Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
PeerJ ; 12: e17547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912041

RESUMEN

Predation threat is a major driver of behavior in many prey species. Animals can recognize their relative risk of predation based on cues in the environment, including visual and/or chemical cues released by a predator or from its prey. When threat of predation is high, prey often respond by altering their behavior to reduce their probability of detection and/or capture. Here, we test how a clonal fish, the Amazon molly (Poecilia formosa), behaviorally responds to predation cues. We measured aggressive and social behaviors both under 'risk', where chemical cues from predatory fish and injured conspecifics were present, and control contexts (no risk cues present). We predicted that mollies would exhibit reduced aggression towards a simulated intruder and increased sociability under risk contexts as aggression might increase their visibility to a predator and shoaling should decrease their chance of capture through the dilution effect. As predicted, we found that Amazon mollies spent more time with a conspecific when risk cues were present, however they did not reduce their aggression. This highlights the general result of the 'safety in numbers' behavioral response that many small shoaling species exhibit, including these clonal fish, which suggests that mollies may view this response as a more effective anti-predator response compared to limiting their detectability by reducing aggressive conspecific interactions.


Asunto(s)
Agresión , Poecilia , Conducta Predatoria , Animales , Poecilia/fisiología , Conducta Animal , Señales (Psicología) , Conducta Social
2.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889788

RESUMEN

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Asunto(s)
Sulfuro de Hidrógeno , Poecilia , Animales , Sulfuro de Hidrógeno/metabolismo , Poecilia/genética , Poecilia/fisiología , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiología , Extremófilos/genética , Transcripción Genética , México , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Branquias/metabolismo
3.
Environ Int ; 187: 108703, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38705092

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are frequently detected in the environment and are linked to adverse reproductive health outcomes in humans. Although legacy PFAS have been phased out due to their toxicity, alternative PFAS are increasingly used despite the fact that information on their toxic effects on reproductive traits is particularly scarce. Here, we exposed male guppies (Poecilia reticulata) for a short period (21 days) to an environmentally realistic concentration (1 ppb) of PFOA, a legacy PFAS, and its replacement compound, GenX, to assess their impact on reproductive traits and gene expression. Exposure to PFAS did not impair survival but instead caused sublethal effects. Overall, PFAS exposure caused changes in male sexual behaviour and had detrimental effects on sperm motility. Sublethal variations were also seen at the transcriptional level, with the modulation of genes involved in immune regulation, spermatogenesis, and oxidative stress. We also observed bioaccumulation of PFAS, which was higher for PFOA than for GenX. Our results offer a comprehensive comparison of these two PFAS and shed light on the toxicity of a newly emerging alternative to legacy PFAS. It is therefore evident that even at low concentrations and with short exposure, PFAS can have subtle yet significant effects on behaviour, fertility, and immunity. These findings underscore the potential ramifications of pollution under natural conditions and their impact on fish populations.


Asunto(s)
Caprilatos , Fluorocarburos , Poecilia , Reproducción , Testículo , Transcriptoma , Contaminantes Químicos del Agua , Animales , Poecilia/fisiología , Poecilia/genética , Masculino , Fluorocarburos/toxicidad , Testículo/efectos de los fármacos , Testículo/metabolismo , Contaminantes Químicos del Agua/toxicidad , Transcriptoma/efectos de los fármacos , Caprilatos/toxicidad , Reproducción/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos
4.
Proc Biol Sci ; 291(2023): 20240356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772422

RESUMEN

Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.


Asunto(s)
Resistencia a la Enfermedad , Interacciones Huésped-Parásitos , Poecilia , Animales , Poecilia/fisiología , Poecilia/parasitología , Enfermedades de los Peces/parasitología , Evolución Biológica , Modelos Biológicos
5.
Commun Biol ; 7(1): 663, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811776

RESUMEN

Environmental change can alter predator-prey dynamics. However, studying predators in the context of co-occurring environmental stressors remains rare, especially under field conditions. Using in situ filming, we examined how multiple stressors, including temperature and turbidity, impact the distribution and behaviour of wild fish predators of Trinidadian guppies (Poecilia reticulata). The measured environmental variables accounted for 17.6% of variance in predator species composition. While predator species differed in their associations with environmental variables, the overall prevalence of predators was greatest in slow flowing, deeper, warmer and less turbid habitats. Moreover, these warmer and less turbid habitats were associated with earlier visits to the prey stimulus by predators, and more frequent predator visits and attacks. Our findings highlight the need to consider ecological complexity, such as co-occurring stressors, to better understand how environmental change affects predator-prey interactions.


Asunto(s)
Agua Dulce , Poecilia , Conducta Predatoria , Animales , Poecilia/fisiología , Cadena Alimentaria , Ecosistema , Estrés Fisiológico , Clima Tropical , Temperatura , Peces/fisiología
6.
Evolution ; 78(7): 1261-1274, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572796

RESUMEN

Phenotypic plasticity is critical for organismal performance and can evolve in response to natural selection. Brain morphology is often developmentally plastic, affecting animal performance in a variety of contexts. However, the degree to which the plasticity of brain morphology evolves has rarely been explored. Here, we use Trinidadian guppies (Poecilia reticulata), which are known for their repeated adaptation to high-predation (HP) and low-predation (LP) environments, to examine the evolution and plasticity of brain morphology. We exposed second-generation offspring of individuals from HP and LP sites to 2 different treatments: predation cues and conspecific social environment. Results show that LP guppies had greater plasticity in brain morphology compared to their ancestral HP population, suggesting that plasticity can evolve in response to environmentally divergent habitats. We also show sexual dimorphism in the plasticity of brain morphology, highlighting the importance of considering sex-specific variation in adaptive diversification. Overall, these results may suggest the evolution of brain morphology plasticity as an important mechanism that allows for ecological diversification and adaptation to divergent habitats.


Asunto(s)
Evolución Biológica , Encéfalo , Ecosistema , Poecilia , Animales , Poecilia/anatomía & histología , Poecilia/fisiología , Poecilia/genética , Encéfalo/anatomía & histología , Encéfalo/fisiología , Femenino , Masculino , Caracteres Sexuales , Adaptación Fisiológica , Conducta Predatoria
7.
Proc Biol Sci ; 291(2018): 20232625, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471561

RESUMEN

Behavioural plasticity allows organisms to respond to environmental challenges on short time scales. But what are the ecological and evolutionary processes that underlie behavioural plasticity? The answer to this question is complex and requires experimental dissection of the physiological, neural and molecular mechanisms contributing to behavioural plasticity as well as an understanding of the ecological and evolutionary contexts under which behavioural plasticity is adaptive. Here, we discuss key insights that research with Trinidadian guppies has provided on the underpinnings of adaptive behavioural plasticity. First, we present evidence that guppies exhibit contextual, developmental and transgenerational behavioural plasticity. Next, we review work on behavioural plasticity in guppies spanning three ecological contexts (predation, parasitism and turbidity) and three underlying mechanisms (endocrinological, neurobiological and genetic). Finally, we provide three outstanding questions that could leverage guppies further as a study system and give suggestions for how this research could be done. Research on behavioural plasticity in guppies has provided, and will continue to provide, a valuable opportunity to improve understanding of the ecological and evolutionary causes and consequences of behavioural plasticity.


Asunto(s)
Poecilia , Animales , Poecilia/fisiología , Adaptación Fisiológica , Conducta Predatoria , Evolución Biológica
8.
Proc Biol Sci ; 291(2018): 20232950, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471559

RESUMEN

Evolutionary biologists have long been interested in parsing out the roles of genetics, plasticity and their interaction on adaptive trait divergence. Since males and females often have different ecological and reproductive roles, separating how their traits are shaped by interactions between their genes and environment is necessary and important. Here, we disentangle the sex-specific effects of genetic divergence, developmental plasticity, social learning and contextual plasticity on foraging behaviour in Trinidadian guppies (Poecilia reticulata) adapted to high- or low-predation habitats. We reared second-generation siblings from both predation regimes with or without predator chemical cues, and with adult conspecifics from either high- or low-predation habitats. We then quantified their foraging behaviour in water with and without predator chemical cues. We found that high-predation guppies forage more efficiently than low-predation guppies, but this behavioural difference is context-dependent and shaped by different mechanisms in males and females. Higher foraging efficiency in high-predation females is largely genetically determined, and to a smaller extent socially learned from conspecifics. However, in high-predation males, higher foraging efficiency is plastically induced by predator cues during development. Our study demonstrates sex-specific differences in genetic versus plastic responses in foraging behaviour, a trait of significance in organismal fitness and ecosystem dynamics.


Asunto(s)
Poecilia , Aprendizaje Social , Animales , Femenino , Masculino , Ecosistema , Poecilia/fisiología , Conducta Predatoria , Evolución Biológica
9.
Evolution ; 78(5): 894-905, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315570

RESUMEN

Diverse clades of fishes adapted to feeding on the benthos repeatedly converge on steep craniofacial profiles and shorter, wider heads. But in an incipient radiation, to what extent is this morphological evolution measurable and can we distinguish the relative genetic vs. plastic effects? We use the Trinidadian guppy (Poecilia reticulata) to test the repeatability of adaptation and the alignment of genetic and environmental effects shaping poecilid craniofacial morphology. We compare wild-caught and common garden lab-reared fish to quantify the genetic and plastic components of craniofacial morphology across 4 populations from 2 river drainage systems (n = 56 total). We first use micro-computed tomography to capture 3D morphology, then place both landmarks and semilandmarks to perform size-corrected 3D morphometrics and quantify shape space. We find a measurable, significant, and repeatable divergence in craniofacial shape between high-predation invertivore and low-predation detritivore populations. As predicted from previous examples of piscine adaptive trophic divergence, we find increases in head slope and craniofacial compression among the benthic detritivore foragers. Furthermore, the effects of environmental plasticity among benthic detritivores produce exaggerated craniofacial morphological change along a parallel axis to genetic morphological adaptation from invertivore ancestors. Overall, many of the major patterns of benthic-limnetic craniofacial evolution appear convergent among disparate groups of teleost fishes.


Asunto(s)
Evolución Biológica , Poecilia , Cráneo , Animales , Poecilia/anatomía & histología , Poecilia/genética , Poecilia/fisiología , Cráneo/anatomía & histología , Microtomografía por Rayos X , Cadena Alimentaria , Conducta Predatoria
10.
Dev Growth Differ ; 66(3): 194-204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302769

RESUMEN

Generally, in vertebrates, the first step toward fertilization is the ovulation of mature oocytes, followed by their binding to sperm cells outside of the ovary. Exceptionally, the oocytes of poeciliid fish are fertilized by sperm cells within the follicle, and the developmental embryo is subsequently released into the ovarian lumen before delivery. In the present study, we aimed to identify the factor(s) responsible for intrafollicular fertilization in a viviparous teleost species, Poecilia reticulata (guppy). Sperm tracking analysis in this regard indicated that in this species, sperm cells reached immature oocytes including the germinal vesicle, and the insemination assay indicated that the immature oocytes robustly adhered to the sperm cells; similar binding was not observed in Danio rerio (zebrafish) and Oryzias latipes (medaka). We also identified the Ly6/uPAR protein bouncer as the factor responsible for the observed sperm binding activity of the immature oocytes in this species. The recombinant bouncer peptide acted as an inhibitory decoy for the sperm-oocyte binding in guppy. On the other hand, ectopic expression of guppy bouncer in zebrafish oocytes resulted in interspecific sperm-oocyte binding. These results argue that bouncer is responsible for sperm-immature oocyte binding. Our findings highlight the unique reproductive strategies of guppy fish and enhance our understanding of the diverse reproductive mechanisms in vertebrates.


Asunto(s)
Oryzias , Poecilia , Animales , Femenino , Masculino , Poecilia/fisiología , Pez Cebra , Semen , Oocitos/metabolismo , Espermatozoides
11.
J Fish Dis ; 47(5): e13929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38291575

RESUMEN

Teratoma is a rare tumour in fish consisting of tissues from more than one germ layer, that may be located in either the gonads or extragonadal sites. Teratomas in many fish species remain poorly understood. In this work, we performed the first histological examinations of extragonadal teratomas in Poecilia wingei and also examined the influence of a large teratoma on male sexual activity. The studied teratomas shared general organizational features, but they also had variations in both external and internal features. In teratomas, the most common and highly differentiated tissues were striated muscle and nervous tissue. Despite the tumour, the male P. wingei exhibited normal mating behaviour and retained the ability for successful copulation. The structural features of extragonadal teratomas in guppy fish indicate a possible connection between these tumours and a failure of conserved processes operating in the embryonic germline.


Asunto(s)
Enfermedades de los Peces , Poecilia , Teratoma , Masculino , Animales , Poecilia/fisiología , Teratoma/veterinaria , Teratoma/patología , Reproducción , Gónadas/patología
12.
Anim Cogn ; 26(6): 1893-1903, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37831192

RESUMEN

Most studies on developmental variation in cognition have suggested that individuals are born with reduced or absent cognitive abilities, and thereafter, cognitive performance increases with age during early development. However, these studies have been mainly performed in altricial species, such as humans, in which offspring are extremely immature at birth. In this work, we tested the hypothesis that species with other developmental modes might show different patterns of cognitive development. To this end, we analysed inhibitory control performance in two teleost species with different developmental modes, the zebrafish Danio rerio and the guppy Poecilia reticulata, exploiting a simple paradigm based on spontaneous behaviour and therefore applicable to subjects of different ages. Zebrafish hatch as larvae 3 days after fertilisation, and have an immature nervous system, a situation that mirrors extreme altriciality. We found that at the early stages of development, zebrafish displayed no evidence of inhibitory control, which only begun to emerge after one month of life. Conversely, guppies, which are born after approximately one month of gestation as fully developed and independent individuals, solved the inhibitory control task since their first days of life, although performance increased with sexual maturation. Our study suggests that the typical progression described during early ontogeny in humans and other species might not be the only developmental trend for animals' cognition and that a species' developmental mode might determine variation in cognition across subjects of different age.


Asunto(s)
Poecilia , Pez Cebra , Humanos , Animales , Cognición , Poecilia/fisiología
13.
Am Nat ; 202(4): 413-432, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792920

RESUMEN

AbstractClassic theory for density-dependent selection for delayed maturation requires that a population be regulated through some combination of adult fecundity and/or juvenile survival. We tested whether those demographic conditions were met in four experimental populations of Trinidadian guppies in which delayed maturation of males evolved when the densities of those populations became high. We used monthly mark-recapture data to examine population dynamics and demography in these populations. Three of the four populations displayed clear evidence of regulation. In all four populations, monthly adult survival rates were independent of biomass density or actually increased with increased biomass density. Juvenile recruitment, which is a combination of adult fecundity and juvenile survival, decreased as biomass density increased in all four populations. Demography showed marked seasonality, with greater survival and higher recruitment in the dry season than the wet season. Population regulation via juvenile recruitment supports the hypothesis that density-dependent selection was responsible for the evolution of delayed maturity in males. This body of work represents one of the few complete tests of density-dependent selection theory.


Asunto(s)
Poecilia , Animales , Masculino , Poecilia/fisiología , Dinámica Poblacional , Biomasa , Fertilidad , Estaciones del Año
14.
Aquat Toxicol ; 263: 106677, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37677862

RESUMEN

Sexually mature female guppies (Poecilia reticulata) were exposed to environmentally relevant concentrations (20, 200, and 2000 ng/L) of 17ß-trenbolone for four weeks. As evidenced by the increased caudal fin index and anal fins developing into gonopodium-like structures, exposed females displayed masculinized secondary sexual characteristics. Differential gene expression and subsequent pathway analysis of mRNA sequencing data revealed that the transcription of transforming growth factor beta/bone morphogenetic protein signaling pathway and Wnt signaling pathway were upregulated following 17ß-trenbolone exposure. Enzyme-linked immunosorbent assays showed that the bone morphogenetic protein 7 protein content was elevated after 17ß-trenbolone exposure. Finally, real-time PCR revealed that 17ß-trenbolone treatment significantly increased androgen receptor mRNA levels, and molecular docking showed potent interaction between 17ß-trenbolone and guppy androgen receptor. Furthermore, 17ß-trenbolone-induced masculinization of caudal and anal fins in female guppies, concomitant to the upregulated expression of differentially expressed genes involved in the above-mentioned two signaling pathways, was significantly inhibited by flutamide (androgen receptor antagonist). These findings demonstrated that 17ß-trenbolone masculinized fins of female guppies by activating the androgen receptor. This study revealed that 17ß-trenbolone could upregulate signaling pathways related to fin growth and differentiation, and eventually cause caudal and anal fin masculinization in female guppies.


Asunto(s)
Poecilia , Contaminantes Químicos del Agua , Animales , Femenino , Acetato de Trembolona/farmacología , Poecilia/fisiología , Receptores Androgénicos/genética , Factor de Crecimiento Transformador beta , Vía de Señalización Wnt , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Proteínas Morfogenéticas Óseas , ARN Mensajero
15.
Proc Biol Sci ; 290(2001): 20230350, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37357854

RESUMEN

Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.


Asunto(s)
Adaptación Fisiológica , Poecilia , Humanos , Animales , Aprendizaje , Poecilia/fisiología , Cognición , Fenotipo
16.
Aquat Toxicol ; 261: 106613, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37352752

RESUMEN

Copper ions (Cu) are one of the most frequent trace-contaminants found in Brazilian waters and, although considered as an essential element, in high concentrations can accumulate and induce toxicity. Biomarkers are important tools that can be used to assess these impacts, but to be considered trustworthy, they have to be previously tested in target organisms through laboratory studies under controlled conditions. However, many of these experiments are conducted using only males, as it is believed that the hormonal variation of females can bias the results, increasing data variability. Notwithstanding, few studies have actually tested this hypothesis, highlighting the importance of considering and measuring the role of sex in ecotoxicological studies. The aim this study was to evaluate the influence of sex on biomarkers classically used in environmental monitoring programs using the fish Poecilia vivipara as model. For this, females and males were exposed for 96 h to two Cu concentrations (9 and 20 µg/L) and a control group. In liver and gills, Cu accumulation, total antioxidant capacity (TAC) and lipid peroxidation (LPO) were evaluated. In addition, samples of peripheral blood were used for neutrophil to lymphocyte ratio determination, a measure of the onset of secondary stress. Results show that Cu hepatic accumulation did not differ between females and males, but higher levels of this metal were observed in exposed animals compared to control fish. Additionally, interactive effects were observed for hepatic LPO, as males showed elevated oxidative damage in comparison to females. Moreover, Cu exposure elevated hepatic LPO relative to control only in males, but this increase in oxidative damage was not accompanied by changes in liver TAC. On the other hand, differences in branchial Cu accumulation and LPO were not observed. Conversely, control females showed elevated TAC in comparison to control males, but Cu exposure eliminated this difference. Cu exposure also induced an increase in the N:L ratio, indicating the presence of a secondary stress response unrelated to sex. Ultimately, the findings of this study demonstrate that sex can influence the response of biomarkers that are typically used in ecotoxicological investigations in a multifaceted manner. As a result, using animals from a singular sex in such studies may result in consequential outcomes, potentially leading to underestimation or overestimation of results.


Asunto(s)
Fundulidae , Poecilia , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Poecilia/fisiología , Contaminantes Químicos del Agua/toxicidad , Cobre/toxicidad , Cobre/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Branquias
17.
Science ; 380(6642): 309-312, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079663

RESUMEN

When females prefer mates with rare phenotypes, sexual selection can maintain rather than deplete genetic variation. However, there is no consensus on why this widespread and frequently observed preference might evolve and persist. We examine the fitness consequences of female preference for rare male color patterns in a natural population of Trinidadian guppies, using a pedigree that spans 10 generations. We demonstrate (i) a rare male reproductive advantage, (ii) that females that mate with rare males gain an indirect fitness advantage through the mating success of their sons, and (iii) the fitness benefit that females accrue through their "sexy sons" evaporates for their grandsons as their phenotype becomes common. Counter to prevailing theory, we show that female preference can be maintained through indirect selection.


Asunto(s)
Preferencia en el Apareamiento Animal , Poecilia , Selección Sexual , Animales , Femenino , Masculino , Fenotipo , Poecilia/fisiología , Reproducción
18.
Behav Brain Res ; 436: 114088, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36100008

RESUMEN

To understand the processes underpinning social decision-making, we need to determine how internal states respond to information gathered from the social environment. Brain monoamine neurotransmitters are key in the appraisal of the social environment and can reflect the internal state underlying behavioural responses to social stimuli. Here we determined the effects of conspecific partner cooperativeness during predator inspection on brain monoamine metabolic activity in Trinidadian guppies (Poecilia reticulata). We quantified the concentration of dopamine, serotonin and their metabolites across brain sections sampled immediately after ostensibly experiencing cooperation or defection from social partners whilst inspecting a predator model, using a familiar object as a control condition. Our results indicate dopaminergic and serotonergic activity differs with the cooperativeness experienced; these different neurotransmission profiles are likely to affect the expression and regulation of downstream behaviours that ultimately contribute to the patterning of cooperative interactions among individuals in a population.


Asunto(s)
Poecilia , Animales , Encéfalo , Conducta Cooperativa , Dopamina , Femenino , Humanos , Poecilia/fisiología , Serotonina
19.
J Evol Biol ; 35(11): 1414-1431, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36098479

RESUMEN

Examples of parallel evolution have been crucial for our understanding of adaptation via natural selection. However, strong parallelism is not always observed even in seemingly similar environments where natural selection is expected to favour similar phenotypes. Leveraging this variation in parallelism within well-researched study systems can provide insight into the factors that contribute to variation in adaptive responses. Here we analyse the results of 36 studies reporting 446 average trait values in Trinidadian guppies, Poecilia reticulata, from different predation regimes. We examine how the extent of predator-driven phenotypic parallelism is influenced by six factors: sex, trait type, rearing environment, ecological complexity, evolutionary history, and time since colonization. Analyses show that parallel evolution in guppies is highly variable and weak on average, with only 24.7% of the variation among populations being explained by predation regime. Levels of parallelism appeared to be especially weak for colour traits, and parallelism decreased with increasing complexity of evolutionary history (i.e., when estimates of parallelism from populations within a single drainage were compared to estimates of parallelism from populations pooled between two major drainages). Suggestive - but not significant - trends that warrant further research include interactions between the sexes and different trait categories. Quantifying and accounting for these and other sources of variation among evolutionary 'replicates' can be leveraged to better understand the extent to which seemingly similar environments drive parallel and nonparallel aspects of phenotypic divergence.


Asunto(s)
Poecilia , Animales , Poecilia/fisiología , Evolución Biológica , Conducta Predatoria , Adaptación Fisiológica/genética , Selección Genética
20.
Biol Lett ; 18(8): 20220167, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35975629

RESUMEN

While the link between the gut microbiome and host behaviour is well established, how the microbiomes of other organs correlate with behaviour remains unclear. Additionally, behaviour-microbiome correlations are likely sex-specific because of sex differences in behaviour and physiology, but this is rarely tested. Here, we tested whether the skin microbiome of the Trinidadian guppy, Poecilia reticulata, predicts fish activity level and shoaling tendency in a sex-specific manner. High-throughput sequencing revealed that the bacterial community richness on the skin (Faith's phylogenetic diversity) was correlated with both behaviours differently between males and females. Females with richer skin-associated bacterial communities spent less time actively swimming. Activity level was significantly correlated with community membership (unweighted UniFrac), with the relative abundances of 16 bacterial taxa significantly negatively correlated with activity level. We found no association between skin microbiome and behaviours among male fish. This sex-specific relationship between the skin microbiome and host behaviour may indicate sex-specific physiological interactions with the skin microbiome. More broadly, sex specificity in host-microbiome interactions could give insight into the forces shaping the microbiome and its role in the evolutionary ecology of the host.


Asunto(s)
Microbioma Gastrointestinal , Poecilia , Animales , Bacterias/genética , Evolución Biológica , Femenino , Masculino , Filogenia , Poecilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...