Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.070
Filtrar
1.
Commun Biol ; 7(1): 592, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760591

RESUMEN

Limited studies using animal models with a few natural mutations in melanophilin (Mlph) provided partial functions of Mlph in melanosome trafficking. To investigate cellular functions of Mlph, especially ZnF motif of Mlph, we analyzed all three Mlph knockout (KO) quail lines, one and two base pair (bp) deletions as models for total KO, and three bp deletion causing deletion of one Cysteine (C84del) in the ZnF motif. All quail lines had diluted feather pigmentation with impaired dendritogenesis and melanosome transport in melanocytes. In vitro studies revealed capability of binding of the ZnF motif to PIP3, and impairment of PI3P binding and mislocalization of MLPH proteins with ZnF motif mutations. The shortened melanocyte dendrites by the C84del mutation were rescued by introducing WT Mlph in vitro. These results revealed the diluted feather pigmentation by Mlph mutations resulted from congregation of melanosomes in the cell bodies with impairment of the dendritogenesis and the transport of melanosomes to the cell periphery.


Asunto(s)
Plumas , Melanocitos , Melanosomas , Pigmentación , Animales , Plumas/metabolismo , Melanocitos/metabolismo , Pigmentación/genética , Melanosomas/metabolismo , Codorniz , Mutación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
J Morphol ; 285(5): e21704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702980

RESUMEN

Fancy breeds of Japanese indigenous chicken display extensive morphological diversity, particularly in tail feathers. Although marked differences in tail and bone traits have been reported between Tosa-jidori (wild type) and Minohikichabo (rich type) breeds, little is known about the pattern of genetic inheritance in cross experiments. Therefore, this study aimed to investigate the strain and sex effects, and inheritance patterns, in the morphometric variation of pygostyle bones among Tosa-jidori, Minohikichabo, and their F1 hybrids. Five morphological traits, angle of the apex of the pygostyle, pygostyle length, margo cranialis length, tail feather number, and body weight, were evaluated at the adult stage. A significant strain difference was detected in all traits, whereas significant sex differences were observed in only three traits, but not in the angle of the apex of the pygostyle and tail feather number. In F1 hybrids, the angle of the apex of the pygostyle was significantly different to that of Tosa-jidori but not that of Minohikichabo, whereas the pygostyle length and tail number of F1 hybrids were significantly different from those of Minohikichabo but not those of Tosa-jidori. A significant heterosis effect was found in the margo cranialis length and body weight. All five traits showed nonadditive inheritance patterns but varied in each trait between partial dominance (angle of the apex of pygostyle), full dominance (pygostyle length and tail feather number), and over-dominance (margo cranialis length and body weight). Interestingly, different patterns of genetic inheritance in the F1 hybrid were observed at different locations, even within the same pygostyle bone. Using the Japanese indigenous chicken model, these results provide a substantial step toward understanding the genetic architecture of morphology in chickens.


Asunto(s)
Pollos , Plumas , Cola (estructura animal) , Animales , Pollos/anatomía & histología , Pollos/genética , Cola (estructura animal)/anatomía & histología , Masculino , Femenino , Plumas/anatomía & histología , Huesos/anatomía & histología , Peso Corporal , Cruzamiento , Vigor Híbrido
3.
Front Immunol ; 15: 1386727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720888

RESUMEN

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Asunto(s)
Pollos , Modelos Animales de Enfermedad , Plumas , Melanocitos , Vitíligo , Animales , Vitíligo/inmunología , Pollos/inmunología , Plumas/inmunología , Melanocitos/inmunología , Melanocitos/metabolismo , Linfocitos T/inmunología
4.
Rapid Commun Mass Spectrom ; 38(13): e9758, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700127

RESUMEN

RATIONALE: Carbon, nitrogen and sulphur stable isotopes in feathers grown by seabirds while breeding reflect the local isoscape and diet in the vicinity of the colony, so may make it possible to discriminate individual birds from different colonies. METHODS: Black-legged kittiwake Rissa tridactyla inner primary feathers from two colonies about 350 km apart in the North Sea were used to test whether δ13C, δ15N and δ34S differed between individuals from the two colonies. Feather tips cut from breeding birds caught at nests were compared with tips of moulted feathers (grown 1 year earlier) found on the ground. RESULTS: Isotopic compositions showed no overlap between the two colonies in δ13C, δ15N or δ34S in tips of newly-grown feathers sampled from breeding adult kittiwakes. There was some overlap in δ13C, δ15N and δ34S from moulted feathers, but discriminant analysis allowed >90% of individuals to be assigned to their colony. In five of six comparisons, mean isotopic compositions were the same in new and moulted feathers but not for δ34S at one of the two colonies. CONCLUSIONS: This study has demonstrated for the first time that stable isotopes in inner primary feathers of kittiwakes can allow accurate identification of the breeding colony of individual birds from two different colonies within the North Sea. Further research is required to determine if this method can be applied with greater spatial resolution and to a larger number of colonies.


Asunto(s)
Isótopos de Carbono , Charadriiformes , Plumas , Isótopos de Nitrógeno , Isótopos de Azufre , Animales , Plumas/química , Isótopos de Azufre/análisis , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Charadriiformes/fisiología , Charadriiformes/metabolismo , Espectrometría de Masas/métodos
5.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739784

RESUMEN

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Asunto(s)
Plumas , Mercurio , Animales , Mercurio/análisis , Océano Atlántico , Plumas/química , Regiones Árticas , Groenlandia , Monitoreo del Ambiente/métodos , Aves , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Ecosistema
6.
BMC Genomics ; 25(1): 505, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778258

RESUMEN

BACKGROUND: In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS: Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION: The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.


Asunto(s)
Gansos , Perfilación de la Expresión Génica , Melaninas , Pigmentación , Caracteres Sexuales , Animales , Femenino , Masculino , Gansos/genética , Gansos/metabolismo , Melaninas/metabolismo , Pigmentación/genética , Plumas/metabolismo , Plumas/crecimiento & desarrollo , Transcriptoma
7.
Proc Biol Sci ; 291(2023): 20240330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772417

RESUMEN

Identifying reliable bioindicators of population status is a central goal of conservation physiology. Physiological stress measures are often used as metrics of individual health and can assist in managing endangered species if linked to fitness traits. We analysed feather corticosterone, a cumulative physiological stress metric, of individuals from historical, translocated, and source populations of an endangered endemic Hawaiian bird, the Laysan duck (Anas laysanensis). We hypothesized that feather corticosterone would reflect the improved reproduction and survival rates observed in populations translocated to Midway and Kure Atolls from Laysan Island. We also predicted less physiological stress in historical Laysan birds collected before ecological conditions deteriorated and the population bottleneck. All hypotheses were supported: we found lower feather corticosterone in the translocated populations and historical samples than in those from recent Laysan samples. This suggests that current Laysan birds are experiencing greater physiological stress than historical Laysan and recently translocated birds. Our initial analysis suggests that feather corticosterone may be an indicator of population status and could be used as a non-invasive physiological monitoring tool for this species with further validation. Furthermore, these preliminary results, combined with published demographic data, suggest that current Laysan conditions may not be optimal for this species.


Asunto(s)
Corticosterona , Patos , Especies en Peligro de Extinción , Plumas , Animales , Corticosterona/análisis , Plumas/química , Hawaii , Estrés Fisiológico , Conservación de los Recursos Naturales , Femenino , Masculino
8.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755126

RESUMEN

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Asunto(s)
Pollos , Plumas , Pinzones , Animales , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Pollos/genética , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Vía de Señalización Wnt , Queratinas/metabolismo , Queratinas/genética , Evolución Biológica , Morfogénesis/genética
9.
Commun Biol ; 7(1): 585, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755288

RESUMEN

Exposure to pollutants is a potentially crucial but overlooked driver of population declines in shorebirds along the East Asian-Australasian Flyway. We combined knowledge of moult strategy and life history with a standardised sampling protocol to assess mercury (Hg) contamination in 984 individuals across 33 migratory shorebird species on an intercontinental scale. Over one-third of the samples exceeded toxicity benchmarks. Feather Hg was best explained by moulting region, while habitat preference (coastal obligate vs. non-coastal obligate), the proportion of invertebrates in the diet and foraging stratum (foraging mostly on the surface vs. at depth) also contributed, but were less pronounced. Feather Hg was substantially higher in South China (Mai Po and Leizhou), Australia and the Yellow Sea than in temperate and Arctic breeding ranges. Non-coastal obligate species (Tringa genus) frequently encountered in freshwater habitats were at the highest risk. It is important to continue and expand biomonitoring research to assess how other pollutants might impact shorebirds.


Asunto(s)
Migración Animal , Mercurio , Animales , Mercurio/análisis , Mercurio/toxicidad , Aves , Monitoreo del Ambiente , Australia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos adversos , Plumas/química , Ecosistema , Contaminantes Ambientales/análisis , Charadriiformes , China , Pueblos del Este de Asia
10.
Parasit Vectors ; 17(1): 221, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745229

RESUMEN

BACKGROUND: The chicken body louse is an obligate ectoparasite of domestic chickens. Chicken body lice feed on feathers, and infestation with this louse is linked to decreases in egg production, hen weight, and feed conversion efficiency. However, it is unknown how chicken body lice impact egg-laying chickens in cage-free environments. Welfare and behavior metrics were collected from flocks of egg-laying chickens either infested with chicken body lice or left uninfested. METHODS: In two trials, two flocks of cage-free commercial egg-laying chickens were infested with chicken body lice or maintained as uninfested controls. At three timepoints, behavior and welfare of all chickens was measured. On-animal sensors were used to quantify pecking, preening, and dustbathing behavior. Other animal-based welfare metrics included recording comb wounds and skin lesions. RESULTS: Birds infested with chicken body lice exhibited significantly more preening behaviors than uninfested birds, even at low louse levels. Moderate or severe skin lesions were detected on birds that were moderately infested with chicken body lice while skin lesions were never detected on uninfested birds. CONCLUSIONS: The welfare of chickens was impacted by the chicken body louse, a chewing louse that primarily feather feeds. Evidence of skin lesions on infested birds suggests that lice may cause more damage to birds than previously thought, and further evaluation of louse economic damage is necessary.


Asunto(s)
Bienestar del Animal , Pollos , Vivienda para Animales , Enfermedades de las Aves de Corral , Animales , Pollos/parasitología , Enfermedades de las Aves de Corral/parasitología , Femenino , Conducta Animal , Amblycera/fisiología , Plumas/parasitología , Infestaciones por Piojos/veterinaria , Infestaciones por Piojos/parasitología
11.
Curr Microbiol ; 81(7): 179, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761211

RESUMEN

Enormous aggregates of keratinous wastes are produced annually by the poultry and leather industries which cause environmental degradation globally. To combat this issue, microbially synthesized extracellular proteases known as keratinase are used widely which is effective in degrading keratin found in hair and feathers. In the present work, keratinolytic bacteria were isolated from poultry farm soil and feather waste, and various cultural conditions were optimized to provide the highest enzyme production for efficient keratin waste degradation. Based on the primary and secondary screening methods, the potent keratinolytic strain (HFS_F2T) with the highest enzyme activity 32.65 ± 0.16 U/mL was genotypically characterized by 16S rRNA sequencing and was confirmed as Bacillus velezensis HFS_F2T ON556508. Through one-variable-at-a-time approach (OVAT), the keratinase production medium was optimized with sucrose (carbon source), beef extract (nitrogen source) pH-7, inoculum size (5%), and incubation at 37 °C). The degree of degradation (%DD) of keratin wastes was evaluated after 35 days of degradation in the optimized keratinase production medium devoid of feather meal under submerged fermentation conditions. Further, the deteriorated keratin wastes were visually examined and the hydrolysed bovine hair with 77.32 ± 0.32% degradation was morphologically analysed through Field Emission Scanning Electron Microscopy (FESEM) to confirm the structural disintegration of the cuticle. Therefore, the current study would be a convincing strategy for reducing the detrimental impact of pollutants from the poultry and leather industries by efficient keratin waste degradation through the production of microbial keratinase.


Asunto(s)
Bacillus , Biodegradación Ambiental , Medios de Cultivo , Plumas , Queratinas , Péptido Hidrolasas , Bacillus/metabolismo , Bacillus/genética , Bacillus/enzimología , Queratinas/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Animales , Plumas/metabolismo , Medios de Cultivo/química , Aves de Corral , ARN Ribosómico 16S/genética , Bovinos , Microbiología del Suelo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fermentación , Cabello
12.
Nat Commun ; 15(1): 4063, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773066

RESUMEN

Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.


Asunto(s)
Evolución Biológica , Dinosaurios , Plumas , Fósiles , Melanosomas , Reptiles , Piel , Animales , Plumas/anatomía & histología , Dinosaurios/anatomía & histología , Piel/anatomía & histología , Piel/metabolismo , Reptiles/anatomía & histología , Melanosomas/metabolismo , Melanosomas/ultraestructura , Escamas de Animales/anatomía & histología , Epidermis/anatomía & histología , Epidermis/metabolismo , Epidermis/ultraestructura , beta-Queratinas/metabolismo
13.
Nat Commun ; 15(1): 4337, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773081

RESUMEN

As natural predators, owls fly with astonishing stealth due to the serrated feather morphology that produces advantageous flow characteristics. Traditionally, these serrations are tailored for airfoil edges with simple two-dimensional patterns, limiting their effect on noise reduction while negotiating tradeoffs in aerodynamic performance. Conversely, the intricately structured wings of cicadas have evolved for effective flapping, presenting a potential blueprint for alleviating these aerodynamic limitations. In this study, we formulate a synergistic design strategy that harmonizes noise suppression with aerodynamic efficiency by integrating the geometrical attributes of owl feathers and cicada forewings, culminating in a three-dimensional sinusoidal serration propeller topology that facilitates both silent and efficient flight. Experimental results show that our design yields a reduction in overall sound pressure levels by up to 5.5 dB and an increase in propulsive efficiency by over 20% compared to the current industry benchmark. Computational fluid dynamics simulations validate the efficacy of the bioinspired design in augmenting surface vorticity and suppressing noise generation across various flow regimes. This topology can advance the multifunctionality of aerodynamic surfaces for the development of quieter and more energy-saving aerial vehicles.


Asunto(s)
Plumas , Vuelo Animal , Hemípteros , Estrigiformes , Alas de Animales , Animales , Vuelo Animal/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/fisiología , Hemípteros/fisiología , Hemípteros/anatomía & histología , Estrigiformes/fisiología , Estrigiformes/anatomía & histología , Hidrodinámica , Simulación por Computador , Fenómenos Biomecánicos
14.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575972

RESUMEN

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Asunto(s)
Pollos , Plumas , Animales , Anaerobiosis , Pollos/metabolismo , Hidrógeno/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustibles , Reactores Biológicos
15.
Int J Biol Macromol ; 267(Pt 2): 131478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604434

RESUMEN

In this study, an environmentally friendly, effective, easily synthesizable and recoverable nano-sized catalyst system (Ag@NaAlg-keratin) was designed by decorating Ag nanoparticles on microbeads containing sodium alginate (NaAlg) and keratin obtained from goose feathers. The structure, morphology and crystallinity of the Ag@NaAlg-keratin nanocatalyst were evaluated by XRD, FT-IR, FE-SEM, EDS/EDS mapping and TEM analyses. Catalytic ability of designed Ag@NaAlg-keratin nanocatalyst was then investigated against 4-nitrophenol (4-NP) and methyl orange (MO) reductions. Ag@NaAlg-keratin nanocatalyst effectively reduced 4-NP in 6 min and MO in 5 min, with rate constants of 0.17 min-1 and 0.16 min-1, respectively. Additionally, activation energies (Ea) were found as 39.8 kJ/mol for 4-NP and 37.9 kJ/mol for MO. Performed recyclability tests showed that the Ag@NaAlg-keratin nanocatalyst was easily recovered due to its microbead form and successfully reused five times, maintaining both its activity and structure. Furthermore, antioxidant activity of Ag@NaAlg-keratin nanocatalyst was the highest (73.16 %).


Asunto(s)
Alginatos , Antioxidantes , Queratinas , Nanopartículas del Metal , Microesferas , Plata , Alginatos/química , Nanopartículas del Metal/química , Plata/química , Queratinas/química , Catálisis , Antioxidantes/química , Antioxidantes/farmacología , Animales , Nitrofenoles/química , Plumas/química , Compuestos Azo/química
16.
Bioinspir Biomim ; 19(3)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569525

RESUMEN

The silent flight of barn owls is associated with wing and feather specialisations. Three special features are known: a serrated leading edge that is formed by free-standing barb tips which appears as a comb-like structure, a soft dorsal surface, and a fringed trailing edge. We used a model of the leading edge comb with 3D-curved serrations that was designed based on 3D micro-scans of rows of barbs from selected barn-owl feathers. The interaction of the flow with the serrations was measured with Particle-Image-Velocimetry in a flow channel at uniform steady inflow and was compared to the situation of inflow with freestream turbulence, generated from the turbulent wake of a cylinder placed upstream. In steady uniform flow, the serrations caused regular velocity streaks and a flow turning effect. When vortices of different size impacted the serrations, the serrations reduced the flow fluctuations downstream in each case, exemplified by a decreased root-mean-square value of the fluctuations in the wake of the serrations. This attenuation effect was stronger for the spanwise velocity component, leading to an overall flow homogenization. Our findings suggest that the serrations of the barn owl provide a passive flow control leading to reduced leading-edge noise when flying in turbulent environments.


Asunto(s)
Estrigiformes , Animales , Vuelo Animal , Plumas , Alas de Animales , Ruido
17.
Dev Biol ; 510: 1-7, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458375

RESUMEN

Vertebrate skin appendages - particularly avian feathers and mammalian hairs, glands and teeth - are perennially useful systems for investigating fundamental mechanisms of development. The most common type of skin appendage in teleost fishes is the elasmoid scale, yet this structure has received much less attention than the skin appendages of tetrapods. Elasmoid scales are thin, overlapping plates of partially mineralized extracellular matrices, deposited in the skin in a hexagonal pattern by a specialized population of dermal cells in cooperation with the overlying epidermis. Recent years have seen rapid progress in our understanding of elasmoid scale development and regeneration, driven by the deployment of developmental genetics, live imaging and transcriptomics in larval and adult zebrafish. These findings are reviewed together with histological and ultrastructural approaches to understanding scale development and regeneration.


Asunto(s)
Piel , Pez Cebra , Animales , Epidermis , Aves , Plumas/anatomía & histología , Mamíferos
18.
Proc Natl Acad Sci U S A ; 121(12): e2401482121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466860
19.
Poult Sci ; 103(5): 103571, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428356

RESUMEN

This study aimed to compare the residue depletion of gamithromycin in yellow-feather and white-feather broilers, using Sanhuang and Arbor Acres chickens as typical examples, respectively. Each breed (54 chickens) received a single subcutaneous dose of gamithromycin at 7.5 mg/kg bodyweight (BW). Tissues, including muscle, skin + fat, liver, kidney, and injection site, were collected at 6 h, 3, 5, 7, 10, 14, 21, 28, and 35 d postdrug administration. Gamithromycin concentrations in these tissues were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The kinetics of gamithromycin were analyzed in different tissues using a noncompartmental method in the Phoenix software. Differences were observed in gamithromycin concentrations and kinetic characteristics in both breeds of chickens, with higher residue concentrations and longer residue times found in yellow-feathered broilers. In Sanhuang broilers, the elimination rates of gamithromycin followed this order: injection site > muscle > liver > kidney > skin + fat. The corresponding elimination half-lives (t1/2λzs) in these samples were 1.22, 1.30, 1.71, 2.04, and 2.52 d, respectively. In contrast, in Arbor Acres broilers, a different order was noted: muscle > injection site > kidney > liver > skin + fat, with corresponding t1/2λzs of 1, 1.23, 1.88, 1.93, and 2.21 d, respectively. These differences may be related to variations in pigments in various tissues of chickens of the 2 breeds. However, further investigations are warranted to discern the underlying reasons.


Asunto(s)
Antibacterianos , Pollos , Residuos de Medicamentos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/análisis , Residuos de Medicamentos/análisis , Inyecciones Subcutáneas/veterinaria , Plumas/química , Macrólidos/administración & dosificación , Macrólidos/farmacocinética , Macrólidos/análisis , Espectrometría de Masas en Tándem/veterinaria , Masculino
20.
Poult Sci ; 103(5): 103588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479100

RESUMEN

Preening cups are a form of environmental enrichment that provides Pekin ducks a semi-open water source to express their natural behaviors. We recently observed that preening cups may increase feather pecking behaviors in ducks. Thus, we set out to determine if this form of enrichment can impact the affective state of Pekin ducks. To accomplish this goal, we evaluated the effect of preening cups on serotonin (5-HT) and dopamine (DA) turnover via mass spectrometry and their respective synthetic enzyme gene expression via qRT-PCR. Our study investigated the link between aggressive pecking with levels and activity of brain 5-HT and DA. Brain 5-HT and DA levels and activity have been established for decades to be associated with affective states. Grow-out Pekin ducks (n = 260) were housed at Purdue and raised per industry standards. On day 18, brains were collected from ducks in pens before preening cups were placed (PRE, n = 6) and, again on day 43, in pens with (PC, n = 6) and without (CON, n = 6) preening cups. Brains were dissected into right and left halves, then further microdissected into 4 brain areas: caudal mesencephalon (CM), rostral mesencephalon (RM), diencephalon (DI), and forebrain (FB). The right hemisphere was used for mass spectrometry to determine the neurotransmitter concentration (ng/mg of tissue) and those concentrations were applied to neurotransmitter turnover equations. There were no differences across treatments for 5-HT turnover in any brain area. There were differences in DA turnover across age (P = 0.0067) in the CM and across treatments (P = 0.003) in the RM. The left hemisphere of the brain was used to perform qRT-PCR on the genes of 5-HT and DA production enzymes. Within the CM, day 43 duck brains had increased (P = 0.022) tryptophan hydroxylase and tyrosine hydroxylase relative mRNA levels. All other brain areas showed no differences. Our data suggest that ducks housed with preening cups and that showed increased feather pecking are associated with increased brain DA activity. The increased DA in the brain may lead to a predisposition for increased aggression in the form of feather pecking.


Asunto(s)
Encéfalo , Dopamina , Patos , Vivienda para Animales , Serotonina , Animales , Patos/fisiología , Dopamina/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiología , Conducta Animal/fisiología , Agresión/fisiología , Masculino , Crianza de Animales Domésticos/métodos , Plumas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA