Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591346

RESUMEN

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Asunto(s)
Ascorbato Peroxidasas , Chlamydomonas reinhardtii , Mutación , Plastocianina , Plastocianina/metabolismo , Plastocianina/genética , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Cobre/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos c6/metabolismo , Citocromos c6/genética , Proteómica/métodos , Luz
2.
J Plant Physiol ; 290: 154103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37788546

RESUMEN

Plastocyanin functions as an electron carrier in the photosynthetic electron transport chain, located at the thylakoid membrane. In several species, endogenous plastocyanin levels are correlated with the photosynthetic electron transport rate. Overexpression of plastocyanin genes in Arabidopsis thaliana increases plant size, but this phenomenon has not been observed in crop species. Here, we investigated the effects of heterologous expression of a gene encoding a plastocyanin isoform from Arabidopsis, AtPETE2, in the oil seed crop Camelina sativa under standard growth conditions and under salt stress. AtPETE2 heterologous expression enhanced photosynthetic activity in Camelina, accelerating plant development and improving seed yield under standard growth conditions. Additionally, CsPETE2 from Camelina was induced by salt stress and AtPETE2 expression lines had larger primary roots and more lateral roots than the wild type. AtPETE2 expression lines also had larger seeds and higher total seed yield under long-term salt stress compared with non-transgenic Camelina. Our results demonstrate that increased plastocyanin levels in Camelina can enhance photosynthesis and productivity, as well as tolerance to osmotic and salt stresses. Heterologous expression of plastocyanin may be a useful strategy to mitigate crop stress in saline soils.


Asunto(s)
Arabidopsis , Brassicaceae , Plastocianina/genética , Plastocianina/metabolismo , Tolerancia a la Sal/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Semillas/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293031

RESUMEN

Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Animales , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , Teorema de Bayes , Leucina/metabolismo , Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Aprendizaje Automático , Hidrolasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Lípidos , Filogenia
4.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118822, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800924

RESUMEN

Plastocyanin and cytochrome c6, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c6 spares copper and permits preferential copper (re)-allocation to cytochrome oxidase. Under copper-replete situations, the quota depends on abundance of various cuproproteins and is tightly regulated, except under zinc-deficiency where acidocalcisomes over-accumulate Cu(I). CRR1 has a transcriptional activation domain, a Zn-dependent DNA binding SBP-domain with a nuclear localization signal, and a C-terminal Cys-rich region that represses the zinc regulon. CRR1 activates >60 genes in Chlamydomonas through GTAC-containing CuREs; transcriptome differences are recapitulated in the proteome. The differentially-expressed genes encode assimilatory copper transporters of the CTR/SLC31 family including a novel soluble molecule, redox enzymes in the tetrapyrrole pathway that promote chlorophyll biosynthesis and photosystem 1 accumulation, and other oxygen-dependent enzymes, which may influence thylakoid membrane lipids, specifically polyunsaturated galactolipids and γ-tocopherol. CRR1 also down-regulates 2 proteins in Chlamydomonas: for plastocyanin, by activation of proteolysis, while for the di­iron subunit of the cyclase in chlorophyll biosynthesis, through activation of an upstream promoter that generates a poorly-translated 5' extended transcript containing multiple short ORFs that inhibit translation. The functions of many CRR1-target genes are unknown, and the copper protein inventory in Chlamydomonas includes several whose functions are unexplored. The comprehensive picture of cuproproteins and copper homeostasis in this system is well-suited for reverse genetic analyses of these under-investigated components in copper biology.


Asunto(s)
Chlamydomonas/genética , Cobre/metabolismo , Fotosíntesis/genética , Transcriptoma/genética , Chlamydomonas/metabolismo , Citocromos c6/genética , Dihidrodipicolinato-Reductasa/genética , Complejo IV de Transporte de Electrones/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Plastocianina/genética
5.
Plant Sci ; 268: 1-10, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29362078

RESUMEN

Accumulating evidence indicates that plant plastocyanin is involved in copper homeostasis, yet the physiological relevance remains elusive. In this study, we found that a plastocyanin gene (SsPETE2) from euhalophyte Suaeda salsa possessed a novel antioxidant function, which was associated with the copper-chelating activity of SsPETE2. In S. salsa, expression of SsPETE2 increased in response to oxidative stress and ectopic expression of SsPETE2 in Arabidopsis enhanced the antioxidant ability of the transgenic plants. SsPETE2 bound Cu ion and alleviated formation of hydroxyl radicals in vitro. Accordingly, SsPETE2 expression lowered the free Cu content that was associated with reduced H2O2 level under oxidative stress. Arabidopsis pete1 and pete2 mutants showed ROS-sensitive phenotypes that could be restored by expression of SsPETE2 or AtPETEs. In addition, SsPETE2-expressing plants exhibited more potent tolerance to oxidative stress than plants overexpressing AtPETEs, likely owing to the stronger copper-binding activity of SsPETE2 than AtPETEs. Taken together, these results demonstrated that plant PETEs play a novel role in oxidative stress tolerance by regulating Cu homeostasis under stress conditions, and SsPETE2, as an efficient copper-chelating PETE, potentially could be used in crop genetic engineering.


Asunto(s)
Adaptación Fisiológica , Chenopodiaceae/genética , Chenopodiaceae/fisiología , Expresión Génica Ectópica , Estrés Oxidativo/genética , Proteínas de Plantas/metabolismo , Plastocianina/genética , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Quelantes/farmacología , Chenopodiaceae/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cobre/farmacología , Desoxirribosa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Radical Hidroxilo/metabolismo , Iones , Hierro/metabolismo , Simulación de Dinámica Molecular , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastocianina/metabolismo , Transporte de Proteínas/efectos de los fármacos
6.
FEBS Lett ; 590(20): 3639-3648, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27685247

RESUMEN

Plastocyanin (petE) plays an essential role in photosynthesis as an electron carrier between cytochrome b6 f and photosystem I, and in some cyanobacteria it can be replaced by the haem-containing protein, cytochrome c6 (petJ). In Synechocystis sp. PCC 6803, transcription of petE and petJ is activated and repressed, respectively, by Cu. Here, we show that Ni can act similarly to Cu in inducing petE and repressing petJ, thus leading to a partial switch between cytochrome c6 and plastocyanin. Transcription of these genes is only altered by Ni in Cu-depleted medium, and none of the Ni-dependent transcription factors described in Synechocystis, NrsR and InrS seem to be involved in this regulation. Finally, we show that plastocyanin is essential for growth under conditions of excess Ni.


Asunto(s)
Citocromos c6/genética , Níquel/metabolismo , Plastocianina/genética , Synechocystis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocromos c6/metabolismo , Regulación Bacteriana de la Expresión Génica , Plastocianina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Transcripción Genética
7.
J Am Chem Soc ; 138(22): 7187-93, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27164303

RESUMEN

The reactivity of metal sites in proteins is tuned by protein-based ligands. For example, in blue copper proteins such as plastocyanin (Pc), the structure imparts a highly elongated bond between the Cu and a methionine (Met) axial ligand to modulate its redox properties. Despite extensive study, a complete understanding of the contribution of the protein to redox activity is challenged by experimentally accessing both redox states of metalloproteins. Using infrared (IR) spectroscopy in combination with site-selective labeling with carbon-deuterium (C-D) vibrational probes, we characterized the localized changes at the Cu ligand Met97 in the oxidized and reduced states, as well as the Zn(II) or Co(II)-substituted, the pH-induced low-coordinate, the apoprotein, and the unfolded states. The IR absorptions of (d3-methyl)Met97 are highly sensitive to interaction of the sulfur-based orbitals with the metal center and are demonstrated to be useful reporters of its modulation in the different states. Unrestricted Kohn-Sham density functional theory calculations performed on a model of the Cu site of Pc confirm the observed dependence. IR spectroscopy was then applied to characterize the impact of binding to the physiological redox partner cytochrome (cyt) f. The spectral changes suggest a slightly stronger Cu-S(Met97) interaction in the complex with cyt f that has potential to modulate the electron transfer properties. Besides providing direct, molecular-level comparison of the oxidized and reduced states of Pc from the perspective of the axial Met ligand and evidence for perturbation of the Cu site properties by redox partner binding, this study demonstrates the localized spatial information afforded by IR spectroscopy of selectively incorporated C-D probes.


Asunto(s)
Cobre/química , Metionina/química , Plastocianina/química , Sitios de Unión , Ligandos , Metionina/genética , Modelos Moleculares , Nostoc/química , Oxidación-Reducción , Plastocianina/genética , Unión Proteica , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier
8.
Biochim Biophys Acta ; 1857(5): 522-530, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26427552

RESUMEN

In this work, we characterized the intermolecular electron transfer (ET) properties of a de novo designed metallopeptide using laser-flash photolysis. α3D-CH3 is three helix bundle peptide that was designed to contain a copper ET site that is found in the ß-barrel fold of native cupredoxins. The ET activity of Cuα3D-CH3 was determined using five different photosensitizers. By exhibiting a complete depletion of the photo-oxidant and the successive formation of a Cu(II) species at 400 nm, the transient and generated spectra demonstrated an ET transfer reaction between the photo-oxidant and Cu(I)α3D-CH3. This observation illustrated our success in integrating an ET center within a de novo designed scaffold. From the kinetic traces at 400 nm, first-order and bimolecular rate constants of 10(5) s(-1) and 10(8) M(-1) s(-1) were derived. Moreover, a Marcus equation analysis on the rate versus driving force study produced a reorganization energy of 1.1 eV, demonstrating that the helical fold of α3D requires further structural optimization to efficiently perform ET. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Asunto(s)
Azurina/química , Dominio Catalítico , Cobre/metabolismo , Plastocianina/química , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Azurina/genética , Dominio Catalítico/genética , Cobre/química , Metabolismo Energético , Humanos , Modelos Moleculares , Plastocianina/genética , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Proc Natl Acad Sci U S A ; 112(9): 2644-51, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25646490

RESUMEN

Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper.


Asunto(s)
Chlamydomonas/metabolismo , Cobre/metabolismo , Consumo de Oxígeno/fisiología , Fotosíntesis/fisiología , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Chlamydomonas/genética , Citocromos c6/genética , Citocromos c6/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Plastocianina/genética , Plastocianina/metabolismo
10.
Photosynth Res ; 126(1): 71-97, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25381655

RESUMEN

Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.


Asunto(s)
Bacteriófagos/fisiología , Genes Virales , Fotosíntesis , Prochlorococcus/virología , Synechococcus/virología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Genoma Viral , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Datos de Secuencia Molecular , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Filogenia , Pigmentos Biológicos/biosíntesis , Plastocianina/química , Plastocianina/genética , Plastocianina/metabolismo
11.
Nat Chem Biol ; 10(12): 1034-42, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344811

RESUMEN

We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu(+) accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu(+) became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cobre/metabolismo , Lisosomas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Zinc/metabolismo , Cationes Bivalentes , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestructura , Perfilación de la Expresión Génica , Homeostasis , Concentración de Iones de Hidrógeno , Marcaje Isotópico , Isótopos , Lisosomas/ultraestructura , Imagen Molecular , Plastocianina/biosíntesis , Plastocianina/genética , Polifosfatos/metabolismo , Factores de Transcripción/genética
12.
PLoS One ; 9(9): e108912, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268225

RESUMEN

Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.


Asunto(s)
Proteínas Bacterianas/genética , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Synechocystis/efectos de los fármacos , Transcriptoma , Proteínas Bacterianas/metabolismo , Citocromos c6/genética , Citocromos c6/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Anotación de Secuencia Molecular , Mutación , Operón , Plastocianina/genética , Plastocianina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
13.
Nat Commun ; 5: 3027, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24390011

RESUMEN

Plant genomes are extremely sensitive to, and can be developmentally reprogrammed by environmental light cues. Here using rolling-circle amplification of gene-specific circularizable oligonucleotides coupled with fluorescence in situ hybridization, we demonstrate that light triggers a rapid repositioning of the Arabidopsis light-inducible chlorophyll a/b-binding proteins (CAB) locus from the nuclear interior to the nuclear periphery during its transcriptional activation. CAB repositioning is mediated by the red/far-red photoreceptors phytochromes (PHYs) and is inhibited by repressors of PHY signalling, including COP1, DET1 and PIFs. CAB repositioning appears to be a separate regulatory step occurring before its full transcriptional activation. Moreover, the light-inducible loci RBCS, PC and GUN5 undergo similar repositioning behaviour during their transcriptional activation. Our study supports a light-dependent gene regulatory mechanism in which PHYs activate light-inducible loci by relocating them to the nuclear periphery; it also provides evidence for the biological importance of gene positioning in the plant kingdom.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión a Clorofila/genética , Regulación de la Expresión Génica de las Plantas , Reordenamiento Génico/genética , Luz , Activación Transcripcional , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Liasas/genética , Proteínas Nucleares/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plastocianina/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
FEMS Microbiol Lett ; 341(2): 106-14, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397890

RESUMEN

Plastocyanin, encoded by the petE gene, can transfer electrons to photosystem I (PSI) and cytochrome c oxidase during photosynthetic and respiratory metabolism in cyanobacteria. We constructed a petE mutant of Synechocystis sp. strain PCC 6803 and investigated its phenotypic properties under different light conditions. When cultured under continuous light, inactivation of petE accelerated the plastoquinone pool reoxidation, slowed the reoxidation rate of the primary quinone-type acceptor, and decreased the connectivity factor between the individual photosystem II (PSII) photosynthetic units. Compared with the wild-type control, the petE mutant showed a decrease in its PSI/PSII fluorescence ratio and an increase in its dark respiration rate. When cultured under a light-dark photoperiod, the petE mutation caused an increase in the phycocyanin to chlorophyll ratio. Consequently, the mutant line was a darker blue than its wild-type counterpart. Moreover, the petE mutation increased the efficiency of light capture, nonphotochemical quenching, and linear electron transport activity, but decreased the functional absorption cross section of PSII. These results suggest that plastocyanin is involved in regulating the redox state of the photosynthetic electron transfer chain, and the petE mutation can induce interesting phenotypic properties that are specific to the light-dark photoperiod.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Fotosíntesis/efectos de la radiación , Plastocianina/genética , Plastocianina/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Clorofila/metabolismo , Oscuridad , Silenciador del Gen , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/genética
15.
Biochemistry ; 51(37): 7297-303, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22920401

RESUMEN

The binding and electron transfer between plastocyanin (pc) or cytochrome c(6) (cyt c(6)) and photosystem I (PSI) can be described by hydrophobic as well as electrostatic interactions. The two α helices, l and l' in PsaB and PsaA, respectively, are involved in forming the hydrophobic interaction site at the oxidizing site of PSI. To obtain mechanistic insights into the function of the two negatively charged residues D612 and E613, present in α helix l of PsaB, we exchanged both residues by site-directed mutagenesis with His and transformed a PsaB deficient mutant of Chlamydomonas reinhardtii. Flash-induced absorption spectroscopy revealed that PSI harboring the changes D612H and E613H had a high affinity toward binding of the electron donors and possessed an altered pH dependence of electron transfer with pc and cyt c(6). Despite optimized binding and electron transfer between the altered PSI and its electron donors, the mutant strain PsaB-D612H/E613H exhibited a strong light sensitive growth phenotype, indicating that decelerated turnover between pc/cyt c(6) and PSI with respect to electron transfer is deleterious to the cells.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Citocromos c6/química , Complejo de Proteína del Fotosistema I/química , Plastocianina/química , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Chlamydomonas reinhardtii/genética , Citocromos c6/genética , Citocromos c6/metabolismo , Transporte de Electrón/fisiología , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Concentración de Iones de Hidrógeno , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , Unión Proteica
16.
FEBS Lett ; 586(19): 3385-90, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22841720

RESUMEN

miR398 links expression of the three major chloroplast copper proteins, plastocyanin, CCS1 and Csd2, to copper availability. miR398 abundance was stronger plastocyanin-controlled in accessions from cold and continental habitats (Kas-1, Ms-0, WS) than in Cvi-0 and Col-0. Target gene regulation was broken for Csd2 in Cvi-0 upon cold-treatment. Comparison of miR398 levels, target gene regulation as well as Ago1 and miR168 expression demonstrated that the miR398 regulon can be overwritten by accession specific transcriptional regulation in Cvi-0. It is concluded that the escape from the miRNA control of copper homeostasis is linked to adaptation of Cvi-0 to its harsh natural habitat.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulón/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Cobre/metabolismo , ADN de Plantas/genética , Ecosistema , Regulación de la Expresión Génica de las Plantas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plastocianina/genética , Plastocianina/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
J Biol Chem ; 287(22): 18544-50, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493454

RESUMEN

PAA2/HMA8 (P-type ATPase of Arabidopsis/Heavy-metal-associated 8) is a thylakoid located copper (Cu)-transporter in Arabidopsis thaliana. In tandem with PAA1/HMA6, which is located in the inner chloroplast envelope, it supplies Cu to plastocyanin (PC), an essential cuproenzyme of the photosynthetic machinery. We investigated whether the chloroplast Cu transporters are affected by Cu addition to the growth media. Immunoblots showed that PAA2 protein abundance decreased significantly and specifically when Cu in the media was increased, while PAA1 remained unaffected. The function of SPL7, the transcriptional regulator of Cu homeostasis, was not required for this regulation of PAA2 protein abundance and Cu addition did not affect PAA2 transcript levels, as determined by qRT-PCR. We used the translational inhibitor cycloheximide to analyze turnover and observed that the stability of the PAA2 protein was decreased in plants grown with elevated Cu. Interestingly, PAA2 protein abundance was significantly increased in paa1 mutants, in which the Cu content in the chloroplast is half of that of the wild-type, due to impaired Cu import into the organelle. In contrast in a pc2 insertion mutant, which has strongly reduced plastocyanin expression, the PAA2 protein levels were low regardless of Cu addition to the growth media. Together, these data indicate that plastid Cu levels control PAA2 stability and that plastocyanin, which is the target of PAA2 mediated Cu delivery in thylakoids, is a major determinant of this regulatory mechanism.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/fisiología , Cobre/metabolismo , Plastocianina/fisiología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plastocianina/genética , Procesamiento Postranscripcional del ARN , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
J Mol Evol ; 73(3-4): 166-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22037730

RESUMEN

Evidence from a number of studies indicates that protein folding is dictated not only by factors stabilizing the native state, but also by potentially independent factors that create folding pathways. How natural selection might cope simultaneously with two independent factors was addressed in this study within the framework of the "Lim-model" of protein folding, which postulates that the early stages of folding of all globular proteins, regardless of their native structure, are directed at least in part by potential to form amphiphilic α-helices. For this purpose, the amphiphilic α-helical potential in randomly ordered amino acid sequences and the conservation in phylogeny of amphiphilic α-helical potential within various proteins were assessed. These analyses revealed that amphiphilic α-helical potential is a common occurrence in random sequences, and that the presence of amphiphilic α-helical potential is present but not conserved in phylogeny within a given protein. The results suggest that the rapid formation of molten globules and the variable behavior of those globules depending on the protein may be a fundamental property of polymers of naturally occurring amino acids more so than a trait that must be derived or maintained by natural selection. Further, the results point toward the utility of randomly occurring process in protein function and evolution, and suggest that the formation of efficient pathways that determine early processes in protein folding, unlike the formation of stable, native protein structure, does not present a substantial hurdle during the evolution of amino acid sequences.


Asunto(s)
Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Pliegue de Proteína , Algoritmos , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Simulación por Computador , Secuencia Conservada , Interleucina-6/química , Interleucina-6/genética , Modelos Moleculares , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastocianina/química , Plastocianina/genética , Estructura Secundaria de Proteína , Salmonella typhi , Análisis de Secuencia de Proteína , Spinacia oleracea , Sus scrofa , Microglobulina beta-2/química , Microglobulina beta-2/genética
19.
Biochim Biophys Acta ; 1807(12): 1539-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21982981

RESUMEN

In this work we address the question whether light-induced changes in the Mg(II) content in the chloroplast lumen can modulate the electron donation to photosystem I, in particular the electrostatic interaction between plastocyanin (Pc) and the photosystem 1 subunit PsaF. For this, we have used 2D NMR spectroscopy to study the binding of Mg(II) ions and the isolated luminal domain of PsaF to (15)N-labelled Pc. From the chemical-shift perturbations in the (1)H-(15)N HSQC spectra, dissociation constants of (4.9 ± 1.7) mM and (1.4 ± 0.2) mM were determined for the Pc-Mg(II) and Pc-PsaF complexes, respectively. In both cases, significant chemical-shift changes were observed for Pc backbone amide groups belonging to the two acidic patches, residues 42-45 and 59-61. In addition, competitive effects were observed upon the addition of Mg(II) ions to the Pc-PsaF complex, further strengthening that Mg(II) and PsaF bind to the same region on Pc. To structurally elucidate the Mg(II) binding site we have utilized Mn(II) as a paramagnetic analogue of Mg(II). The paramagnetic relaxation enhancement induced by Mn(II) results in line broadening in the Pc HSQC spectra which can be used to estimate distances between the bound ion and the affected nuclear spins. The calculations suggest a location of the bound Mn(II) ion close to Glu43 in the lower acidic patch, and most likely in the form of a hexaquo complex embedded within the hydration shell of Pc. The results presented here suggest a specific binding site for Mg(II) that may regulate the binding of Pc to photosystem 1 in vivo.


Asunto(s)
Magnesio/metabolismo , Manganeso/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Plastocianina/metabolismo , Spinacia oleracea/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Luz , Magnesio/química , Manganeso/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastocianina/química , Plastocianina/genética , Unión Proteica , Estructura Terciaria de Proteína
20.
Chem Biol ; 18(1): 25-31, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21276936

RESUMEN

Identifying the factors that govern the thermal resistance of cupredoxins is essential for understanding their folding and stability, and for improving our ability to design highly stable enzymes with potential biotechnological applications. Here, we show that the thermal unfolding of plastocyanins from two cyanobacteria--the mesophilic Synechocystis and the thermophilic Phormidium--is closely related to the short-range structure around the copper center. Cu K-edge X-ray absorption spectroscopy shows that the bond length between Cu and the S atom from the cysteine ligand is a key structural factor that correlates with the thermal stability of the cupredoxins in both oxidized and reduced states. These findings were confirmed by an additional study of a site-directed mutant of Phormidium plastocyanin showing a reverse effect of the redox state on the thermal stability of the protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Cianobacterias , Plastocianina/química , Plastocianina/metabolismo , Temperatura , Proteínas Bacterianas/genética , Sitios de Unión , Cobre/química , Cisteína/química , Cisteína/metabolismo , Transporte de Electrón , Ligandos , Modelos Moleculares , Mutación , Plastocianina/genética , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico , Azufre/química , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...