Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pathol Clin Res ; 7(1): 61-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33001588

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity and is usually preceded by a range of premalignant tissue abnormalities termed oral potentially malignant disorders. Identifying malignant transformation is critical for early treatment and consequently improved survival and decreased morbidity. Invadopodia (INV) are specialized subcellular structures required for cancer cell invasion. We developed a new method to visualize INV in keratinocytes using fluorescent immunohistochemistry (FIHC) and semi-automated images analysis. The presence of INV was used to determine the risk of malignant transformation. We analyzed 145 formalin-fixed, paraffin-embedded (FFPE) oral biopsy samples from 95 patients diagnosed as nondysplastic, dysplastic, and OSCC including 49 patients whose lesions transformed to OSCC (progressing) and 46 cases that did not transform to OSCC (control). All samples were stained for Cortactin, tyrosine kinase substrate with five SH3 domains (Tks5) and matrix metallopeptidase 14 (MMP14) using FIHC, imaged using confocal microscopy and analyzed using a multichannel colocalization analysis. The areas of colocalization were used to generate an INV score. Using the INV score, we were able to identify progressing lesions with a sensitivity of 75-100% and specificity of 72-76%. A positive INV score was associated with increased risk of progression to OSCC. Our results suggest that INV markers can be used in conjunction with the current diagnostic standard for early detection of OSCC.


Asunto(s)
Biomarcadores de Tumor/análisis , Transformación Celular Neoplásica/química , Detección Precoz del Cáncer , Queratinocitos/química , Neoplasias de la Boca/química , Podosomas/química , Lesiones Precancerosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/química , Adulto , Anciano , Anciano de 80 o más Años , Transformación Celular Neoplásica/patología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Queratinocitos/patología , Masculino , Microscopía Confocal , Persona de Mediana Edad , Neoplasias de la Boca/patología , Clasificación del Tumor , Podosomas/patología , Lesiones Precancerosas/patología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Small GTPases ; 11(4): 256-270, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-29172953

RESUMEN

Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.


Asunto(s)
Cortactina/metabolismo , Podosomas/metabolismo , Animales , Cortactina/química , Humanos , Podosomas/química
3.
Nat Commun ; 10(1): 5171, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729386

RESUMEN

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Asunto(s)
Actinas/química , Actinas/metabolismo , Podosomas/metabolismo , Actinas/genética , Animales , Adhesión Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimiento Celular , Células Cultivadas , Células Dendríticas/química , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Mecanotransducción Celular , Ratones , Podosomas/química , Podosomas/genética
4.
Oncogene ; 38(19): 3598-3615, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30651600

RESUMEN

Invadopodia are cell protrusions that mediate cancer cell extravasation but the microenvironmental cues and signaling factors that induce invadopodia formation during extravasation remain unclear. Using intravital imaging and loss of function experiments, we determined invadopodia contain receptors involved in chemotaxis, namely GABA receptor and EGFR. These chemotaxis capabilities are mediated in part by PAK1 which controls invadopodia responsiveness to ligands such as GABA and EGF via assembly, stability, and turnover of invadopodia in vivo. PAK1 knockdown rendered cells unresponsive to chemotactic stimuli present in the stroma, resulting in dramatically lower rates of cancer cell extravasation and metastatic colony formation compared to stimulated cancer cells. In an experimental mouse model of brain metastasis, inhibition of PAK1 significantly reduced overall tumor burden and reduced the average size of brain metastases. In summary, invadopodia contain chemotaxis receptors that can respond to microenvironmental cues to guide cancer cell extravasation, and when PAK1 is depleted, brain tropism of metastatic breast cancer cells is significantly reduced, blocking secondary colony growth at sites otherwise permissive for metastatic outgrowth.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Podosomas/patología , Quinasas p21 Activadas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Embrión de Pollo , Femenino , Humanos , Imagen por Resonancia Magnética , Ratones Desnudos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Podosomas/química , Podosomas/metabolismo , Tropismo , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/genética
5.
Exp Mol Pathol ; 106: 17-26, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30439350

RESUMEN

Invadopodia, cancer cell protrusions with proteolytic activity, are functionally associated with active remodeling of the extracellular matrix. Here, we show that the invadopodia-related protein TKS5 is expressed in human pancreatic adenocarcinoma lines, and demonstrate that pancreatic cancer cells depend on TKS5 for invadopodia formation and function. Immunofluorescence staining of human pancreatic cancer cells reveals that TKS5 is a marker of mature and immature invadopodia. We also analyze the co-staining patterns of TKS5 and the commonly used invadopodia marker Cortactin, and find only partial co-localization of these two proteins at invadopodia, with a large fraction of TKS5-positive invadopodia lacking detectable levels of Cortactin. Whereas compelling evidence exist on the role of invadopodia as mediators of invasive migration in cultured cells and in animal models of cancer, these structures have never been detected inside human tumors. Here, using antibodies against TKS5 and Cortactin, we describe for the first time structures strongly resembling invadopodia in various paraffin-embedded human tumor surgical specimens from pancreas and other organs. Our results strongly suggest that invadopodia are present inside human tumors, and warrants further investigation on their regulation and occurrence in surgical specimens, and on the value of TKS5 antibodies as pathological research and diagnostic tools.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Adenocarcinoma/patología , Proteínas de Neoplasias/fisiología , Neoplasias Pancreáticas/patología , Podosomas/fisiología , Adenocarcinoma/química , Adenocarcinoma/cirugía , Adenocarcinoma/ultraestructura , Adulto , Anciano , Línea Celular Tumoral , Cortactina/análisis , Femenino , Técnica del Anticuerpo Fluorescente Directa , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Neoplasias/química , Neoplasias/patología , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/ultraestructura , Adhesión en Parafina , Podosomas/química , Podosomas/ultraestructura , Interferencia de ARN , ARN Interferente Pequeño/genética
6.
Eur J Cell Biol ; 96(7): 673-684, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28847588

RESUMEN

Invadopodia are proteolytic structures formed by cancer cells. It is not known whether their cellular distribution can be regulated by the organization of the extracellular matrix or the organization of the golgi complex or whether they have an adhesion requirement. Here, we used electron beam lithography to fabricate fibronectin (FN) nanodots with isotropic and gradient micrometer scale spacings on K-casein and laminin backgrounds. Investigating cancer cells cultured on protein nanopatterns, we showed that (i) presence of FN nanodots on a K-casein background decreased percent of cells with neutral invadopodia polarization compared to FN control surfaces; (ii) presence of a gradient of FN nanodots on a K-casein background increased percent of cells with negative invadopodia polarization compared to FN control surfaces; (iii) polarization of the golgi complex was similar to that of invadopodia in agreement with a spatial link; (iv) local adhesion did not necessarily appear to be a prerequisite for invadopodia formation.


Asunto(s)
Adhesión Celular/genética , Fibronectinas/química , Neoplasias/genética , Podosomas/genética , Caseínas/química , Línea Celular Tumoral , Cortactina/química , Matriz Extracelular/química , Matriz Extracelular/genética , Fibronectinas/genética , Aparato de Golgi/genética , Humanos , Laminina/química , Laminina/genética , Nanopartículas/química , Neoplasias/patología , Podosomas/química , Tomografía Computarizada por Rayos X
7.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28355484

RESUMEN

Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.


Asunto(s)
Podosomas/química , Actinas/química , Actinas/metabolismo , Fenómenos Biomecánicos , Adhesión Celular , Células Cultivadas , Simulación por Computador , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Mecanotransducción Celular , Monocitos/citología , Monocitos/metabolismo , Nanoestructuras/química , Tamaño de la Partícula , Paxillin/química , Paxillin/metabolismo , Podosomas/ultraestructura , Propiedades de Superficie , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo
8.
Front Biosci (Landmark Ed) ; 21(6): 1092-117, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27100494

RESUMEN

Invadosomes are actin-based protrusions formed by cells in response to obstacles in their microenvironment, especially basement membranes and dense interstitial matrices. A versatile set of proteins controls assembly and dynamics of the actin networks at invadosomes and adhesive molecules link them with the extracellular matrix. Furthermore, polarized delivery of proteases makes invadosomes degradative. Therefore, invadosomes have been classically viewed as specialized protrusions involved in cell migration and remodeling of the microenvironment. Recent discoveries have considerably broadened this picture by showing that invadosomes respond to traction forces and can self-organize into dynamic arrays capable of following the topography of the substrate. Although these findings suggest that invadosomes may function as mechanosensors, this possibility has not been critically evaluated. In this review, we first summarize the organization and dynamics of actin in invadosomes and their superstructures with emphasis on force-production mechanisms. Next, we outline our current understanding of how mechanical cues impinge on invadosomes and modify their behavior. From this perspective, we provide an outlook of the outstanding open questions and the main challenges in the field.


Asunto(s)
Actinas/metabolismo , Podosomas/metabolismo , Actinas/química , Animales , Fenómenos Biomecánicos , Microambiente Celular , Matriz Extracelular/metabolismo , Humanos , Mecanotransducción Celular , Modelos Biológicos , Podosomas/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA