Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2025): 20240412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889788

RESUMEN

Regulating transcription allows organisms to respond to their environment, both within a single generation (plasticity) and across generations (adaptation). We examined transcriptional differences in gill tissues of fishes in the Poecilia mexicana species complex (family Poeciliidae), which have colonized toxic springs rich in hydrogen sulfide (H2S) in southern Mexico. There are gene expression differences between sulfidic and non-sulfidic populations, yet regulatory mechanisms mediating this gene expression variation remain poorly studied. We combined capped-small RNA sequencing (csRNA-seq), which captures actively transcribed (i.e. nascent) transcripts, and messenger RNA sequencing (mRNA-seq) to examine how variation in transcription, enhancer activity, and associated transcription factor binding sites may facilitate adaptation to extreme environments. csRNA-seq revealed thousands of differentially initiated transcripts between sulfidic and non-sulfidic populations, many of which are involved in H2S detoxification and response. Analyses of transcription factor binding sites in promoter and putative enhancer csRNA-seq peaks identified a suite of transcription factors likely involved in regulating H2S-specific shifts in gene expression, including several key transcription factors known to respond to hypoxia. Our findings uncover a complex interplay of regulatory processes that reflect the divergence of extremophile populations of P. mexicana from their non-sulfidic ancestors and suggest shared responses among evolutionarily independent lineages.


Asunto(s)
Sulfuro de Hidrógeno , Poecilia , Animales , Sulfuro de Hidrógeno/metabolismo , Poecilia/genética , Poecilia/fisiología , Poecilia/metabolismo , Extremófilos/metabolismo , Extremófilos/fisiología , Extremófilos/genética , Transcripción Genética , México , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Branquias/metabolismo
2.
Int J Biol Macromol ; 241: 124518, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37088189

RESUMEN

Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE2 in inducing the onset of courtship behaviors. Our results showed that adding PGE2 into the water environment could activate the courtship behavior of male guppy, indicating that the peripheral olfactory system mediated the PGE2 function. Thereafter, the open reading frame (ORF) of olfactory receptor or52n2 was cloned, which was 936 bp in length, coding 311 amino acids. As a typical G protein-coupled receptor, OR52N2 had a conservative seven α-helix transmembrane domains. To confirm the regulatory relationship between OR52N2 and PGE2, dual-luciferase reporter assay was employed to verify the activation of downstream CREB signaling pathways. Results showed that PGE2 significantly enhanced CRE promoter activity in or52n2 ORF transient transfected HEK-293 T cells. Finally, localization of or52n2 mRNA were observed in ciliated receptor cells of the olfactory epithelium using in situ hybridization. Our results provide a novel insight into sex pheromone signaling transduction in reproductive behavior.


Asunto(s)
Poecilia , Receptores Odorantes , Atractivos Sexuales , Humanos , Animales , Masculino , Receptores Odorantes/metabolismo , Poecilia/metabolismo , Dinoprostona , Cortejo , Células HEK293
3.
Artículo en Inglés | MEDLINE | ID: mdl-36563950

RESUMEN

Ammonia is one of the most important aquatic environmental factors, which is of great concern. In order to evaluate the effect of ammonia on guppy (Poecilia reticulate), fish were exposed to increased concentrations (0, 12.50, 25.00, 41.67, 62.50 mg/L) of ammonia for 48 h. After exposure, we measured the anxiety behavior, antioxidant enzymes and pro-inflammation genes (TNF-α, IL-1ß and IL-6) of guppy. The results showed that ammonia stress induced fish anxiety, which was manifested by the increased latency to enter the upper half and decreased time spent in upper half compared with control fish. The guppy showed oxidative stress after 48 h of ammonia stress as evidenced by decreases in the activities of antioxidant enzymes and an increase in lipid hydroperoxide content. With prolonged ammonia stress, the expressions of HSP70, HSP90, TNF-α, IL-1ß and IL-6 mRNA at first had an increasing trend, and then decreased, all of which were significantly higher than the control levels at 12 h and 24 h after ammonia stress (P < 0.05). Ammonia significantly upregulated these genes mRNA levels after 48 h exposure, suggesting that heat shock proteins and innate immune system may try to protect cells from oxidative stress induced by ammonia stress. Our study showed that higher ammonia exposure induced oxidative stress in exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, and inflammation occurred. Furthermore, the results will be helpful to understand the mechanism of ammonia toxicity in guppys.


Asunto(s)
Antioxidantes , Poecilia , Animales , Antioxidantes/metabolismo , Poecilia/metabolismo , Amoníaco/toxicidad , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Estrés Oxidativo , Inflamación/inducido químicamente , Ansiedad/inducido químicamente , ARN Mensajero/metabolismo
4.
Chemosphere ; 308(Pt 3): 136565, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152831

RESUMEN

4-n-Nonylphenol (NP) is one of the most toxic alkylphenols found in the environment. To evaluate the transcriptional effects of NP in the viviparous fish Poecilia vivipara, a hepatic transcriptome and qPCR analysis of genes were carried out. Guppies separated by sex were injected with two doses of NP (15 µg/g and 150 µg/g) or peanut oil (control). After 24 h, analysis of transcriptional level of Aryl Hydrocarbon Receptor (AhR), Estrogen Nuclear Receptor Alpha (ESR1), Pregnane X Receptor (PXR), Cytochromes P450 (CYP1A, CYP2K1 and CYP3A30), Glutathione S-transferase A3 and Mu 3 (GSTa3 and GSTMu3), SRY-Box Transcription Factor 9 (SOX9), Vitellogenin-1 (VIT), ATP Binding Cassette Subfamily C Member 1 (ABCC1), Multidrug Resistance-Associated Protein 2 (MRP2) and UDP Glucuronosyltransferase Family 1 Member A1 (UGT1A1) was evaluated. 205,046 transcripts were assembled and protein prediction resulted in 203,147 predicted peptides. In females, no significant changes were detected in the transcription of some phase I biotransformation and ABC transporter genes. AhR, PXR, GSTa3 and SOX9 genes where higher in the lower dose group (15 µg/g) compared to control. In male fish, no changes were observed in the transcript levels of the nuclear receptors, in endocrine disruption and phase I biotransformation genes. GSTa3 showed lower transcription in fish treated with both doses. ABCC1 was higher in guppies treated with the lower dose while MRP2 showed less transcripts. This short-term and low-dose exposure to NP caused changes that could serve as early indicators of deleterious processes. These results indicate P. vivipara as a good sentinel in biomonitoring programs.


Asunto(s)
Poecilia , Adenosina Trifosfato/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Glucuronosiltransferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Masculino , Aceite de Cacahuete/metabolismo , Aceite de Cacahuete/farmacología , Fenoles , Poecilia/genética , Poecilia/metabolismo , Receptor X de Pregnano/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Estrógenos/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
5.
Aquat Toxicol ; 245: 106104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35176694

RESUMEN

There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.


Asunto(s)
COVID-19 , Poecilia , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Animales , Catalasa/metabolismo , Ecosistema , Humanos , Peróxido de Hidrógeno , Simulación del Acoplamiento Molecular , Pandemias , Poecilia/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
6.
Mar Biotechnol (NY) ; 23(4): 615-627, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34426939

RESUMEN

Guppy (Poecilia reticulata) can adapt to a wide range of salinity changes. To investigate the gene expression changes in the guppy exposed to seawater, we characterized its gill transcriptome using RNA sequencing. Experimental fish were exposed to salinity increase from 0 to 30‰ within 4 days, while control fish were cultured in freshwater (0‰ salinity). Seven days after salinity exposure, the gills were sampled and the mortality within 2 weeks was recorded. No significant difference in the cumulative mortality at the second week was found between the two groups. Transcriptomic analysis identified 3477 differentially expressed genes (DEGs), including 1067 upregulated and 2410 downregulated genes. These DEGs were enriched in several biological processes, including ion transport, ion homeostasis, ATP biosynthetic process, metabolic process, and immune system process. Oxidative phosphorylation was the most activated pathway. DEGs involved in the pathway "endoplasmic reticulum (ER)-mediated phagocytosis," "starch and sucrose metabolism," and "steroid biosynthesis" were mainly downregulated; chemokines and interleukins involved in "cytokine-cytokine receptor interaction" were differentially expressed. The present results suggested that oxidative phosphorylation had essential roles in osmoregulation in the gills of seawater acclimated guppy, during which the decline in the expression of genes encoding V-ATPases and calreticulin had a negative effect on the phagocytosis and immune response. Besides, several metabolic processes including "starch and sucrose metabolism" and "steroid biosynthesis" were affected. This study elucidates transcriptomic changes in osmotic regulation, metabolism, and immunity in seawater acclimated guppy.


Asunto(s)
Aclimatación/fisiología , Poecilia/metabolismo , Salinidad , Animales , Femenino , Perfilación de la Expresión Génica , Branquias/metabolismo , Masculino , Osmorregulación/genética , Fosforilación Oxidativa , Poecilia/genética , Poecilia/inmunología , Agua de Mar , Equilibrio Hidroelectrolítico
7.
Sci Rep ; 11(1): 3985, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597600

RESUMEN

Evidence is emerging that paternal effects, the nongenetic influence of fathers on their offspring, can be transgenerational, spanning several generations. Methylphenidate hydrochloride (MPH; e.g. Ritalin) is a dopaminergic drug that is highly prescribed to adolescent males for the treatment of Attention-deficit/hyperactivity disorder. It has been suggested that MPH could cause transgenerational effects because MPH can affect the male germline in rodents and because paternal effects have been observed in individuals taking similar drugs (e.g. cocaine). Despite these concerns, the transgenerational effects of paternal MPH exposure are unknown. Therefore, we exposed male and female Trinidadian guppies (Poecilia reticulata) to a low, chronic dose of MPH and observed that MPH affected the anxiety/exploratory behaviour of males, but not females. Because of this male-specific effect, we investigated the transgenerational effects of MPH through the paternal line. We observed behavioural effects of paternal MPH exposure on offspring and great-grandoffspring that were not directly administered the drug, making this the first study to demonstrate that paternal MPH exposure can affect descendants. These effects were not due to differential mortality or fecundity between control and MPH lines. These results highlight the transgenerational potential of MPH.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Metilfenidato/efectos adversos , Exposición Paterna/efectos adversos , Animales , Ansiedad , Cocaína/efectos adversos , Epigenómica , Conducta Exploratoria/efectos de los fármacos , Femenino , Humanos , Masculino , Modelos Animales , Poecilia/metabolismo , Roedores , Factores Sexuales
8.
Genes Brain Behav ; 20(3): e12697, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32875689

RESUMEN

Understanding the basis of behavior requires dissecting the complex waves of gene expression that underlie how the brain processes stimuli and produces an appropriate response. In order to determine the dynamic nature of the neurogenomic network underlying mate choice, we use transcriptome sequencing to capture the female neurogenomic response in two brain regions involved in sensory processing and decision-making under different mating and social contexts. We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are rewired when a female evaluates attractive and nonattractive males, greatly extending current single-gene approaches to assess changes in the broader gene regulatory network. We find the brain experiences a remarkable amount of network rewiring in the different mating and social contexts we tested. Further analysis indicates the network differences across contexts are associated with behaviorally relevant functions and pathways, particularly learning, memory and other cognitive functions. Finally, we identify the loci that display social context-dependent connections, revealing the basis of how relevant neurological and metabolic pathways are differentially recruited in distinct social contexts. More broadly, our findings contribute to our understanding of the genetics of mating and social behavior by identifying gene drivers behind behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.


Asunto(s)
Encéfalo/metabolismo , Redes Reguladoras de Genes , Poecilia/metabolismo , Conducta Sexual Animal , Animales , Femenino , Masculino , Memoria , Poecilia/fisiología , Conducta Social , Transcriptoma
9.
J Evol Biol ; 34(6): 977-988, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33124163

RESUMEN

microRNAs (miRNAs) are post-transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression in Poecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2 S). We found that P. mexicana has a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute to P. mexicana adaptation to sulphidic environments. In silico identification of differentially expressed miRNA-mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2 S-rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2 S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2 S adaptation by promoting functions needed for survival and reducing functions affected by H2 S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2 S. Overall, this study provides a critical stepping-stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.


Asunto(s)
Adaptación Biológica , Branquias/metabolismo , Sulfuro de Hidrógeno , MicroARNs/metabolismo , Poecilia/metabolismo , Animales , Evolución Biológica , Femenino , Regulación de la Expresión Génica , Masculino , MicroARNs/genética , Poecilia/genética
10.
Chemosphere ; 253: 126631, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32302917

RESUMEN

We have previously demonstrated in a companion work that acclimation to 28 °C potentiated waterborne copper (Cu) toxic effects in Poecilia vivipara through oxidative stress-related processes. In the present study, we hypothesized that these results were related to kinetic metabolic adjustments in enzymes from aerobic and anaerobic pathways. To test this, P. vivipara was acclimated to two temperatures (22 °C or 28 °C) for three weeks and then exposed to Cu (control, 9 or 20 µg/L) for 96 h. The activity of enzymes from glycolysis (pyruvate kinase [PK] and lactate dehydrogenase [LDH]), Krebs cycle (citrate synthase [CS]) and the electron transport chain system (ETS) were assessed in gills, liver and muscle. Interactive effects were only seen for hepatic LDH activity, as both metal exposure and heat stress, combined or not, inhibited this enzyme, showing a suppression in anaerobic pathways. Conversely, a Cu main effect was present in the liver, expressed as an elevation in ETS activity, showing an enhancement in hepatic aerobic metabolism likely related with the very energy-demanding process of metal detoxification. Moreover, this study shows that P. vivipara has a remarkable ability to compensate heat stress in terms of energy metabolism, as we could not observe acclimation temperature effects for most of the cases. Nonetheless, a tissue-dependent effect of elevated temperature was observed, as we could observe an inhibition in muscular CS activity. Finally, it is concluded that kinetic adjustments in terms of the energy metabolism are not related with the temperature-dependent elevation of Cu toxicity in P. vivipara as we previously hypothesized.


Asunto(s)
Cobre/toxicidad , Metabolismo Energético/fisiología , Poecilia/fisiología , Temperatura , Contaminantes Químicos del Agua/toxicidad , Aclimatación/efectos de los fármacos , Animales , Ciclo del Ácido Cítrico , Metabolismo Energético/efectos de los fármacos , Fundulidae/metabolismo , Branquias/metabolismo , Glucólisis , L-Lactato Deshidrogenasa/metabolismo , Hígado/metabolismo , Metales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poecilia/metabolismo , Piruvato Quinasa/metabolismo
11.
J Evol Biol ; 33(6): 751-761, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32150779

RESUMEN

The tight connection between immunity and reproduction has been studied for decades. However, basic knowledge at the molecular level of the effect of mating on immune function is still lacking in many taxa. Determining whether and how the immune system is engaged after mating is a crucial step in understanding post-mating mechanisms of reproduction and sexual selection. Here, we study the transcriptional changes in immunity-related genes caused by the ejaculate in the female reproductive tract using a model species for sexual selection studies, the guppy Poecilia reticulata. To study changes triggered by the ejaculate only, rather than caused by mating, we used artificial inseminations to transfer ejaculate into females. We then compared gene expression in the reproductive tract (gonoduct and ovary) of females artificially inseminated either with ejaculate or with a control solution, after 1 hr and after 6 hr. Overall, contact with ejaculate caused short-term changes in the expression of immune-related genes in the female reproductive tract, with a complex pattern of up- and down-regulation of immune-related pathways, but with clear indication of a marked down-regulation of the immune system shortly after ejaculate contact. This suggests a link between immune function and processes occurring between mating and fertilization in this species.


Asunto(s)
Copulación , Poecilia/inmunología , Animales , Femenino , Perfilación de la Expresión Génica , Genitales Femeninos/inmunología , Genitales Femeninos/metabolismo , Inseminación Artificial , Masculino , Poecilia/metabolismo
12.
Ecotoxicol Environ Saf ; 188: 109847, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31732268

RESUMEN

Chlorothalonil is a fungicide present in antifouling paints and other formulations used in agriculture, although studies have shown this chemical to be toxic to fish species. To clarify the deleterious effects of chlorothalonil for these non-target organisms, the present study evaluated the toxic effects of this biocide for the estuarine guppy Poecilia vivipara in terms of an acute mortality test (96 h) and the analysis of biomarkers of oxidative stress, genotoxicity, and sperm quality. The LC50 calculated for P. vivipara was 40.8 µg/L of chlorothalonil. For the analysis of biomarkers, fish were exposed (96 h) to 1 and 10 µg/L of chlorothalonil. It was observed that chlorothalonil alters the levels of pro- and antioxidants towards oxidative stress. In the gills, a negative effect on total antioxidant capacity (ACAP) was detected, while there was a reduction in the activity of glutathione S-transferase (GST) in the liver. However, levels of glutathione (GSH) and the activity and glutamate-cysteine-ligase (GCL) increased in both tissues, as a possible detoxification response. Following chlorothalonil exposure, oxidative damage measured by lipoperoxidation (LPO) significantly increased at the cellular level only (red blood cells (RBCs) and sperm cells). An increase in fluidity of membranes, reactive oxygen species concentration and micronuclei (MNs) incidence were also seen in RBCs. In sperm cells, LPO increased, while membrane and mitochondrial functionality as well as sperm motility decreased. Based on these results, chlorothalonil can be considered as a toxic compound for fish, causing genotoxicity and affecting the RBCs physiology and the fertility of males of P. vivipara.


Asunto(s)
Biomarcadores/análisis , Nitrilos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Poecilia/fisiología , Espermatozoides/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Daño del ADN , Desinfectantes/toxicidad , Fungicidas Industriales/toxicidad , Dosificación Letal Mediana , Masculino , Poecilia/metabolismo , Espermatozoides/fisiología
13.
Ecotoxicol Environ Saf ; 182: 109411, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31299475

RESUMEN

The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.


Asunto(s)
Monitoreo del Ambiente/métodos , Hígado/efectos de los fármacos , Poecilia/genética , Aguas del Alcantarillado/química , Transcripción Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biotransformación , Estuarios , Hígado/metabolismo , Modelos Teóricos , Poecilia/metabolismo , Contaminantes Químicos del Agua/metabolismo , Xenobióticos/metabolismo
14.
Chemosphere ; 227: 580-588, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31009864

RESUMEN

Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 µg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 µg/L groups, respectively. Animals exposed to 5 and 9 µg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 µg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 µg/L) and III (5 and 9 µg/L), and up-regulated hepatic atp5a1 (9 µg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.


Asunto(s)
Cobre/toxicidad , Metabolismo Energético/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Branquias/efectos de los fármacos , Branquias/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poecilia/metabolismo , Piruvato Quinasa/metabolismo , Pruebas de Toxicidad Crónica
15.
Proc Natl Acad Sci U S A ; 116(14): 6924-6931, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894479

RESUMEN

It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.


Asunto(s)
Mapeo Cromosómico , Cromosomas , Poecilia , Polimorfismo Genético , Procesos de Determinación del Sexo , Pigmentación de la Piel/fisiología , Animales , Cromosomas/genética , Cromosomas/metabolismo , Femenino , Masculino , Poecilia/genética , Poecilia/metabolismo
16.
Chemosphere ; 223: 257-262, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784733

RESUMEN

The involvement of transporting proteins on copper (Cu) bioaccumulation was evaluated in the killifish Poecilia vivipara chronically exposed to environmentally relevant concentrations of waterborne Cu. Fish (<24 h-old) were maintained under control condition or exposed to different waterborne Cu concentrations (5, 9 and 20 µg/L) for 28 and 345 days in saltwater. Following exposure periods, Cu accumulation and the expression of genes encoding for the high affinity Cu-transporter (ctr1) and the P-type Cu-ATPase (atp7b) were evaluated. Whole-body metal accumulation and gene expression were evaluated in fish exposed to 28 days. Similarly, in fish exposed to 345 days, liver, gills and gut were also evaluated. No fish survival was observed after exposure to 20 µg/L for 345 days. Whole-body Cu accumulation was significantly higher in fish exposed to 20 µg/L Cu for 28 days and in fish exposed to 9 µg/L for 345 days in comparison to control animals. Similarly, tissue Cu accumulation was significantly higher in fish exposed to 9 µg/L for 345 days in comparison to control animal. However, no significant accumulation was observed in fish muscle. Following exposure for 28 days, whole-body ctr1 expression was slightly induced in fish exposed to 9 µg/L. In turn, no significant change in ctr1 expression was observed following exposure to Cu for 345 days. Differently, whole-body atp7b expression was markedly up-regulated in the whole-body of fish exposed Cu for 28 days and in tissues of fish exposed to Cu for 345 days. These findings indicate the expression of atp7b is more responsive to Cu accumulation in P. vivipara than ctr1 expression and, therefore, more suitable to be used as a biomarker of exposure to this metal. Also, we argue that the expression of atp7b is sustained at elevated levels for as much time as fish are maintained in Cu contaminated water.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cobre/farmacología , Metales/metabolismo , Poecilia/metabolismo , Animales , Fundulidae , Regulación de la Expresión Génica , Distribución Tisular , Contaminantes Químicos del Agua/farmacología
17.
Ecotoxicol Environ Saf ; 169: 76-84, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30423510

RESUMEN

The impacts of triphenyltin (TPT) on ecological health have been of great concern due to their widespread use and ubiquity in aquatic ecosystems. However, little is known about the effects of TPT on the reproductive behaviors of fishes. Therefore, the present study was conducted to investigate the effects of TPT at environmentally relevant concentrations (0, 1 and 10 ng Sn/L) on the mating behaviors and the attractiveness to females during mating in male guppies (Poecilia reticulata). The results showed that TPT exposure disturbed the mating behaviors; the TPT-exposed male fish performed more sneaking attempts, but no changes in sigmoid courtship were displayed. The increases in sneaking attempts might be related to increases in testosterone levels induced by TPT exposure. In the context of a competing male, the TPT-exposed males were less attractive to females during mating. The decreases in attractiveness might be related to decreases in carotenoid-based coloration, shown as decreases in caudal fin redness values and skin carotenoid contents. In addition, TPT-induced total antioxidant capacities, the activities of superoxide dismutase and catalase, and the contents of malondialdehyde in liver and intestinal tissues indicated increases in oxidative stress. Both oxidative stress and coloration are linked to carotenoids. Thus, we speculated that the TPT-exposed males might use carotenoids to cope with increases in oxidative stress at the expense of carotenoid-based coloration. The disruption of mating behaviors and the decrease in attractiveness to females in male fish could result in reproductive failure. The present study underscores the importance of using behavioral tests as a sensitive tool in assessing the impact of pollutants present in aquatic environments.


Asunto(s)
Compuestos Orgánicos de Estaño/toxicidad , Conducta Sexual Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Carotenoides/metabolismo , Femenino , Masculino , Poecilia/metabolismo , Poecilia/fisiología , Reproducción/efectos de los fármacos
18.
Genome Biol Evol ; 10(11): 2867-2881, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215710

RESUMEN

The colonization of novel environments often involves changes in gene expression, protein coding sequence, or both. Studies of how populations adapt to novel conditions, however, often focus on only one of these two processes, potentially missing out on the relative importance of different parts of the evolutionary process. In this study, our objectives were 1) to better understand the qualitative concordance between conclusions drawn from analyses of differential expression and changes in genic sequence and 2) to quantitatively test whether differentially expressed genes were enriched for sites putatively under positive selection within gene regions. To achieve this, we compared populations of fish (Poecilia mexicana) that have independently adapted to hydrogen-sulfide-rich environments in southern Mexico to adjacent populations residing in nonsulfidic waters. Specifically, we used RNA-sequencing data to compare both gene expression and DNA sequence differences between populations. Analyzing these two different data types led to similar conclusions about which biochemical pathways (sulfide detoxification and cellular respiration) were involved in adaptation to sulfidic environments. Additionally, we found a greater overlap between genes putatively under selection and differentially expressed genes than expected by chance. We conclude that considering both differential expression and changes in DNA sequence led to a more comprehensive understanding of how these populations adapted to extreme environmental conditions. Our results imply that changes in both gene expression and DNA sequence-sometimes at the same loci-may be involved in adaptation.


Asunto(s)
Adaptación Biológica , Sulfuro de Hidrógeno , Poecilia/metabolismo , Selección Genética , Transcriptoma , Animales , Ecosistema , Ontología de Genes , México , Polimorfismo de Nucleótido Simple
19.
Ecotoxicol Environ Saf ; 163: 37-46, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30031943

RESUMEN

Variation in pH (acidification) and salinity conditions have severe impact at different levels of biological organization in fish. Present study focused to assess the effects of acidification and salinity changes on physiological stress responses at three different levels of function: i) hormonal and oxidative response, ii) osmoregulation and iii) reproduction, in order to identify relevant biomarkers. Second objective of the study was to evaluate the efficacy of plant (Mucuna pruriens) extract for alleviating pH and salinity related stress. Guppies (Poecilia reticulata) were exposed to different pH (6.0, 5.5, 5.0) and salinity (1.5, 3.0, 4.5 ppt) for 7, 14 and 21 days. Following exposure to stress for respective duration, fish were fed diet containing methanol extract of Mucuna seeds (dose 0.80 gm/kg feed) for 7, 14 and 21 days to measure their possible recovery response. Stress hormone (cortisol), hepatic oxidative stress parameters [superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GRd), glutathione peroxidise (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), glutathione (GSH)], gill osmoregulatory response (Na+-K+ATPase activity), sex steroid profiles and mating behaviours (gonopodial thrust and gestation period) were estimated. Cortisol and MDA levels increased with dose and duration of acid and salinity stress, and cortisol levels were higher in males than in females. Effect on Na+-K+ATPase activity was more intense by salinity stress rather than pH induced stress. Both acid and salinity stress reduced sex steroid levels, and mating response was highly affected by both stresses in a dose- and duration-dependent manner. Mucuna treatment reduced stress-induced alteration of cortisol, MDA, Na+-K+ATPase activity and reproductive parameters. Dietary administration of Mucuna seed extract decreased the intensity of environmental stressors at all three functional levels. Mucuna treatment was more effective against salinity stress than acid stress. Thus, cortisol, oxidative stress marker MDA and Na+-K+ATPase could be effective indicators for acid and salinity stress in wild and domestic fish populations. Dietary administration of Mucuna extract may limit the detrimental effects of acidification and salinity variations that are the inevitable outcomes expected under global climate change conditions.


Asunto(s)
Mucuna , Presión Osmótica , Extractos Vegetales/farmacología , Poecilia/fisiología , Salinidad , Estrés Fisiológico/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Catalasa/metabolismo , Femenino , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Hidrocortisona/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poecilia/metabolismo , Semillas , Conducta Sexual Animal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismo
20.
Environ Sci Pollut Res Int ; 25(25): 25036-25044, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29934832

RESUMEN

Guppy (Poecilia reticulata) is a promising model organism in toxicological studies, and vitellogenin (Vtg) is a commonly used biomarker for environmental estrogens. Although an ELISA for guppy Vtg has been developed previously, we found that guppy had two forms of Vtgs. In this study, two Vtgs were characterized and enzyme-linked immunosorbent assays (ELISAs) for each Vtg were developed. Two Vtgs purified from 17ß-estradiol (E2)-exposed guppy were characterized as phospholipoglycoproteins with molecular weights of ~ 520 and ~ 480 kDa, respectively. In SDS-PAGE, one purified Vtg appeared as three major bands of ~ 210, ~ 126, and ~ 102 kDa, and the other revealed a clear band of ~ 68 kDa. Matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry analysis showed that they were VtgAb and VtgC. Using purified Vtgs and their corresponding antibodies, two sandwich ELISAs with working ranges of 7.8~1000 and 15.6~500 ng/mL were developed. Precision tests showed that intra- and inter-assay coefficients of variations of both ELISAs were below 10%. Parallelism between Vtg standard curves and serial dilutions of whole body homogenate from E2-exposed guppy confirmed that two ELISAs could quantify guppy Vtgs. Furthermore, two ELISAs were used to measure Vtg inductions in liver, caudal fin and whole body of male guppy exposed to 17a-ethinylestradiol to validate their use for detecting estrogenic effects of exogenous chemicals. These homologous Vtg ELISAs will promote the use of guppy as a model organism to study estrogenic chemicals.


Asunto(s)
Monitoreo del Ambiente/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Poecilia/metabolismo , Vitelogeninas/metabolismo , Animales , Anticuerpos , Biomarcadores , Electroforesis en Gel de Poliacrilamida , Estradiol , Estrógenos , Etinilestradiol , Masculino , Vitelogeninas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...