Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.629
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669183

RESUMEN

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Asunto(s)
Proteínas Portadoras , Polaridad Celular , Proteínas de la Membrana , Columna Vertebral , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Humanos , Ratones , Polaridad Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Escoliosis/genética , Escoliosis/congénito , Escoliosis/metabolismo , Vía de Señalización Wnt/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Femenino
2.
Cells ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667316

RESUMEN

Macrophage polarization to the M1 spectrum is induced by bacterial cell wall components through stimulation of Toll-like family (TLR) receptors. By orchestrating the expression of relevant mediators of the TLR cascade, as well as associated pathways and feedback loops, macrophage polarization is coordinated to ensure an appropriate immune response. This is central to the successful control of pathogens and the maintenance of health. Macrophage polarization is known to be modulated at both the transcriptional and post-transcriptional levels. In recent years, the miRNA-based post-transcriptional regulation of M1 polarization has received increasing attention from the scientific community. Comparative studies have shown that TLR stimulation alters the miRNA profile of macrophages and that macrophages from the M1 or the M2 spectrum differ in terms of miRNAs expressed. Simultaneously, miRNAs are considered critical post-transcriptional regulators of macrophage polarization. In particular, miRNAs are thought to play a regulatory role in the switch between the early proinflammatory response and the resolution phase. In this review, we will discuss the current state of knowledge on the complex interaction of transcriptional and post-transcriptional regulatory mechanisms that ultimately determine the functionality of macrophages.


Asunto(s)
Macrófagos , MicroARNs , Receptores Toll-Like , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Receptores Toll-Like/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Animales , Regulación de la Expresión Génica , Polaridad Celular/genética , Activación de Macrófagos , Transducción de Señal
3.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682291

RESUMEN

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Oído Interno , Proteínas de Homeodominio , Ratones Transgénicos , Factores de Transcripción , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Ratones , Linaje de la Célula/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oído Interno/metabolismo , Oído Interno/embriología , Oído Interno/citología , Polaridad Celular/genética , Sáculo y Utrículo/citología , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/embriología , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología
4.
Development ; 151(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488018

RESUMEN

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cigoto/metabolismo , Ciclo Celular/genética , Polaridad Celular/genética , Embrión no Mamífero/metabolismo
5.
J Cell Sci ; 137(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465512

RESUMEN

Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.


Asunto(s)
Polaridad Celular , Células Epiteliales , Animales , Humanos , Células Epiteliales/metabolismo , Membrana Celular/metabolismo , Polaridad Celular/genética , Mamíferos
6.
Proc Natl Acad Sci U S A ; 121(9): e2322582121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381787

RESUMEN

Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.


Asunto(s)
Proteínas de Drosophila , Humanos , Niño , Animales , Ratones , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Polaridad Celular/genética , Drosophila/genética , Transducción de Señal/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
7.
J Med Genet ; 61(6): 549-552, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38272662

RESUMEN

Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom de novo heterozygous missense variants in the planar cell polarity gene CELSR1 were detected using exome sequencing. Using several in vitro assays, we show that the CELSR1 p.(Cys1318Tyr) variant disrupted the subcellular localisation, affected cell-cell junction, impaired planar cell polarity signalling and lowered proliferation rate. These observations suggest that deleterious rare CELSR1 variants could be a possible cause of fetal hydrops.


Asunto(s)
Heterocigoto , Hidropesía Fetal , Mutación Missense , Humanos , Femenino , Mutación Missense/genética , Hidropesía Fetal/genética , Hidropesía Fetal/patología , Embarazo , Derrame Pleural/genética , Derrame Pleural/patología , Cadherinas/genética , Secuenciación del Exoma , Polaridad Celular/genética
8.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37815931

RESUMEN

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Asunto(s)
Cardiopatías Congénitas , Pez Cebra , Animales , Humanos , Polaridad Celular/genética , Células Germinativas/metabolismo , Mutación de Línea Germinal/genética , Cardiopatías Congénitas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
10.
Mol Biol Cell ; 35(2): br5, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991903

RESUMEN

Loss of cell polarity and disruption of tissue organization are key features of tumorigenesis that are intrinsically linked to spindle orientation. Epithelial tumors are often characterized by spindle orientation defects, but how these defects impact tumor formation driven by common oncogenic mutations is not fully understood. Here, we examine the role of spindle orientation in adult epidermis by deleting a key spindle regulator, LGN, in normal tissue and in a PTEN-deficient mouse model. We report that LGN deficiency in PTEN mutant epidermis leads to a threefold increase in the likelihood of developing tumors on the snout, and an over 10-fold increase in tumor burden. In this tissue, loss of LGN alone increases perpendicular and oblique divisions of epidermal basal cells, at the expense of a planar orientation of division. PTEN loss alone does not significantly affect spindle orientation in these cells, but the combined loss of PTEN and LGN fully randomizes basal spindle orientation. A subset of LGN- and PTEN-deficient animals have increased amounts of proliferative spinous cells, which may be associated with tumorigenesis. These results indicate that loss of LGN impacts spindle orientation and accelerates epidermal tumorigenesis in a PTEN-deficient mouse model.


Asunto(s)
Epidermis , Huso Acromático , Animales , Ratones , Huso Acromático/genética , Células Epidérmicas , Carcinogénesis , Polaridad Celular/genética
11.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141764

RESUMEN

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica , Ligandos , Activación de Linfocitos , Linfocitos T , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Polaridad Celular/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Transducción de Señal , Linfocitos T/inmunología , Humanos
12.
FASEB J ; 38(1): e23346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095297

RESUMEN

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Asunto(s)
Deficiencia de Ácido Fólico , Defectos del Tubo Neural , Animales , Ratones , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridad Celular/genética , Fibroblastos/metabolismo , Vía de Señalización Wnt , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Deficiencia de Ácido Fólico/metabolismo
13.
Nat Commun ; 14(1): 6504, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845215

RESUMEN

How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience: it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Variaciones en el Número de Copia de ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polaridad Celular/genética
14.
J Cell Mol Med ; 27(24): 4133-4144, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864310

RESUMEN

Cisplatin (CDDP) chemoresistance is one of the predominant factors in oral squamous cell carcinoma (OSCC) treatment failure. Uncovering the mechanisms underlying CDDP resistance is of great importance in OSCC therapy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs, which are reported to participate in the progression of various diseases, including cancer. However, the function of circRNAs in CDDP resistance in OSCC remains unclear. Quantitative reverse transcription PCR was used to search for different circRNAs between OSCC cell lines and CDDP-resistant cell lines. The results showed that circ-ILF2 expression was higher in CDDP-resistant OSCC cell lines. The stability of circ-ILF2 was also confirmed using RNase R and actinomycin D assays. Functional experiments, including cytotoxicity, apoptosis and growth rate assays, showed that upregulation of circ-ILF2 contributes to CDDP resistance. Luciferase reporter-gene, RNA pull-down and quantitative real-time PCR (RT-qPCR) assays showed that circ-ILF2 functions as a microRNA sponge for miR-1252. Luciferase reporter assays, RNA pull-down, RT-qPCR and Western blotting showed that miR-1252 directly targeted and regulated the expression of KLF8. Circ-ILF2 plays an important role in CDDP resistance in OSCC. Circ-ILF2 exerts its function through the miR-1252/KLF8 pathway. In addition, tumour-associated macrophages (TAM) play important roles in cancer progressions, our results showed that circ-ILF2 in OSCC cells induced the M2 polarization of macrophages which provided new thoughts on immunotherapy. Our results suggest that circ-ILF2 may represent a potential therapeutic target in CDDP-resistant OSCC.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , ARN Circular , Carcinoma de Células Escamosas de Cabeza y Cuello , ARN Circular/genética , ARN Circular/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Macrófagos/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/fisiopatología , Polaridad Celular/genética , Humanos
15.
Science ; 381(6653): 54-59, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410832

RESUMEN

Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.


Asunto(s)
Arabidopsis , División Celular Asimétrica , Epidermis de la Planta , Hojas de la Planta , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Linaje de la Célula , Polaridad Celular/genética , Citoesqueleto , Mitosis/genética , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Epidermis de la Planta/citología , Epidermis de la Planta/genética
16.
Nephron ; 147(12): 721-724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37459847

RESUMEN

Almost every cell in the kidney, including renal tubular epithelial cells, has a primary cilium, which is a membrane-bound, hair-like structure protruding from the cellular surface. Dysfunction of primary cilia has been linked to a wide spectrum of human genetic diseases, termed ciliopathies. Planar cell polarity (PCP) refers to the coordinated alignment of cells along the cell sheet or tissue plane, a fundamental process in embryo development and organogenesis. Interestingly, there is evidence that primary cilium and PCP are interconnected. However, very limited is known about the involvement of cilia and PCP in kidney injury and repair. By using cell and mouse models, we have demonstrated a protective role of primary cilia in acute kidney injury. Mechanistically, we unveiled a reciprocal promoting relationship between cilia and autophagy in kidney tubular cells, and, accordingly, cilia may protect tubular cells by enhancing autophagy. Our recent studies further demonstrated that PCP dysfunction exaggerates acute kidney injury and may also contribute to maladaptive kidney repair after acute kidney injury. These findings provide a novel dimension to further understanding kidney injury and repair from the standpoint of cell biology.


Asunto(s)
Lesión Renal Aguda , Cilios , Ratones , Animales , Humanos , Cilios/metabolismo , Polaridad Celular/genética , Riñón , Lesión Renal Aguda/metabolismo
17.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511262

RESUMEN

Establishing apicobasal polarity, involving intricate interactions among polarity regulators, is key for epithelial cell function. Though phosphatase of regenerating liver (PRL) proteins are implicated in diverse biological processes, including cancer, their developmental role remains unclear. In this study, we explore the role of Drosophila PRL (dPRL) in photoreceptor cell development. We reveal that dPRL, requiring a C-terminal prenylation motif, is highly enriched in the apical membrane of developing photoreceptor cells. Moreover, dPRL knockdown during retinal development results in adult Drosophila retinal degeneration, caused by hid-induced apoptosis. dPRL depletion also mislocalizes cell adhesion and polarity proteins like Armadillo, Crumbs, and DaPKC and relocates the basolateral protein, alpha subunit of Na+/K+-ATPase, to the presumed apical membrane. Importantly, this polarity disruption is not secondary to apoptosis, as suppressing hid expression does not rescue the polarity defect in dPRL-depleted photoreceptor cells. These findings underscore dPRL's crucial role in photoreceptor cell polarity and emphasize PRL's importance in establishing epithelial polarity and maintaining cell survival during retinal development, offering new insights into PRL's role in normal epithelium.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Hígado/metabolismo , Polaridad Celular/genética
18.
PLoS Genet ; 19(7): e1010849, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463168

RESUMEN

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Asunto(s)
Polaridad Celular , Proteínas Dishevelled , Proteínas de Drosophila , Proteínas de la Membrana , Animales , Ratones , Polaridad Celular/genética , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación
19.
Curr Top Dev Biol ; 154: 1-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37100515

RESUMEN

A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.


Asunto(s)
Polaridad Celular , Células Epiteliales , Animales , Polaridad Celular/genética , Epitelio/metabolismo , Cadherinas/metabolismo , Actinas/metabolismo
20.
Curr Top Dev Biol ; 154: 223-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37100519

RESUMEN

Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.


Asunto(s)
Cadherinas , Proteínas de Drosophila , Animales , Humanos , Cadherinas/genética , Cadherinas/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Crecimiento y Desarrollo , Proliferación Celular , Polaridad Celular/genética , Drosophila melanogaster , Mamíferos/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA