Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.040
Filtrar
1.
Mikrochim Acta ; 191(6): 313, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717608

RESUMEN

Copper levels in biological fluids are associated with Wilson's, Alzheimer's, Menke's, and Parkinson's diseases, making them good biochemical markers for these diseases. This study introduces a miniaturized screen-printed electrode (SPE) for the potentiometric determination of copper(II) in some biological fluids. Manganese(III) oxide nanoparticles (Mn2O3-NPs), dispersed in Nafion, are drop-casted onto a graphite/PET substrate, serving as the ion-to-electron transducer material. The solid-contact material is then covered by a selective polyvinyl chloride (PVC) membrane incorporated with 18-crown-6 as a neutral ion carrier for the selective determination of copper(II) ions. The proposed electrode exhibits a Nernstian response with a slope of 30.2 ± 0.3 mV/decade (R2 = 0.999) over the linear concentration range 5.2 × 10-9 - 6.2 × 10-3 mol/l and a detection limit of 1.1 × 10-9 mol/l (69.9 ng/l). Short-term potential stability is evaluated using constant current chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS). A significant improvement in the electrode capacitance (91.5 µF) is displayed due to the use of Mn2O3-NPs as a solid contact. The presence of Nafion, with its high hydrophobicity properties, eliminates the formation of the thin water layer, facilitating the ion-to-electron transduction between the sensing membrane and the conducting substrate. Additionally, it enhances the adhesion of the polymeric sensing membrane to the solid-contact material, preventing membrane delamination and increasing the electrode's lifespan. The high selectivity, sensitivity, and potential stability of the proposed miniaturized electrode suggests its use for the determination of copper(II) ions in human blood serum and milk samples. The results obtained agree fairly well with data obtained by flameless atomic absorption spectrometry.


Asunto(s)
Cobre , Éteres Corona , Electrodos , Polímeros de Fluorocarbono , Límite de Detección , Compuestos de Manganeso , Óxidos , Potenciometría , Cobre/química , Polímeros de Fluorocarbono/química , Óxidos/química , Compuestos de Manganeso/química , Humanos , Potenciometría/instrumentación , Potenciometría/métodos , Éteres Corona/química , Grafito/química
2.
Water Environ Res ; 96(5): e11018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712584

RESUMEN

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Asunto(s)
Colorantes , Polímeros de Fluorocarbono , Membranas Artificiales , Ultrafiltración , Contaminantes Químicos del Agua , Purificación del Agua , Ultrafiltración/métodos , Colorantes/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Plásticos/química , Eliminación de Residuos Líquidos/métodos , Polivinilos/química , Permeabilidad
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732199

RESUMEN

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Asunto(s)
Nanofibras , Polivinilos , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Polivinilos/química , Humanos , Andamios del Tejido/química , Nanofibras/química , Materiales Biocompatibles/química , Células Cultivadas , Espectroscopía Infrarroja por Transformada de Fourier , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/metabolismo , Peso Molecular , Polímeros de Fluorocarbono
4.
Langenbecks Arch Surg ; 409(1): 136, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652308

RESUMEN

INTRODUCTION: Prophylactic meshes in high-risk patients prevent incisional hernias, although there are still some concerns about the best layer to place them in, the type of fixation, the mesh material, the significance of the level of contamination, and surgical complications. We aimed to provide answers to these questions and information about how the implanted material behaves based on its visibility under magnetic resonance imaging (MRI). METHOD: This is a prospective multicentre observational cohort study. Preliminary results from the first 3 months are presented. We included general surgical patients who had at least two risk factors for developing an incisional hernia. Multivariate logistic regression was used. A polyvinylidene fluoride (PVDF) mesh loaded with iron particles was used in an onlay position. MRIs were performed 6 weeks after treatment. RESULTS: Between July 2016 and June 2022, 185 patients were enrolled in the study. Surgery was emergent in 30.3% of cases, contaminated in 10.7% and dirty in 11.8%. A total of 5.6% of cases had postoperative wound infections, with the requirement of stoma being the only significant risk factor (OR = 7.59, p = 0.03). The formation of a seroma at 6 weeks detected by MRI, was associated with body mass index (OR = 1.13, p = 0.02). CONCLUSIONS: The prophylactic use of onlay PVDF mesh in midline laparotomies in high-risk patients was safe and effective in the short term, regardless of the type of surgery or the level of contamination. MRI allowed us to detect asymptomatic seromas during the early process of integration. STUDY REGISTRATION:  This protocol was registered at ClinicalTrials.gov (NCT03105895).


