Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.059
Filtrar
1.
Methods Mol Biol ; 2805: 187-201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008183

RESUMEN

Epidermal tissues are among the most striking examples of planar polarity. Insect bristles, fish scales, and mammalian fur are all uniformly oriented along an animal's body axis. The collective alignment of epidermal structures provides a valuable system to interrogate the signaling mechanisms that coordinate cellular behaviors at both local and tissue-levels. Here, we provide methods to analyze the planar organization of hair follicles within the mouse epidermis. Hair follicles are specified and bud into the underlying dermis during embryonic development. Shortly after, follicle cells dynamically rearrange to orient each follicle toward the anterior of the animal. When directional signaling is disrupted, hair follicles become misoriented. In this chapter, we describe how to create a spatial map of hair follicle orientations to reveal tissue-scale patterns in both embryonic and postnatal skin. Additionally, we provide a live imaging protocol that can be used to monitor cell movements in embryonic skin explants to reveal the cellular behaviors that polarize the hair follicle itself.


Asunto(s)
Polaridad Celular , Epidermis , Folículo Piloso , Animales , Ratones , Folículo Piloso/citología , Folículo Piloso/embriología , Polaridad Celular/fisiología , Epidermis/embriología , Epidermis/metabolismo , Células Epidérmicas/citología , Movimiento Celular
2.
Proc Natl Acad Sci U S A ; 121(29): e2400569121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985771

RESUMEN

Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.


Asunto(s)
Membrana Celular , Polaridad Celular , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Polaridad Celular/fisiología , Membrana Celular/metabolismo , Movimiento Celular , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Animales , Transducción de Señal , Procesamiento Proteico-Postraduccional , Péptidos y Proteínas de Señalización Intracelular
3.
Exp Brain Res ; 242(8): 1917-1932, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896294

RESUMEN

Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1ß and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.


Asunto(s)
Hemorragia Cerebral , Quimiocina CXCL16 , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Quimiocina CXCL16/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hemorragia Cerebral/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Polaridad Celular/fisiología , Polaridad Celular/efectos de los fármacos , Lipopolisacáridos/farmacología , Silenciador del Gen , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/administración & dosificación
4.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830762

RESUMEN

Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.


Asunto(s)
Encéfalo , Polaridad Celular , Ratones Noqueados , Neuronas , Vesículas Sinápticas , Proteínas de Unión al GTP rab , Animales , Polaridad Celular/fisiología , Ratones , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Neuronas/metabolismo , Femenino , Masculino , Vesículas Sinápticas/metabolismo , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/citología , Células Cultivadas
5.
Cell Syst ; 15(6): 563-577.e6, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38843840

RESUMEN

The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Macrófagos , FN-kappa B , Transducción de Señal , Macrófagos/metabolismo , FN-kappa B/metabolismo , Animales , Ratones , Polaridad Celular/fisiología , Humanos , Citocinas/metabolismo , Activación de Macrófagos , Análisis de la Célula Individual/métodos , Aprendizaje Automático
6.
Proc Natl Acad Sci U S A ; 121(26): e2400804121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900800

RESUMEN

Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates. Interestingly, our studies indicate that an excessively strong or weak individual cellular chirality hinders the formation of such chiral patterns. Our studies also indicate that there exists the influence distance of substrate boundaries in chiral patterns. Smaller influence distances are observed when cell-cell interactions are weaker. Conversely, when cell-cell interactions are too strong, multiple cells tend to be stacked together, preventing the formation of chiral patterns on substrates in our analysis. Additionally, we demonstrate that the interaction between cells and substrate boundaries effectively controls the chiral distribution of cellular orientations on ring-shaped substrates. This research highlights the significance of coordinating boundary features, individual cellular chirality, and cell-cell interactions in governing the chiral movement of cell populations and provides valuable mechanics insights into comprehending the intricate connection between the chirality of single cells and that of tissues and organisms.


Asunto(s)
Comunicación Celular , Modelos Biológicos , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Polaridad Celular/fisiología
7.
J Neuroinflammation ; 21(1): 148, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840180

RESUMEN

BACKGROUND: White matter injury (WMI) represents a significant etiological factor contributing to neurological impairment subsequent to Traumatic Brain Injury (TBI). CD36 receptors are recognized as pivotal participants in the pathogenesis of neurological disorders, including stroke and spinal cord injury. Furthermore, dynamic fluctuations in the phenotypic polarization of microglial cells have been intimately associated with the regenerative processes within the injured tissue following TBI. Nevertheless, there is a paucity of research addressing the impact of CD36 receptors on WMI and microglial polarization. This investigation aims to elucidate the functional role and mechanistic underpinnings of CD36 in modulating microglial polarization and WMI following TBI. METHODS: TBI models were induced in murine subjects via controlled cortical impact (CCI). The spatiotemporal patterns of CD36 expression were examined through quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescence staining. The extent of white matter injury was assessed via transmission electron microscopy, Luxol Fast Blue (LFB) staining, and immunofluorescence staining. Transcriptome sequencing was employed to dissect the molecular mechanisms underlying CD36 down-regulation and its influence on white matter damage. Microglial polarization status was ascertained using qPCR, Western blot analysis, and immunofluorescence staining. In vitro, a Transwell co-culture system was employed to investigate the impact of CD36-dependent microglial polarization on oligodendrocytes subjected to oxygen-glucose deprivation (OGD). RESULTS: Western blot and qPCR analyses revealed that CD36 expression reached its zenith at 7 days post-TBI and remained sustained at this level thereafter. Immunofluorescence staining exhibited robust CD36 expression in astrocytes and microglia following TBI. Genetic deletion of CD36 ameliorated TBI-induced white matter injury, as evidenced by a reduced SMI-32/MBP ratio and G-ratio. Transcriptome sequencing unveiled differentially expressed genes enriched in processes linked to microglial activation, regulation of neuroinflammation, and the TNF signaling pathway. Additionally, bioinformatics analysis pinpointed the Traf5-p38 axis as a critical signaling pathway. In vivo and in vitro experiments indicated that inhibition of the CD36-Traf5-MAPK axis curtailed microglial polarization toward the pro-inflammatory phenotype. In a Transwell co-culture system, BV2 cells treated with LPS + IFN-γ exacerbated the damage of post-OGD oligodendrocytes, which could be rectified through CD36 knockdown in BV2 cells. CONCLUSIONS: This study illuminates that the suppression of CD36 mitigates WMI by constraining microglial polarization towards the pro-inflammatory phenotype through the down-regulation of the Traf5-MAPK signaling pathway. Our findings present a potential therapeutic strategy for averting neuroinflammatory responses and ensuing WMI damage resulting from TBI.


Asunto(s)
Antígenos CD36 , Ratones Endogámicos C57BL , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Ratones , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ratones Noqueados , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Polaridad Celular/fisiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Transducción de Señal/fisiología
8.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739106

RESUMEN

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microglía , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Animales , Femenino , Ratones , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Glicoproteína Mielina-Oligodendrócito/inmunología
9.
Proc Natl Acad Sci U S A ; 121(22): e2318248121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787878

RESUMEN

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix (ECM). Cells may also deposit ECM components, leaving behind a footprint that influences their crawling. Recent experiments showed that some epithelial cell lines on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint deposition and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the deposited footprint activates Rac1, a protein that establishes the cell's front. Depending on footprint deposition rate and response to the footprint, cells on micropatterned lines can display many types of motility, including confined, oscillatory, and persistent motion. On two-dimensional (2D) substrates, we predict a transition between cells undergoing circular motion and cells developing an exploratory phenotype. Small quantitative changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, leading to different motility phenotypes (confined vs. exploratory) in different cells when deposition or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion.


Asunto(s)
Movimiento Celular , Matriz Extracelular , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Proteína de Unión al GTP rac1/metabolismo , Humanos , Polaridad Celular/fisiología , Modelos Biológicos , Animales , Adhesión Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología
10.
Exp Neurol ; 378: 114824, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777250

RESUMEN

Ischemic stroke (IS), characterized by high mortality rate, occurs owing to diminished or blocked blood flow to the brain. Hyperglycemia (HG) is a major contributor to the risk of IS. HG induces augmented oxidative stress and Blood-Brain Barrier breakdown, which increases the influx of blood-derived myeloid cells into the brain parenchyma. In cerebral ischemia, infiltrating monocytes undergo differentiation into pro-inflammatory or anti-inflammatory macrophages, having a large effect on outcomes of ischemic stroke. In addition, interleukin-4 (IL-4) and interleukin-13 (IL-13) engage in post-ischemia repair by polarizing the infiltrating monocytes into an anti-inflammatory phenotype. In this study, we aimed to determine the effect of phenotypic polarization of monocyte-derived macrophages on the prognosis of IS with HG (HG-IS). We first established a hyperglycemic mouse model using streptozotocin (150 mg/kg) and induced transient middle cerebral artery occlusion. We observed that blood-brain barrier permeability increased in HG-IS mice, as per two-photon live imaging and Evans blue staining. We also confirmed the increased infiltration of monocyte-derived macrophages and the downregulation of anti-inflammatory macrophages related to tissue remodeling after inflammation in HG-IS mice through immunohistochemistry, western blotting, and flow cytometry. We observed phenotypic changes in monocyte-derived macrophages, alleviated infarct volume, and improved motor function in HG-IS mice treated with IL-4 and IL-13. These findings suggest that the modulation of phenotypic changes in monocyte-derived macrophages following IS in hyperglycemic mice may influence ischemic recovery.


Asunto(s)
Isquemia Encefálica , Hiperglucemia , Macrófagos , Ratones Endogámicos C57BL , Animales , Ratones , Hiperglucemia/patología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/efectos de los fármacos , Masculino , Isquemia Encefálica/patología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Infarto de la Arteria Cerebral Media/patología , Monocitos/patología , Monocitos/metabolismo , Monocitos/efectos de los fármacos
11.
Dev Cell ; 59(9): 1091-1093, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714155

RESUMEN

Polar localization of proteins is important for plant growth and development. Identifying the interactors of polarized proteins provides spatial information and cell-type functions. In this issue of Developmental Cell, Wallner et al. (2024) utilize opposing polarity domain proteins to identify interactors and their functions during cell division in Arabidopsis stomata.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Polaridad Celular , Desarrollo de la Planta , Polaridad Celular/fisiología , División Celular/fisiología , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Desarrollo de la Planta/fisiología
12.
Neurochem Res ; 49(8): 1980-1992, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769197

RESUMEN

The complex mechanism of neuropathic pain involves various aspects of both central and peripheral pain conduction pathways. An effective cure for neuropathic pain therefore remains elusive. We found that deficiency of the gene Gdpd3, encoding a lysophospholipase D enzyme, alleviates the inflammatory responses in dorsal root ganglia (DRG) of mice under neuropathic pain and reduces PE (20:4) and PGE2 in DRG. Gdpd3 deficiency had a stronger analgesic effect on neuropathic pain than Celecoxib, a nonsteroidal anti-inflammatory drug. Gdpd3 deficiency also interferes with the polarization of macrophages, switching from M1 towards M2 phenotype. The PPARγ/ FABP4 pathway was screened by RNA sequencing as functional related with Gdpd3 deficient BMDMs stimulated with LPS. Both protein and mRNA levels of PPARγ in GDPD3 deficient BMDMs were higher than those of the litter control mice. However, GW9962 (inhibitor of PPARγ) could reverse the reprogramming polarization of macrophages caused by GDPD3 deficiency. Therefore, our study suggests that GDPD3 deficiency exerts a relieving effect on neuropathic pain and alleviates neuroinflammation in DRG by switching the phenotype of macrophages from M1 to M2, which was mediated through PGE2 and PPARγ/ FABP4 pathway.


Asunto(s)
Dinoprostona , Macrófagos , Ratones Endogámicos C57BL , Neuralgia , PPAR gamma , Animales , PPAR gamma/metabolismo , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Dinoprostona/metabolismo , Macrófagos/metabolismo , Ratones , Ganglios Espinales/metabolismo , Masculino , Transducción de Señal/fisiología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/deficiencia , Ratones Noqueados , Polaridad Celular/fisiología
13.
Nano Lett ; 24(23): 7069-7076, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38808684

RESUMEN

Local cells can actively create reverse bending (evagination) in invaginated epithelia, which plays a crucial role in the formation of elaborate organisms. However, the precise physical mechanism driving the evagination remains elusive. Here, we present a three-dimensional vertex model, incorporating the intrinsic cell polarity, to explore the complex morphogenesis induced by local mechanical modulations. We find that invaginated tissues can spontaneously generate local reverse bending due to the shift of the apicobasal polarity. Their exact shapes can be analytically determined by the local apicobasal differential tension and the internal stress. Our continuum theory exhibits three regions in a phase diagram controlled by these two parameters, showing curvature transitions from ordered to disordered states. Additionally, we delve into epithelial curvature transition induced by the nucleus repositioning, revealing its active contribution to the apicobasal force generation. The uncovered mechanical principles could potentially guide more studies on epithelial folding in diverse systems.


Asunto(s)
Polaridad Celular , Epitelio/fisiología , Polaridad Celular/fisiología , Células Epiteliales/citología , Modelos Biológicos , Morfogénesis , Estrés Mecánico , Animales , Humanos
14.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698374

RESUMEN

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/virología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Encefalitis Japonesa/inmunología , Especies Reactivas de Oxígeno/metabolismo , Virus de la Encefalitis Japonesa (Especie) , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología
15.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753217

RESUMEN

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Asunto(s)
Accidente Cerebrovascular Isquémico , Microglía , FN-kappa B , Transducción de Señal , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Microglía/metabolismo , FN-kappa B/metabolismo , Humanos , Quinasas Asociadas a rho/metabolismo , Animales , Proteína de Unión al GTP rhoA/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/patología , Transducción de Señal/fisiología , Polaridad Celular/fisiología , Polaridad Celular/efectos de los fármacos
16.
Respir Res ; 25(1): 198, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720340

RESUMEN

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Asunto(s)
Arginasa , Autofagia , Progresión de la Enfermedad , Neoplasias Pulmonares , Macrófagos , Transducción de Señal , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/microbiología , Humanos , Ratones , Autofagia/fisiología , Arginasa/metabolismo , Transducción de Señal/fisiología , Macrófagos/metabolismo , Macrófagos/patología , Tuberculosis Pleural/patología , Tuberculosis Pleural/metabolismo , Células A549 , Ratones Endogámicos C57BL , Derrame Pleural/metabolismo , Derrame Pleural/patología , Polaridad Celular/fisiología
17.
PLoS Comput Biol ; 20(5): e1012140, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768266

RESUMEN

Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.


Asunto(s)
Polaridad Celular , Células Epiteliales , Integrinas , Riñón , Proteínas de Unión al GTP rho , Polaridad Celular/fisiología , Integrinas/metabolismo , Células Epiteliales/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Riñón/metabolismo , Riñón/citología , Animales , Biología Computacional , Modelos Biológicos , Simulación por Computador , Humanos , Transición Epitelial-Mesenquimal/fisiología
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 321-329, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645863

RESUMEN

Objective: To investigate the synergistic regulation of the polarization of mesenchymal stem cells by integrin and N-cadherin-mediated mechanical adhesion and the underlying mechanobiological mechanisms. Methods: Bilayer polyethylene glyeol (PEG) hydrogels were formulated and modified with RGD and HAVDI peptides, respectively, to achieve mechanical adhesion to integrin and N-cadherin and to replicate the integrin-mediated mechanical interaction between cells and the extracellular matrix and the N-cadherin-mediated cell-cell mechanical interaction. The polar proteins, phosphatidylinositol 3-kinase (PI3K) and phosphorylated myosin light chain (pMLC), were characterized through immunofluorescence staining in individual cells with or without contact with HAVDI peptides under integrin-mediated adhesion, N-cadherin-mediated adhesion, and different intracellular forces. Their expression levels and polar distribution were analyzed using Image J. Results: Integrin-mediated adhesion induced significantly higher polar strengths of PI3K and pMLC in the contact group than in those in the no contact group, resulting in the concentration of the polar angle of PI3K to ß-catenin in the range of 135° to 180° and the concentration of the polar angle of pMLC to ß-catenin in the range of 0° to 45° in the contact group. Inhibition of integrin function led to inhibition of the polarity distribution of PI3K in the contact group, but did not change the polarity distribution of pMLC protein. The effect of N-cadherin on the polarity distributions of PI3K and pMLC was similar to that of integrin. However, inhibition of the mechanical adhesion of N-cadherin led to inhibition of the polarity intensity and polarity angle distribution of PI3K and pMLC proteins in the contact group. Furthermore, inhibition of the mechanical adhesion of N-cadherin caused weakened polarity intensity of integrin ß1, reducing the proportion of cells with polarity angles between integrin ß1 and ß-catenin concentrating in the range of 135° to 180°. Additionally, intracellular forces influenced the polar distribution of PI3K and pMLC proteins. Reducing intracellular forces weakened the polarity intensity of PI3K and pMLC proteins and their polarity distribution, while increasing intracellular forces enhanced the polarity intensity of PI3K and pMLC proteins and their polarity distribution. Conclusion: Integrin and N-cadherin co-regulate the polarity distribution of cell proteins and N-cadherin can play an important role in the polarity regulation of stem cells through local inhibition of integrin.


Asunto(s)
Cadherinas , Adhesión Celular , Integrinas , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Cadherinas/metabolismo , Integrinas/metabolismo , Polaridad Celular/fisiología , beta Catenina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Humanos , Oligopéptidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Hidrogeles/química
19.
Yi Chuan ; 46(3): 199-208, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38632098

RESUMEN

Polarity establishment is one of the key factors affecting early embryonic development. Polarity establishment begins with myosin phosphorylation in the 8-cell embryo, and phosphorylation activates actin leading to its initiation of contractility. Subsequently, actin undergoes reorganization to form an apical domain rich in microvilli on the non-contacting surface of each blastomere, and form the actomyosin ring that marks the maturation of the apical domain in conjunction with polar protein complexes and others. From the process of polarity establishment, it can be seen that the formation of the apical domain is influenced by actin-related proteins and polar protein complexes. Some zygote genome activation (ZGA) and lineage-specific genes also regulate polarity establishment. Polarity establishment underlies the first cell lineage differentiation during early embryonic development. It regulates lineage segregation and morphogenesis by affecting asymmetric cell division, asymmetric localization of lineage differentiation factors, and activity of the Hippo signaling pathway. In this review, we systematically summarize the mechanisms of early embryonic polarity establishment and its impact on lineage differentiation in mammals, and discuss the shortcomings of the currently available studies in terms of regulatory mechanisms and species, thereby providing clues and systematic perspectives for elucidating early embryonic polarity establishment.


Asunto(s)
Actinas , Actomiosina , Animales , Actomiosina/metabolismo , Citocinesis , Diferenciación Celular , Linaje de la Célula , Polaridad Celular/fisiología , Mamíferos/metabolismo
20.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598291

RESUMEN

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


Asunto(s)
Proteínas 14-3-3 , Axones , Dendritas , Cinesinas , Cinesinas/metabolismo , Dendritas/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Axones/metabolismo , Fosforilación , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Polaridad Celular/fisiología , Transporte Axonal/fisiología , Ratas , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...