Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
BMC Cancer ; 24(1): 1164, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300412

RESUMEN

The intricate interplay of cancer stem cell plasticity, along with the bidirectional transformation between epithelial-mesenchymal states, introduces further intricacy to offer insights into newer therapeutic approaches. Differentiation therapy, while successful in targeting leukemic stem cells, has shown limited overall success, with only a few promising instances. Using colon carcinoma cell strains with sequential p53/p73 knockdowns, our study underscores the association between p53/p73 and the maintenance of cellular plasticity. Morphological alterations corresponding with cell surface marker expressions, transcriptome analysis and functional assays were performed to access stemness and EMT (Epithelial-Mesenchymal Transition) characteristics in the spectrum of cells exhibiting sequential p53 and p73 knockdowns. Notably, our investigation explores the effectiveness of esculetin in reversing the shift from an epithelial to a mesenchymal phenotype, characterized by stem cell-like traits. Esculetin significantly induces enterocyte differentiation and promotes epithelial cell polarity by altering Wnt axes in Cancer Stem Cell-like cells characterized by high mesenchymal features. These results align with our previous findings in leukemic blast cells, establishing esculetin as an effective differentiating agent in both Acute Myeloid Leukemia (AML) and solid tumor cells.


Asunto(s)
Diferenciación Celular , Plasticidad de la Célula , Transición Epitelial-Mesenquimal , Técnicas de Silenciamiento del Gen , Células Madre Neoplásicas , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor , Umbeliferonas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Humanos , Umbeliferonas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Diferenciación Celular/efectos de los fármacos , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Plasticidad de la Célula/efectos de los fármacos , Línea Celular Tumoral , Fenotipo , Transformación Celular Neoplásica/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo
2.
Signal Transduct Target Ther ; 9(1): 209, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138145

RESUMEN

Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.


Asunto(s)
Antineoplásicos , Plasticidad de la Célula , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética
3.
Cancer Lett ; 600: 217179, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39154704

RESUMEN

Acquired resistance to endocrine treatments remains a major clinical challenge. In this study, we found that desmoglein-2 (DSG2) plays a major role in acquired endocrine resistance and cellular plasticity in ER+ breast cancer (BC). By analysing the well-established fulvestrant-resistant ER+ BC model using single-cell RNA-seq, we revealed that ER inhibition leads to a specific increase in DSG2 in cancer cell populations, which in turn enhances desmosome formation in vitro and in vivo and cell phenotypic plasticity that promotes resistance to treatment. DSG2 depletion reduced tumorigenesis and metastasis in fulvestrant-resistant xenograft models and promoted fulvestrant efficiency. Mechanistically, DSG2 forms a desmosome complex with JUP and Vimentin and triggers Wnt/PCP signalling. We showed that elevated DSG2 levels, along with reduced ER levels and an activated Wnt/PCP pathway, predicted poor survival, suggesting that a DSG2high signature could be exploited for therapeutic interventions. Our analysis highlighted the critical role of DSG2-mediated desmosomal junctions following antiestrogen treatment.


Asunto(s)
Neoplasias de la Mama , Desmogleína 2 , Desmosomas , Resistencia a Antineoplásicos , Vía de Señalización Wnt , Desmogleína 2/metabolismo , Desmogleína 2/genética , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Animales , Desmosomas/metabolismo , Ratones , Fulvestrant/farmacología , Antineoplásicos Hormonales/farmacología , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Fenotipo , Placofilinas/metabolismo , Placofilinas/genética , Plasticidad de la Célula/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Células MCF-7 , Regulación Neoplásica de la Expresión Génica , gamma Catenina
4.
Int Immunopharmacol ; 141: 112967, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181018

RESUMEN

Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFß on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.


Asunto(s)
Plasticidad de la Célula , Neoplasias , ARN Largo no Codificante , Microambiente Tumoral , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Microambiente Tumoral/inmunología , Animales , Plasticidad de la Célula/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Escape del Tumor/efectos de los fármacos
5.
Theranostics ; 14(9): 3603-3622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948058

RESUMEN

Background: Myofibroblasts (MYFs) are generally considered the principal culprits in excessive extracellular matrix deposition and scar formation in the pathogenesis of lung fibrosis. Lipofibroblasts (LIFs), on the other hand, are defined by their lipid-storing capacity and are predominantly found in the alveolar regions of the lung. They have been proposed to play a protective role in lung fibrosis. We previously reported that a LIF to MYF reversible differentiation switch occurred during fibrosis formation and resolution. In this study, we tested whether WI-38 cells, a human embryonic lung fibroblast cell line, could be used to study fibroblast differentiation towards the LIF or MYF phenotype and whether this could be relevant for idiopathic pulmonary fibrosis (IPF). Methods: Using WI-38 cells, Fibroblast (FIB) to MYF differentiation was triggered using TGF-ß1 treatment and FIB to LIF differentiation using Metformin treatment. We also analyzed the MYF to LIF and LIF to MYF differentiation by pre-treating the WI-38 cells with TGF-ß1 or Metformin respectively. We used IF, qPCR and bulk RNA-Seq to analyze the phenotypic and transcriptomic changes in the cells. We correlated our in vitro transcriptome data from WI-38 cells (obtained via bulk RNA sequencing) with the transcriptomic signature of LIFs and MYFs derived from the IPF cell atlas as well as with our own single-cell transcriptomic data from IPF patients-derived lung fibroblasts (LF-IPF) cultured in vitro. We also carried out alveolosphere assays to evaluate the ability of the proposed LIF and MYF cells to support the growth of alveolar epithelial type 2 cells. Results: WI-38 cells and LF-IPF display similar phenotypical and gene expression responses to TGF-ß1 and Metformin treatment. Bulk RNA-Seq analysis of WI-38 cells and LF-IPF treated with TGF-ß1, or Metformin indicate similar transcriptomic changes. We also show the partial conservation of the LIF and MYF signature extracted from the Habermann et al. scRNA-seq dataset in WI-38 cells treated with Metformin or TGF-ß1, respectively. Alveolosphere assays indicate that LIFs enhance organoid growth, while MYFs inhibit organoid growth. Finally, we provide evidence supporting the MYF to LIF and LIF to MYF reversible switch using WI-38 cells. Conclusions: WI-38 cells represent a versatile and reliable model to study the intricate dynamics of fibroblast differentiation towards the MYF or LIF phenotype associated with lung fibrosis formation and resolution, providing valuable insights to drive future research.


Asunto(s)
Diferenciación Celular , Fibroblastos , Fibrosis Pulmonar Idiopática , Miofibroblastos , Factor de Crecimiento Transformador beta1 , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Línea Celular , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pulmón/patología , Pulmón/citología , Transcriptoma , Metformina/farmacología , Plasticidad de la Célula/efectos de los fármacos , Fenotipo
6.
Nature ; 631(8022): 876-883, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987605

RESUMEN

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.


Asunto(s)
Adaptación Fisiológica , Plasticidad de la Célula , Resistencia a Antineoplásicos , Neoplasias , Femenino , Humanos , Ratones , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Línea Celular Tumoral , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fenotipo
7.
Stem Cells ; 42(8): 706-719, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825983

RESUMEN

The transformation from a fibroblast mesenchymal cell state to an epithelial-like state is critical for induced pluripotent stem cell (iPSC) reprogramming. In this report, we describe studies with PFI-3, a small-molecule inhibitor that specifically targets the bromodomains of SMARCA2/4 and PBRM1 subunits of SWI/SNF complex, as an enhancer of iPSC reprogramming efficiency. Our findings reveal that PFI-3 induces cellular plasticity in multiple human dermal fibroblasts, leading to a mesenchymal-epithelial transition during iPSC formation. This transition is characterized by the upregulation of E-cadherin expression, a key protein involved in epithelial cell adhesion. Additionally, we identified COL11A1 as a reprogramming barrier and demonstrated COL11A1 knockdown increased reprogramming efficiency. Notably, we found that PFI-3 significantly reduced the expression of numerous extracellular matrix (ECM) genes, particularly those involved in collagen assembly. Our research provides key insights into the early stages of iPSC reprogramming, highlighting the crucial role of ECM changes and cellular plasticity in this process.


Asunto(s)
Plasticidad de la Célula , Reprogramación Celular , Matriz Extracelular , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Reprogramación Celular/genética , Reprogramación Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plasticidad de la Célula/genética , Plasticidad de la Célula/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/citología , Regulación de la Expresión Génica/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos
8.
J Ethnopharmacol ; 333: 118454, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38852638

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY: This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS: The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rß2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS: BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rß2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION: By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.


Asunto(s)
Medicamentos Herbarios Chinos , Linfocitos , Rinitis Alérgica , Animales , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/inmunología , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos BALB C , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Femenino , Masculino , Transducción de Señal/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Proteínas Represoras , Proteínas Supresoras de Tumor
9.
Cancer Lett ; 597: 217068, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38901665

RESUMEN

With the widespread use of anti-androgen therapy, such as abiraterone and enzalutamide, the incidence of neuroendocrine prostate cancer (NEPC) is increasing. NEPC is a lethal form of prostate cancer (PCa), with a median overall survival of less than one year after diagnosis. In addition to the common bone metastases seen in PCa, NEPC exhibits characteristics of visceral metastases, notably liver metastasis, which serves as an indicator of a poor prognosis clinically. Key factors driving the neuroendocrine plasticity of PCa have been identified, yet the underlying mechanism behind liver metastasis remains unclear. In this study, we identified PROX1 as a driver of neuroendocrine plasticity in PCa, responsible for promoting liver metastases. Mechanistically, anti-androgen therapy alleviates transcriptional inhibition of PROX1. Subsequently, elevated PROX1 levels drive both neuroendocrine plasticity and liver-specific transcriptional reprogramming, promoting liver metastases. Moreover, liver metastases in PCa induced by PROX1 depend on reprogrammed lipid metabolism, a disruption that effectively reduces the formation of liver metastases.


Asunto(s)
Proteínas de Homeodominio , Neoplasias Hepáticas , Neoplasias de la Próstata , Proteínas Supresoras de Tumor , Masculino , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/secundario
10.
Drug Resist Updat ; 76: 101114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924995

RESUMEN

Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.


Asunto(s)
Antineoplásicos , Plasticidad de la Célula , Resistencia a Antineoplásicos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Neoplasias/genética , Microambiente Tumoral/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Epigénesis Genética
11.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914547

RESUMEN

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Células Escamosas , Plasticidad de la Célula , Transición Epitelial-Mesenquimal , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Cutáneas , Animales , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Ratones , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Inmunoterapia/métodos , Transición Epitelial-Mesenquimal/inmunología , Plasticidad de la Célula/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/inmunología , Receptores Virales/metabolismo , Receptores Virales/genética , Antígeno B7-1/metabolismo , Receptores Inmunológicos/metabolismo
12.
Cardiovasc Res ; 120(7): 681-698, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38630620

RESUMEN

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Mastocitos , Humanos , Mastocitos/metabolismo , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/patología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Transducción de Señal , Fenotipo , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología , Fármacos Cardiovasculares/uso terapéutico , Fármacos Cardiovasculares/farmacología , Plasticidad de la Célula/efectos de los fármacos , Mediadores de Inflamación/metabolismo
13.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480916

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Asunto(s)
Resistencia a Antineoplásicos , Neurofibromatosis 1 , Inhibidores de Proteínas Quinasas , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Humanos , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/patología , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Línea Celular Tumoral , Transducción de Señal , Linaje de la Célula/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Neurofibrosarcoma/genética , Neurofibrosarcoma/patología , Neurofibrosarcoma/tratamiento farmacológico , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética
14.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452090

RESUMEN

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Asunto(s)
Células Madre Adultas , Plasticidad de la Célula , Epidermis , Folículo Piloso , Tretinoina , Cicatrización de Heridas , Animales , Ratones , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/fisiología , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/fisiología , Epidermis/efectos de los fármacos , Epidermis/fisiología , Folículo Piloso/citología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/fisiología , Tretinoina/metabolismo , Tretinoina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Rejuvenecimiento/fisiología , Técnicas de Cultivo de Célula , Neoplasias/patología , Ratones Endogámicos C57BL
15.
Tumori ; 110(4): 252-263, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38316605

RESUMEN

Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de la Próstata , Proteínas de Unión a Retinoblastoma , Ubiquitina-Proteína Ligasas , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Resistencia a Antineoplásicos/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Plasticidad de la Célula/efectos de los fármacos , Linaje de la Célula
16.
J Vasc Res ; 61(3): 99-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151007

RESUMEN

INTRODUCTION: This study aimed to determine whether bone morphogenetic protein-4 (BMP-4), which increases in response to intimal hyperplasia, promotes phenotype transition in vascular smooth muscle cells (VSMCs). METHODS: Balloon injury was used to induce intimal hyperplasia in rats. Hematoxylin-eosin staining was used to detect the alteration of vascular structure. Serum levels of BMP-4 and lactate were detected by ELISA. Human aortic smooth muscle cells (HA-SMCs) were cultured. Protein and mRNA expression levels were detected through Western blot and real-time PCR. Cell migration was measured by transwell assay. RESULTS: Our data showed that serum concentration of BMP-4 was upregulated after balloon injury. Treatment with BMP-4 inhibitor DMH1 (4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline) suppressed the abnormal expression of BMP-4 and inhibited the intimal hyperplasia induced by balloon injury. Compared to BMP-4-negative medium, BMP-4-positive medium was associated with higher synthetic VSMC marker expression levels and lower in contractile gene markers in cultured HA-SMCs. Transfection of monocarboxylic acid transporters-4 (MCT-4) siRNA inhibited the excretion of lactate induced by BMP-4. CONCLUSION: Our analyses provided evidence that BMP-4 and its regulator Smad-4 are key regulators in MCT-4-mediated lactate excretion. This indicates that BMP-4 stimulates the phenotypic transition of VSMCs via SMAD-4/MCT-4 signaling pathway.


Asunto(s)
Proteína Morfogenética Ósea 4 , Movimiento Celular , Modelos Animales de Enfermedad , Hiperplasia , Transportadores de Ácidos Monocarboxílicos , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima , Fenotipo , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad4 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Animales , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Angioplastia de Balón/efectos adversos , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Plasticidad de la Célula/efectos de los fármacos
17.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
18.
Cell Rep ; 39(1): 110595, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385726

RESUMEN

Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Transducción de Señal , Animales , Antineoplásicos/farmacología , Benzamidas , Carcinoma Neuroendocrino , Línea Celular Tumoral , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/fisiología , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/efectos de los fármacos , Receptores Androgénicos/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
19.
Plant Physiol ; 188(1): 268-284, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718790

RESUMEN

The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.


Asunto(s)
Dióxido de Carbono/efectos adversos , Plasticidad de la Célula/efectos de los fármacos , Deshidratación/complicaciones , Desarrollo de la Planta/efectos de los fármacos , Populus/anatomía & histología , Populus/crecimiento & desarrollo , Xilema/anatomía & histología , Xilema/crecimiento & desarrollo , Sequías , Estaciones del Año
20.
Mol Plant ; 15(1): 86-103, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34920172

RESUMEN

Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Plasticidad de la Célula/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...