Asunto(s)
Polímeros de Fluorocarbono , Hernia Incisional , Imagen por Resonancia Magnética , Polivinilos , Mallas Quirúrgicas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hernia Incisional/prevención & control , Estudios Prospectivos , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven , Anciano de 80 o más Años
5.
J Chromatogr A ; 1725: 464909, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688052

RESUMEN

Membrane technology has revolutionized various fields with its energy efficiency, versatility, user-friendliness, and adaptability. This study introduces a microfluidic chip, comprised of silicone rubber and polymethylmethacrylate (PMMA) sheets to explore the impacts of polymeric support morphology on electro-membrane extraction efficiency, representing a pioneering exploration in this field. In this research, three polyvinylidenefluoride (PVDF) membranes with distinct pore sizes were fabricated and their characteristics were assessed through field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). This investigation centers on the extraction of three widely prescribed non-steroidal anti-inflammatory drugs: aspirin (ASA), naproxen (NAP), and ibuprofen (IBU). Quantitative parameters in the extraction process including voltage, donor phase flow rate, and acceptor phase composition were optimized, considering the type of membrane as a qualitative factor. To assess the performance of the fabricated PVDF membranes, a comparative analysis with a commercially available Polypropylene (PP) membrane was conducted. Efficient enrichment factors of 30.86, 23.15, and 21.06 were attained for ASA, NAP, and IBU, respectively, from urine samples under optimal conditions using the optimum PVDF membrane. Significantly, the choice of the ideal membrane amplified the purification levels of ASA, NAP, and IBU by factors of 1.6, 7.5, and 40, respectively.


Asunto(s)
Ibuprofeno , Membranas Artificiales , Polivinilos , Polivinilos/química , Ibuprofeno/aislamiento & purificación , Ibuprofeno/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/química , Humanos , Naproxeno/aislamiento & purificación , Naproxeno/química , Aspirina/química , Aspirina/aislamiento & purificación , Técnicas Analíticas Microfluídicas , Límite de Detección , Polímeros de Fluorocarbono
6.
ACS Biomater Sci Eng ; 10(5): 2805-2826, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38621173

RESUMEN

Tissue engineering involves implanting grafts into damaged tissue sites to guide and stimulate the formation of new tissue, which is an important strategy in the field of tissue defect treatment. Scaffolds prepared in vitro meet this requirement and are able to provide a biochemical microenvironment for cell growth, adhesion, and tissue formation. Scaffolds made of piezoelectric materials can apply electrical stimulation to the tissue without an external power source, speeding up the tissue repair process. Among piezoelectric polymers, poly(vinylidene fluoride) (PVDF) and its copolymers have the largest piezoelectric coefficients and are widely used in biomedical fields, including implanted sensors, drug delivery, and tissue repair. This paper provides a comprehensive overview of PVDF and its copolymers and fillers for manufacturing scaffolds as well as the roles in improving piezoelectric output, bioactivity, and mechanical properties. Then, common fabrication methods are outlined such as 3D printing, electrospinning, solvent casting, and phase separation. In addition, the applications and mechanisms of scaffold-based PVDF in tissue engineering are introduced, such as bone, nerve, muscle, skin, and blood vessel. Finally, challenges, perspectives, and strategies of scaffold-based PVDF and its copolymers in the future are discussed.


Asunto(s)
Polivinilos , Ingeniería de Tejidos , Andamios del Tejido , Polivinilos/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Humanos , Impresión Tridimensional , Materiales Biocompatibles/química , Polímeros/química , Animales , Polímeros de Fluorocarbono
7.
Anal Chem ; 96(15): 5887-5896, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567874

RESUMEN

Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.


Asunto(s)
Biomimética , Polímeros de Fluorocarbono , Polivinilos , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Microcistinas/análisis , Toxinas Marinas
8.
Mikrochim Acta ; 191(4): 228, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558104

RESUMEN

A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 µg mL-1, boasting an exceptionally low limit of detection of 0.002 µg mL-1 and a limit of quantification of 0.10 µg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.


Asunto(s)
Carbono , Polímeros de Fluorocarbono , Perileno , Toluidinas , Carbono/química , Perileno/química , Electrodos
9.
Chemosphere ; 357: 142045, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641293

RESUMEN

Several new per- and polyfluoroalkyl substances (PFASs) have been synthesized to replace traditional (legacy) PFASs frequently without clear information on their structure, use and potential toxicity. Among them, chloroperfluoropolyether carboxylates (ClPFPECAs) are an emerging group used as processing aids in the production of fluoropolymers to replace the ammonium salt of perfluorononanoic acid (PFNA). The Solvay Company has produced ClPFPECAs as a mixture of six congeners (oligomers) since the mid-1990s, but other possible manufacturers and annual quantities synthesized and used worldwide are unknown. Initial studies to monitor their presence were conducted because of public authority concerns about suspect environmental contamination near fluoropolymer plants. As of 2015, these chemicals have been found in soil, water, vegetative tissues and wildlife, as well as in biological fluids of exposed workers and people, in research carried out mainly in the United States (New Jersey) and Italy. Analysis of wildlife collected even in non-industrialized areas demonstrated widespread occurrence of ClPFPECAs. From the analytical point of view, the (presumptive) evidence of their presence was obtained through the application of non-targeted approaches performed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Available toxicological data show that ClPFPECAs have similar adverse effects than the compounds which they have replaced, whereas their carcinogenic potential and reproductive damage are currently unknown. All these observations once again cast doubt on whether many alternatives to traditional PFAS are actually safer for the environment and health.


Asunto(s)
Ácidos Carboxílicos , Contaminantes Ambientales , Contaminantes Ambientales/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/toxicidad , Ácidos Carboxílicos/química , Humanos , Fluorocarburos/química , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Animales , Polímeros de Fluorocarbono/química , Polímeros de Fluorocarbono/toxicidad , Monitoreo del Ambiente
10.
Chemosphere ; 357: 142069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648986

RESUMEN

Focusing on the uncontrolled discharge of organic dyes, a known threat to human health and aquatic ecosystems, this work employs a dual-functional catalyst approach, by immobilizing a synthesized bismuth sulfur iodide (BiSI) into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymeric matrix for multifunctional water remediation. The resulting BiSI@PVDF nanocomposite membrane (NCM), with 20 wt% filler content, maintains a highly porous structure without compromising morphology or thermal properties. Demonstrating efficiency in natural pH conditions, the NCM removes nearly all Rhodamine B (RhB) within 1 h, using a combined sonophotocatalytic process. Langmuir and pseudo-second-order models describe the remediation process, achieving a maximum removal capacity (Qmax) of 72.2 mg/g. In addition, the combined sonophotocatalysis achieved a degradation rate ten and five times higher (0.026 min-1) than photocatalysis (0.002 min-1) and sonocatalysis (0.010 min-1). Furthermore, the NCM exhibits notable reusability over five cycles without efficiency losses and efficiencies always higher than 90%, highlighting its potential for real water matrices. The study underscores the suitability of BiSI@PVDF as a dual-functional catalyst for organic dye degradation, showcasing synergistic adsorption, photocatalysis, and sonocatalysis for water remediation.


Asunto(s)
Bismuto , Colorantes , Nanocompuestos , Polivinilos , Rodaminas , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Catálisis , Rodaminas/química , Bismuto/química , Colorantes/química , Purificación del Agua/métodos , Polivinilos/química , Polímeros de Fluorocarbono
11.
J Chromatogr A ; 1721: 464849, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38564930

RESUMEN

A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.


Asunto(s)
Polímeros de Fluorocarbono , Ácido Kaínico/análogos & derivados , Compuestos de Magnesio , Compuestos de Silicona , Extracción en Fase Sólida , Temperatura , Cromatografía Líquida de Alta Presión/métodos , Extracción en Fase Sólida/métodos , Adenosina Trifosfato
12.
Talanta ; 274: 126024, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583330

RESUMEN

The detection of transmissible gastroenteritis virus (TGEV) is of great significance to reduce the loss of pig industry. A LAMP-visualization/PFC self-powered dual-mode output sensor platform was constructed to detect TGEV by combining a simple and intuitive photoelectrochromic material with a highly sensitive PFC self-powered sensing platform without external power supply. The PFC sensing substrate was constructed using CdS nanoparticles modified ZnO NRs (CdS/ZnO NRs) as the photoanode, which exhibited high photoactivity, and Prussian blue (PB) as the cathode. After LAMP reaction on the optical anode, visual signals caused by PB discolorimetry can be detected semi-quantitatively, or PFC power density electrical signals collected by electrochemical workstation can be used. The output power density value is logarithm of TGEV concentration. The linear relationship was good within the detection range of 0.075 fg/µL-7.5 ng/µL, with a detection limit of 0.025 fg/µL (S/N = 3). This multi-signal output sensing platform provides more choices for quantifying TGEV detection results, and the two methods can be mutually verified, which meets the needs of different scenarios and improves the reliability of detection. It has a good effect in the actual sample detection, without the use of expensive and complex instruments, and has a broad application prospect.


Asunto(s)
Polímeros de Fluorocarbono , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Virus de la Gastroenteritis Transmisible , Óxido de Zinc , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Óxido de Zinc/química , Animales , Porcinos , Límite de Detección , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanopartículas/química , Sulfuros/química
13.
Environ Sci Pollut Res Int ; 31(19): 28695-28705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558343

RESUMEN

Here, polyaniline/polyvinylidene fluoride (PANI/PVDF) nanofiber composite membrane was fabricated using electrostatic spinning technology to remove hexavalent chromium Cr(VI). The employment of PANI not only extremely enhanced the hydrophilic property of the nanofiber membrane, but also facilitated the transfer of Cr2O72- from water to the membrane. The PANI/PVDF membrane had an extremely excellent performance in getting rid of Cr(VI) and a quite large flux (250 L/m2 h). The maximum adsorption quantity of the membrane could reach 334.5 mg/g in which adsorption played 52.12% part and reduction played 47.87% part. The removal rate could reach nearly 100% immediately in the permeate solution under filtration while it needed 240 min to reach 100% only by static adsorption. Therefore, the interception of the membrane and the adsorption reduction of PANI had synergistic effect on removal of Cr(VI). Furthermore, the removal rate of Cr(VI) could still reach 95.97% after reused 8 times. The membrane showed a very good reusability and application prospect.


Asunto(s)
Cromo , Filtración , Polímeros de Fluorocarbono , Nanofibras , Polivinilos , Contaminantes Químicos del Agua , Purificación del Agua , Nanofibras/química , Adsorción , Cromo/química , Polivinilos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Membranas Artificiales , Compuestos de Anilina/química
14.
Vasc Med ; 29(2): 182-188, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38457137

RESUMEN

BACKGROUND: Although the 1-year clinical outcomes of fluoropolymer-based drug-eluting stents (FP-DES) were favorable for the treatment of real-world femoropopliteal lesions in symptomatic peripheral artery disease (PAD), their performance beyond 1 year remained unknown. The current study determined the 3-year clinical course of FP-DES implantation for real-world femoropopliteal lesions. METHODS: This multicenter, prospective, observational study evaluated 1204 limbs (chronic limb-threatening ischemia, 34.8%; mean lesion length, 18.6 ± 9.9 cm, chronic total occlusion: 53.2%) of 1097 patients with PAD (age, 75 ± 9 years; diabetes mellitus, 60.8%) undergoing FP-DES implantation for femoropopliteal lesions. The primary outcome measure was 3-year restenosis. The secondary outcome measures included 3-year occlusive restenosis, stent thrombosis, target lesion revascularization (TLR), and aneurysmal degeneration. RESULTS: The 3-year cumulative occurrence of restenosis was 27.3%, whereas that of occlusive restenosis, stent thrombosis, and TLR was 16.1%, 7.3%, and 19.6%, respectively. The annual occurrence of restenosis decreased by 12.0%, 9.5%, and 5.8% in the first, second, and third year, respectively (p < 0.001). Similarly, the rates of occlusive restenosis and stent thrombosis decreased (p < 0.001 and p = 0.007, respectively), whereas the rate of TLR remained unchanged for 3 years (p = 0.15). The incidence of aneurysmal degeneration at 3 years (15.7%) did not significantly differ from that at 1 and 2 years (p = 0.69 and 0.20, respectively). CONCLUSIONS: This study highlights the favorable long-term clinical course of FP-DES in real-world practice, emphasizing the importance of monitoring for occlusive restenosis and stent thrombosis while considering the potential onset of aneurysmal degeneration.


Asunto(s)
Stents Liberadores de Fármacos , Enfermedad Arterial Periférica , Trombosis , Humanos , Anciano , Anciano de 80 o más Años , Arteria Femoral/diagnóstico por imagen , Arteria Poplítea/diagnóstico por imagen , Polímeros de Fluorocarbono , Resultado del Tratamiento , Estudios Prospectivos , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/terapia , Progresión de la Enfermedad , Grado de Desobstrucción Vascular , Diseño de Prótesis
15.
Sensors (Basel) ; 24(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38544122

RESUMEN

The three-dimensional (3D) force sensor has become essential in industrial and medical applications. The existing conventional 3D force sensors quantify the three-direction force components at a point of interest or extended contact area. However, they are typically made of rigid, complex structures and expensive materials, making them hard to implement in different soft or fixable industrial and medical applications. In this work, a new flexible 3D force sensor based on polymer nanocomposite (PNC) sensing elements was proposed and tested for its sensitivity to forces in the 3D space. Multi-walled carbon nanotube/polyvinylidene fluoride (MWCNT/PVDF) sensing element films were fabricated using the spray coating technique. The MWCNTs play an essential role in strain sensitivity in the sensing elements. They have been utilized for internal strain measurements of the fixable 3D force sensor's structure in response to 3D forces. The MWCNT/PVDF was selected for its high sensitivity and capability to measure high and low-frequency forces. Four sensing elements were distributed into a cross-beam structure configuration, the most typically used solid 3D force sensor. Then, the sensing elements were inserted between two silicone rubber layers to enhance the sensor's flexibility. The developed sensor was tested under different static and dynamic loading scenarios and exhibited excellent sensitivity and ability to distinguish between tension and compression force directions. The proposed sensor can be implemented in vast applications, including soft robotics and prostheses' internal forces of patients with limb amputations.


Asunto(s)
Polímeros de Fluorocarbono , Nanocompuestos , Robótica , Humanos , Polivinilos , Polímeros
16.
Talanta ; 272: 125828, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428132

RESUMEN

In this study, an ultrasensitive electrochemiluminescence (ECL) aptasensing method was developed for lipopolysaccharide (LPS) determination based on CRISPR-Cas12a accessory cleavage activity. Tris (2,2'-bipyridine) dichlororuthenium (II) (Ru(bpy)32+) was adsorbed on the surface of a glassy carbon electrode (GCE) coated with a mixture of gold nanoparticles (AuNPs) and Nafion film via electrostatic interaction. The obtained ECL platform (Ru(bpy)32+/AuNP/Nafion/GCE) exhibited strong ECL emission. Thiol-functionalized single-stranded DNA (ssDNA) was modified with a ferrocenyl (Fc) group and autonomously assembled on the ECL platform of Ru(bpy)32+/AuNP/Nafion/GCE via thiol-gold bonding, resulting in the quenching of ECL emission. After hybridization of the LPS aptamer strand (AS) with its partial complementary strand (CS), the formed double-stranded DNA (dsDNA) could activate CRISPR-Cas12a to indiscriminately cleave ssDNA-Fc on the surface of Ru(bpy)32+/AuNP/Nafion/GCE, resulting in recovery of the ECL intensity of Ru(bpy)32+ due to the increasing distance between Fc and the electrode surface. The combination of LPS and AS suppressed the formation of dsDNA, inhibited the activation of CRISPR-Cas12a, and prevented further cleavage of ssDNA-Fc. This mechanism aided in upholding the integrity of ssDNA-Fc on the surface of the electrode and was combined with ECL quenching induced by the target. The ECL intensity decreased linearly as the concentration of LPS increased from 1 to 50,000 pg/mL and followed a logarithmic relationship. This method exhibited a remarkably low detection limit of 0.24 pg/mL, which meets the requirement for low-concentration detection of LPS in the human body. The proposed method demonstrates the capacity of CRISPR-Cas12a to perform non-specific cutting of single-stranded DNA and transform the resultant cutting substances into changes in the ECL signal. By amalgamating this approach with the distinct identification abilities of LPS and its aptamers, a simple, responsive, and discriminatory LPS assay was established that holds immense significance for clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Polímeros de Fluorocarbono , Nanopartículas del Metal , Humanos , Lipopolisacáridos , ADN de Cadena Simple , Oro , Sistemas CRISPR-Cas , Mediciones Luminiscentes/métodos , Compuestos de Sulfhidrilo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
17.
BMC Ophthalmol ; 24(1): 103, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443841

RESUMEN

PURPOSE: To measure the dislocation forces in relation to haptic material, flange size and needle used. SETTING: Hanusch Hospital, Vienna, Austria. DESIGN: Laboratory Investigation. METHODS, MAIN OUTCOME MEASURES: 30 G (gauge) thin wall and 27 G standard needles were used for a 2 mm tangential scleral tunnel in combination with different PVDF (polyvinylidene fluoride) and PMMA (polymethylmethacrylate haptics). Flanges were created by heating 1 mm of the haptic end, non-forceps assisted in PVDF and forceps assisted in PMMA haptics. The dislocation force was measured in non-preserved cadaver sclera using a tensiometer device. RESULTS: PVDF flanges achieved were of a mushroom-like shape and PMMA flanges were of a conic shape. For 30 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 1.58 ± 0.68 N (n = 10) and 0.70 ± 0.14 N (n = 9) (p = 0.003) respectively. For 27 G needle tunnels the dislocation forces for PVDF and PMMA haptic flanges were 0.31 ± 0.35 N (n = 3) and 0.0 N (n = 4), respectively. The flange size correlated with the occurring dislocation force in experiments with 30 G needle tunnels (r = 0.92), when flanges were bigger than 384 micrometres. CONCLUSIONS: The highest dislocation forces were found for PVDF haptic flanges and their characteristic mushroom-like shape for 30 G thin wall needle scleral tunnels. Forceps assisted flange creation in PMMA haptics did not compensate the disadvantage of PMMA haptics with their characteristic conic shape flange.


Asunto(s)
Polímeros de Fluorocarbono , Tecnología Háptica , Lentes Intraoculares , Polivinilos , Humanos , Polimetil Metacrilato , Esclerótica/cirugía
18.
J Colloid Interface Sci ; 665: 720-732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554462

RESUMEN

Carbon nanostructures derived from human hair biowaste are incorporated into polyvinylidene fluoride (PVDF) polymer to enhance the energy conversion performance of a triboelectric nanogenerator (TENG). The PVDF filled with activated carbon nanomaterial from human hair (AC-HH) exhibits improved surface charge density and photoinduced charge generation. These remarkable properties are attributed to the presence of graphene-like nanostructures in AC-HH, contributing to the augmented performance of PVDF@AC-HH TENG. The correlation of surface morphologies, surface charge potential, charge capacitance properties, and TENG electrical output of the PVDF composites at various AC-HH loading is studied and discussed. Applications of the PVDF@AC-HH TENG as a power source for micro/nanoelectronics and a movement sensor for detecting finger gestures are also demonstrated. The photoresponse property of the fabricated TENG is demonstrated and analyzed in-depth. The analysis indicates that the photoinduced charge carriers originate from the conductive reduced graphene oxide (rGO), contributing to the enhanced surface charge density of the PVDF composite film. This research introduces a novel approach to enhancing TENG performance through the utilization of carbon nanostructures derived from human biowaste. The findings of this work are crucial for the development of innovative energy-harvesting technology with multifunctionality, including power generation, motion detection, and photoresponse capabilities.


Asunto(s)
Carbón Orgánico , Polímeros de Fluorocarbono , Nanoestructuras , Polivinilos , Humanos , Capacidad Eléctrica , Cabello
19.
Mikrochim Acta ; 191(3): 170, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427110

RESUMEN

Gold nanostructures and a Nafion modified screen-printed carbon electrode (Nafion/AuNS/SPCE) were developed to assess the cell viability of Parkinson's disease (PD) cell models. The electrochemical measurement of cell viability was reflected by catecholamine neurotransmitter (represented by dopamine) secretion capacity, followed by a traditional tetrazolium-based colorimetric assay for confirmation. Due to the  capacity to synthesize, store, and release catecholamines as well as their unlimited homogeneous proliferation, and ease of manipulation, pheochromocytoma (PC12) cells were used for PD cell modeling. Commercial low-differentiated and highly-differentiated PC12 cells, and home-made nerve growth factor (NGF) induced low-differentiated PC12 cells (NGF-differentiated PC12 cells) were included in the modeling. This approach achieved sensitive and rapid determination of cellular modeling and intervention states. Notably, among the three cell lines, NGF-differentiated PC12 cells displayed the enhanced neurotransmitter secretion level accompanied with attenuated growth rate, incremental dendrites in number and length that were highly resemble with neurons. Therefore, it was selected as the PD-tailorable modeling cell line. In short, the electrochemical sensor can be used to sensitively determine the biological function of neuron-like PC12 cells with negligible destruction and to explore the protective and regenerative impact of various substances on nerve cell model.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Polímeros de Fluorocarbono , Enfermedad de Parkinson , Ratas , Animales , Catecolaminas/metabolismo , Células PC12 , Factor de Crecimiento Nervioso , Evaluación Preclínica de Medicamentos , Neurotransmisores
20.
Commun Biol ; 7(1): 232, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438546

RESUMEN

Two-photon microscopy enables in vivo imaging of neuronal activity in mammalian brains at high resolution. However, two-photon imaging tools for stable, long-term, and simultaneous study of multiple brain regions in same mice are lacking. Here, we propose a method to create large cranial windows covering such as the whole parietal cortex and cerebellum in mice using fluoropolymer nanosheets covered with light-curable resin (termed the 'Nanosheet Incorporated into light-curable REsin' or NIRE method). NIRE method can produce cranial windows conforming the curved cortical and cerebellar surfaces, without motion artifacts in awake mice, and maintain transparency for >5 months. In addition, we demonstrate that NIRE method can be used for in vivo two-photon imaging of neuronal ensembles, individual neurons and subcellular structures such as dendritic spines. The NIRE method can facilitate in vivo large-scale analysis of heretofore inaccessible neural processes, such as the neuroplastic changes associated with maturation, learning and neural pathogenesis.


Asunto(s)
Artefactos , Polímeros de Fluorocarbono , Animales , Ratones , Encéfalo/diagnóstico por imagen , Cerebelo , Resinas de Plantas , Neuroimagen , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA