-specific biomarkers, and bacterial communities and soil properties explained most of the variation in maize physiologies and growth. Inoculation of strain FS18 was directly associated with variations in soil properties and maize physiologies. The two strains improved maize growth under salt stress and alleviated stress damage in maize in different ways. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands. IMPORTANCE This study demonstrates that halophyte root-associated microorganisms can promote crop tolerance to salt stress and clarify the mechanism by which the strains work in rhizosphere soil. The links among salt-tolerant microorganisms, soil, and plants established in this study can inform strategies for improving crop cultivation in salinized lands.


Asunto(s)
Chenopodiaceae , Zea mays , Bacterias , Rizosfera , Estrés Salino , Plantas Tolerantes a la Sal/microbiología , Suelo , Zea mays/microbiología
15.
Sci Total Environ ; 846: 157514, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878855

RESUMEN

Salt marshes gather a high diversity of prokaryotes across their environmental gradients. Most of this diversity and the factors determining their community assemblage are unknown. We massively sequenced a portion of the 16S gene to characterize the diversity of prokaryotes in soils from a salt marsh in Río Piedras, Southern Spain. We sampled in the four seasons, and in five plots dominated by a different halophyte (Spartina maritima, S. densiflora, Salicornia ramosissima, Arthrocaulon macrostachyum and Atriplex portulacoides) growing under different environmental conditions and representing different stages in the marsh ecological succession. Soil was sampled in their rhizosphere and adjacent bulk soil. We report the effects of different factors explaining prokaryotic beta diversity in the marsh: zonation (50 %), seasonality (14 %), and halophyte rhizosphere (7 %). Proteobacteria and Bacteroidota were the most abundant phyla. Firmicutes had a peak in winter and Desulfobacterota with other bacteria involved in sulfur cycling were abundant in the low marsh plots from S. maritima. Alpha diversity was highest in spring and decreased in winter. We detected a marked phylogenetic turnover between seasons and in rhizospheric soil respect to adjacent bulk soil for most pairwise comparisons. The effect of halophyte on its rhizosphere was species-specific, being S. maritima the species with more differentiated taxa between rhizosphere versus surrounding bulk soil. Our work highlights how the complex interaction between marsh zonation, seasonality and rhizosphere, onsets processes structuring bacterial community assemblage in salt marsh soils.


Asunto(s)
Chenopodiaceae , Plantas Tolerantes a la Sal , Bacterias , Filogenia , Rizosfera , Plantas Tolerantes a la Sal/microbiología , Suelo , Microbiología del Suelo , Humedales
16.
Extremophiles ; 26(2): 18, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35652980

RESUMEN

Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.


Asunto(s)
Microbiota , Rizosfera , Argelia , Bacterias , Plantas Tolerantes a la Sal/microbiología , Cloruro de Sodio , Suelo , Microbiología del Suelo
17.
Sci Total Environ ; 831: 154944, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35367547

RESUMEN

Salinization is an important global environmental problem influencing sustainable development of terrestrial ecosystems. Salt-tolerant halophytes are often used as a promising approach to remedy the saline soils. Yet, how rhizosphere microbes' association and functions vary with halophytes in saline ecosystems remains unclear, restricting our ability to assess the role of halophytes in remedying saline ecosystems. Herein, we examined bacterial and fungal diversities, compositions, and co-occurrence networks in the rhizospheres of six halophytes and bulk soils in a semiarid inland saline ecosystem, and related these parameters to microbial functions. The microbiomes were more diverse and complex and microbial activity and residues were higher in rhizospheres than bulk soils. The connections of taxa in the rhizosphere microbial communities increased with fungi-fungi and bacteria-fungi connections and fungal diversity. The proportion of the fungi-related central connections were larger in rhizospheres (13-73%) than bulk soils (3%). Moreover, microbial activity and residues were significantly correlated with microbial composition and co-occurrence network complexity. These results indicated that enhanced association between fungi and bacteria increased microbial co-occurring network complexity in halophytes rhizosphere, which contributed to the higher microbial functions (microbial activities and residue) in this inland saline ecosystem.


Asunto(s)
Microbiota , Rizosfera , Bacterias , Ecosistema , Hongos , Plantas Tolerantes a la Sal/microbiología , Suelo/química , Microbiología del Suelo
18.
Mar Drugs ; 20(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35323494

RESUMEN

Six new ß-resorcylic acid derivatives (1-5 and 7) were isolated from a halophyte-associated fungus, Colletotrichum gloeosporioides JS0419, together with four previously reported ß-resorcylic acid lactones (RALs). The relative and absolute stereochemistry of 1 was completely established by a combination of spectroscopic data and chemical reactions. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR data. Notably, compounds 1-3 had a ß-resorcylic acid harboring a long unesterified aliphatic side chain, whereas the long aliphatic chains were esterified to form macrolactones in 4-9. Among the isolated compounds, monocillin I and radicicol showed potent antifungal activities against Cryptococcus neoformans, comparable to clinically available antifungal agents and radicicol showed weak antifungal activity against Candida albicans. These findings provide insight into the chemical diversity of fungal RAL-type compounds and their pharmacological potential.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Chenopodiaceae/microbiología , Colletotrichum/química , Cryptococcus neoformans/efectos de los fármacos , Hidroxibenzoatos/farmacología , Plantas Tolerantes a la Sal/microbiología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Candida albicans/crecimiento & desarrollo , Cryptococcus neoformans/crecimiento & desarrollo , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Estructura Molecular , Estereoisomerismo
19.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34897563

RESUMEN

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Asunto(s)
Endófitos/fisiología , Desarrollo de la Planta , Raíces de Plantas/microbiología , Poaceae/microbiología , Tolerancia a la Sal , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , África del Norte , Aminoácidos Cíclicos/metabolismo , Endófitos/clasificación , Interacciones Microbiota-Huesped , ARN Ribosómico 16S , Especies Reactivas de Oxígeno/metabolismo , Rizosfera , Salinidad , Estrés Salino , Plantas Tolerantes a la Sal/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo
20.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34769244

RESUMEN

Mesembryanthemum crystallinum L. (common ice plant) is an edible halophyte. However, if ice plants are used to phytoremediate salinity soil, there are problems of slow initial growth, and a long period before active NaCl uptake occurs under higher salinity conditions. Application of endophytic bacteria may improve the problem, but there remain gaps in our understanding of how endophytic bacteria affect the growth and the biochemical and physiological characteristics of ice plants. The aims of this study were to identify growth-promoting endophytic bacteria from the roots of ice plants and to document the metabolomic response of ice plants after application of selected endophytic bacteria. Two plant growth-promoting endophytic bacteria were selected on the basis of their ability to promote ice plant growth. The two strains putatively identified as Microbacterium spp. and Streptomyces spp. significantly promoted ice plant growth, at 2-times and 2.5-times, respectively, compared with the control and also affected the metabolome of ice plants. The strain of Microbacterium spp. resulted in increased contents of metabolites related to the tricarboxylic acid cycle and photosynthesis. The effects of salt stress were alleviated in ice plants inoculated with the endobacterial strains, compared with uninoculated plants. A deeper understanding of the complex interplay among plant metabolites will be useful for developing microbe-assisted soil phytoremediation strategies, using Mesembryanthemum species.


Asunto(s)
Endófitos/metabolismo , Mesembryanthemum , Metabolómica , Microbacterium/metabolismo , Raíces de Plantas , Plantas Tolerantes a la Sal , Microbiología del Suelo , Streptomyces/metabolismo , Mesembryanthemum/crecimiento & desarrollo , Mesembryanthemum/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...