Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31237564

RESUMEN

Yeast tRNA ligase (Trl1) is an essential trifunctional enzyme that catalyzes exon-exon ligation during tRNA biogenesis and the non-conventional splicing of HAC1 mRNA during the unfolded protein response (UPR). The UPR regulates the protein folding capacity of the endoplasmic reticulum (ER). ER stress activates Ire1, an ER-resident kinase/RNase, which excises an intron from HAC1 mRNA followed by exon-exon ligation by Trl1. The spliced product encodes for a potent transcription factor that drives the UPR. Here we report the crystal structure of Trl1 RNA ligase domain from Chaetomium thermophilum at 1.9 Å resolution. Structure-based mutational analyses uncovered kinetic competition between RNA ligation and degradation during HAC1 mRNA splicing. Incompletely processed HAC1 mRNA is degraded by Xrn1 and the Ski/exosome complex. We establish cleaved HAC1 mRNA as endogenous substrate for ribosome-associated quality control. We conclude that mRNA decay and surveillance mechanisms collaborate in achieving fidelity of non-conventional mRNA splicing during the UPR.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Hidrolasas Diéster Fosfóricas/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido Ligasas/química , Empalme del ARN/genética , Estabilidad del ARN/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Chaetomium/química , Chaetomium/enzimología , Cristalografía por Rayos X , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica , Cinética , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Conformación Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/genética
2.
Biosystems ; 177: 9-15, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639771

RESUMEN

The formation of a kissing-loop through the introduction of complementary 7-membered loops is known to dramatically increase the activity of truncated R3C ligase ribozymes that otherwise display reduced activity. Restoration of activity is thought to result from kissing complex formation-induced rearrangement of two molecules with complementary loops. By combining two types of R3C ligase ribozyme mutants, and , the influence of loop composition on ligation activity was investigated. Substrate ligation occurred in , but not in , despite the absence of a substrate-binding site in . Loop-loop interactions of - and -variants with complementary 6-membered loops also resulted in proper kissing-complex formation-induced substrate ligation. However, heterogeneous combinations of 7- and 6-membered loops, and/or of 6- and 5-membered loops had distinct results that depended upon the sequence and bulged nucleotides of the loop regions. These differences suggest that both thermodynamic and kinetic controls act upon the kissing-loop interaction-mediated rearrangement of the shortened trans-R3C ribozymes.


Asunto(s)
Mutación , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , ARN Catalítico/química , ARN Catalítico/metabolismo , ARN/química , ARN/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cinética , Conformación de Ácido Nucleico , Polinucleótido Ligasas/genética , ARN/genética , ARN Catalítico/genética , Termodinámica
3.
Nucleic Acids Res ; 47(3): 1428-1439, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30590734

RESUMEN

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)-AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the ß and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2'-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure-function data for Saccharomyces cerevisiae Trl1.


Asunto(s)
Chaetomium/química , ADN Ligasa (ATP)/química , Hidrolasas Diéster Fosfóricas/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido Ligasas/química , Relación Estructura-Actividad , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Secuencia de Aminoácidos , Dominio Catalítico , Chaetomium/enzimología , Cristalografía por Rayos X , ADN Ligasa (ATP)/genética , Metales/química , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Conformación Proteica , Dominios Proteicos , Empalme del ARN/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología
4.
PLoS Comput Biol ; 12(11): e1005161, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27820829

RESUMEN

It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Modelos Químicos , Modelos Genéticos , Polinucleótido Ligasas/genética , ARN Catalítico/genética , ARN Polimerasas Dirigidas por ADN/química , Activación Enzimática , Modelos Estadísticos , Polinucleótido Ligasas/química , ARN Catalítico/química
5.
Proc Natl Acad Sci U S A ; 109(38): 15235-40, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949672

RESUMEN

The RtcB protein has recently been identified as a 3'-phosphate RNA ligase that directly joins an RNA strand ending with a 2',3'-cyclic phosphate to the 5'-hydroxyl group of another RNA strand in a GTP/Mn(2+)-dependent reaction. Here, we report two crystal structures of Pyrococcus horikoshii RNA-splicing ligase RtcB in complex with Mn(2+) alone (RtcB/ Mn(2+)) and together with a covalently bound GMP (RtcB-GMP/Mn(2+)). The RtcB/ Mn(2+) structure (at 1.6 Å resolution) shows two Mn(2+) ions at the active site, and an array of sulfate ions nearby that indicate the binding sites of the RNA phosphate backbone. The structure of the RtcB-GMP/Mn(2+) complex (at 2.3 Å resolution) reveals the detailed geometry of guanylylation of histidine 404. The critical roles of the key residues involved in the binding of the two Mn(2+) ions, the four sulfates, and GMP are validated in extensive mutagenesis and biochemical experiments, which also provide a thorough characterization for the three steps of the RtcB ligation pathway: (i) guanylylation of the enzyme, (ii) guanylyl-transfer to the RNA substrate, and (iii) overall ligation. These results demonstrate that the enzyme's substrate-induced GTP binding site and the putative reactive RNA ends are in the vicinity of the binuclear Mn(2+) active center, which provides detailed insight into how the enzyme-bound GMP is tansferred to the 3'-phosphate of the RNA substrate for activation and subsequent nucleophilic attack by the 5'-hydroxyl of the second RNA substrate, resulting in the ligated product and release of GMP.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas de Escherichia coli/química , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Pyrococcus horikoshii/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , GMP Cíclico/química , Guanosina Trifosfato/química , Iones , Manganeso/química , Modelos Moleculares , Conformación Molecular , Unión Proteica , Empalme del ARN , ARN de Transferencia/química , Especificidad por Sustrato , Sulfatos/química
6.
Genes Cells ; 16(12): 1190-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22074260

RESUMEN

We discovered that the PF1549 gene in Pyrococcus furiosus encodes a very heat-stable RNA 3'-terminal phosphate cyclase (Pf-Rtc). Although all previously reported Rtc proteins are ATP-dependent enzymes, we found that Pf-Rtc requires GTP for its cyclase activity at 95 °C. Low-level activation of the enzyme was also observed in the presence of dGTP but not other dNTPs, indicating that the guanine base is very important for Pf-Rtc activity. We analyzed a series of GTP analogues and found that the conversion from GTP to GMP is important for Pf-Rtc activity and that an excess of GMP inhibits this activity. Gel-shift analysis clearly showed that the RNA-binding activity of Pf-Rtc is totally dependent on the linear form of the 3'-terminal phosphate, with an apparent K(d) value of 20 nm at 95°C. Furthermore, we found that Pf-Rtc may contribute to GTP-dependent RNA ligation activity through the PF0027 protein (a 2'-5' RNA ligase-like protein in P. furiosus). The possible roles of Pf-Rtc and the importance of terminal phosphate structures in RNA are discussed.


Asunto(s)
Guanosina Trifosfato/metabolismo , Ligasas/metabolismo , Fosfatos/metabolismo , Polinucleótido Ligasas/metabolismo , Pyrococcus furiosus/enzimología , ARN/metabolismo , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli , Calor , Cinética , Ligasas/química , Ligasas/genética , Ligasas/aislamiento & purificación , Datos de Secuencia Molecular , Plásmidos , Polinucleótido Ligasas/genética , Pyrococcus furiosus/genética , ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Homología de Secuencia de Aminoácido , Transformación Bacteriana
7.
Mol Biol Cell ; 21(21): 3722-34, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20844078

RESUMEN

The unfolded protein response (UPR) is an essential signal transduction to cope with protein-folding stress in the endoplasmic reticulum. In the yeast UPR, the unconventional splicing of HAC1 mRNA is a key step. Translation of HAC1 pre-mRNA (HAC1(u) mRNA) is attenuated on polysomes and restarted only after splicing upon the UPR. However, the precise mechanism of this restart remained unclear. Here we show that yeast tRNA ligase (Rlg1p/Trl1p) acting on HAC1 ligation has an unexpected role in HAC1 translation. An RLG1 homologue from Arabidopsis thaliana (AtRLG1) substitutes for yeast RLG1 in tRNA splicing but not in the UPR. Surprisingly, AtRlg1p ligates HAC1 exons, but the spliced mRNA (HAC1(i) mRNA) is not translated efficiently. In the AtRLG1 cells, the HAC1 intron is circularized after splicing and remains associated on polysomes, impairing relief of the translational repression of HAC1(i) mRNA. Furthermore, the HAC1 5' UTR itself enables yeast Rlg1p to regulate translation of the following ORF. RNA IP revealed that yeast Rlg1p is integrated in HAC1 mRNP, before Ire1p cleaves HAC1(u) mRNA. These results indicate that the splicing and the release of translational attenuation of HAC1 mRNA are separable steps and that Rlg1p has pivotal roles in both of these steps.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Polinucleótido Ligasas/metabolismo , Precursores del ARN/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Respuesta de Proteína Desplegada , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Intrones , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Precursores del ARN/genética , Empalme del ARN , Proteínas Represoras/biosíntesis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
8.
Cold Spring Harb Perspect Biol ; 2(10): a002204, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20554706

RESUMEN

How life emerged on this planet is one of the most important and fundamental questions of science. Although nearly all details concerning our origins have been lost in the depths of time, there is compelling evidence to suggest that the earliest life might have exploited the catalytic and self-recognition properties of RNA to survive. If an RNA based replicating system could be constructed in the laboratory, it would be much easier to understand the challenges associated with the very earliest steps in evolution and provide important insight into the establishment of the complex metabolic systems that now dominate this planet. Recent progress into the selection and characterization of ribozymes that promote nucleotide synthesis and RNA polymerization are discussed and outstanding problems in the field of RNA-mediated RNA replication are summarized.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Polinucleótido Ligasas/metabolismo , ARN Catalítico/metabolismo , ARN/biosíntesis , ARN Polimerasas Dirigidas por ADN/genética , Origen de la Vida , Polinucleótido Ligasas/genética , ARN/genética , ARN Catalítico/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-19667013

RESUMEN

A long-standing research goal has been to develop a self-sustained chemical system that is capable of undergoing Darwinian evolution. The notion of primitive RNA-based life suggests that this goal might be achieved by constructing an RNA enzyme that catalyzes the replication of RNA molecules, including the RNA enzyme itself. This reaction was demonstrated recently in a cross-catalytic system involving two RNA enzymes that catalyze each other's synthesis from a total of four component substrates. The cross-replicating RNA enzymes undergo self-sustained exponential amplification at a constant temperature in the absence of proteins or other biological materials. Amplification occurs with a doubling time of approximately 1 hour and can be continued indefinitely. Small populations of cross-replicating RNA enzymes can be made to compete for limited resources within a common environment. The molecules reproduce with high fidelity but occasionally give rise to recombinants that also can replicate. Over the course of many "generations" of selective amplification, novel variants arise and grow to dominate the population based on their relative fitness under the chosen reaction conditions. This is the first example, outside of biology, of evolutionary adaptation in a molecular genetic system.


Asunto(s)
Evolución Molecular , ARN/genética , ARN/metabolismo , Secuencia de Bases , Evolución Molecular Dirigida , Modelos Genéticos , Conformación de Ácido Nucleico , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/metabolismo , ARN/química , ARN Catalítico/química , ARN Catalítico/genética , ARN Catalítico/metabolismo
10.
RNA ; 14(9): 1737-45, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18648070

RESUMEN

Yeast and human Clp1 proteins are homologous components of the mRNA 3'-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5'-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5'-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Delta strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5'-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.


Asunto(s)
Proteínas Nucleares/metabolismo , Fosfotransferasas/metabolismo , Empalme del ARN , ARN de Transferencia/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dosificación de Gen , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Fosfotransferasas/genética , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-17012785

RESUMEN

Bacillus subtilis YtlP is a protein that is predicted to belong to the bacterial and archael 2'-5' RNA-ligase family. It contains 183 residues and two copies of the HXTX sequence motif conserved among proteins belonging to this family. In order to determine the structure of YtlP and to compare it with the paralogue YjcG and identified 2'-5' RNA ligases, the gene ytlP was amplified from B. subtilis genomic DNA and cloned into expression vector pET-21a. The soluble protein was produced in Escherichia coli, purified to homogeneity and crystals suitable for X-ray analysis were obtained. The crystal diffracted to 2.0 A and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 34.16, b = 48.54, c = 105.75 A.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Polinucleótido Ligasas/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/aislamiento & purificación , Alineación de Secuencia
12.
RNA ; 11(6): 966-75, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15923379

RESUMEN

Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Polinucleótido Ligasas/química , Polinucleótido Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Análisis Mutacional de ADN , Genes Letales , Leishmania/enzimología , Datos de Secuencia Molecular , Mutación , Hidrolasas Diéster Fosfóricas/genética , Filogenia , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Trypanosoma/enzimología
13.
Mol Cell Biol ; 23(21): 7909-19, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14560033

RESUMEN

Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion.


Asunto(s)
Mitocondrias/genética , Polinucleótido Ligasas/metabolismo , Edición de ARN , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Genes Protozoarios , Sustancias Macromoleculares , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Polinucleótido Ligasas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Alineación de Secuencia , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/genética
14.
J Biol Chem ; 278(45): 43928-38, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12933796

RESUMEN

Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Supervivencia Celular , Eliminación de Gen , Datos de Secuencia Molecular , Mutagénesis , Hidrolasas Diéster Fosfóricas/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Polinucleótido Ligasas/metabolismo , Empalme del ARN , Proteínas Recombinantes , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad , Transfección
15.
J Protein Chem ; 22(2): 109-13, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12760415

RESUMEN

Palindromes in DNA consist of nucleotides sequences that read the same from the 5'-end to the 3'-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its beta-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTI-ITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.


Asunto(s)
Oligonucleótidos/química , Oligonucleótidos/genética , Péptidos/química , Péptidos/genética , Proteínas/química , Proteínas/genética , Secuencia de Aminoácidos , Cristalografía , ADN Viral/química , ADN Viral/genética , Interpretación Estadística de Datos , Bases de Datos Factuales , Humanos , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Polinucleótido 5'-Hidroxil-Quinasa/química , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido Ligasas/química , Polinucleótido Ligasas/genética , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
16.
J Biol Chem ; 278(20): 17601-8, 2003 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-12611899

RESUMEN

Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a polynucleotide ligase family that includes the trypanosome RNA-editing ligases and putative RNA ligases encoded by eukaryotic viruses and archaea. Here we analyzed 12 individual amino acids of Rnl2 that were identified by alanine scanning as essential for strand joining. We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of ligase adenylylation and phosphodiester bond formation. The essential residues of Rnl2 are located within conserved motifs that define a superfamily of nucleotidyl transferases that act via enzyme-(lysyl-N)-NMP intermediates. Our mutagenesis results underscore a shared active site architecture in Rnl2-like ligases, DNA ligases, and mRNA capping enzymes. They also highlight two essential signature residues, Glu(34) and Asn(40), that flank the active site lysine nucleophile (Lys(35)) and are unique to the Rnl2-like ligase family.


Asunto(s)
Polinucleótido Ligasas/química , Polinucleótido Ligasas/fisiología , ARN Ligasa (ATP) , Proteínas Virales/química , Proteínas Virales/fisiología , Adenosina Trifosfato/farmacología , Alanina/química , Secuencia de Aminoácidos , Sitios de Unión , Relación Dosis-Respuesta a Droga , Lisina/química , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Polinucleótido Ligasas/genética , ARN/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Proteínas Virales/genética
17.
Proc Natl Acad Sci U S A ; 96(26): 14712-7, 1999 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-10611278

RESUMEN

Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.


Asunto(s)
Evolución Molecular Dirigida , Conformación de Ácido Nucleico , Polinucleótido Ligasas/genética , ARN Catalítico/genética , Animales , Secuencia de Bases , Catálisis , Dominio Catalítico , Biblioteca de Genes , Datos de Secuencia Molecular , Polinucleótido Ligasas/clasificación , Polinucleótido Ligasas/metabolismo , ARN Catalítico/clasificación , ARN Catalítico/metabolismo , Tetrahymena/enzimología
18.
Proc Natl Acad Sci U S A ; 96(1): 173-8, 1999 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-9874791

RESUMEN

In vitro selection, or directed molecular evolution, allows the isolation and amplification of rare sequences that satisfy a functional-selection criterion. This technique can be used to isolate novel ribozymes (RNA enzymes) from large pools of random sequences. We used in vitro evolution to select a ribozyme that catalyzes a novel template-directed RNA ligation that requires surprisingly few nucleotides for catalytic activity. With the exception of two nucleotides, most of the ribozyme contributes to a template, suggesting that it is a general prebiotic ligase. More surprisingly, the catalytic core built from randomized sequences actually contains a 7-nt manganese-dependent self-cleavage motif originally discovered in the Tetrahymena group I intron. Further experiments revealed that we have selected a dual-catalytic RNA from random sequences: the RNA promotes both cleavage at one site and ligation at another site, suggesting two conformations surrounding at least one divalent metal ion-binding site. Together, these results imply that similar catalytic RNA motifs can arise under fairly simple conditions and that multiple catalytic structures, including bifunctional ligases, can evolve from very small preexisting parts. By breaking apart and joining different RNA strands, such ribozymes could have led to the production of longer and more complex RNA polymers in prebiotic evolution.


Asunto(s)
Evolución Molecular Dirigida , ARN Catalítico/genética , Animales , Secuencia de Bases , Cationes Bivalentes/farmacología , Intrones/genética , Manganeso/farmacología , Datos de Secuencia Molecular , Oligorribonucleótidos , Mutación Puntual , Polinucleótido Ligasas/genética , Polinucleótido Ligasas/metabolismo , ARN Catalítico/metabolismo , Alineación de Secuencia , Tetrahymena/genética , Nucleótidos de Uracilo , ARN Pequeño no Traducido
19.
Virology ; 212(2): 438-50, 1995 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-7571413

RESUMEN

We reported previously that murine L-929 cells expressing a human interferon (IFN)-gamma cDNA lacking a signal peptide sequence synthesize but fail to secrete human IFN-gamma and support viral replication at a reduced level. These cells also had elevated levels of IFN-inducible gene products. We show here that a similar response is seen in human cells expressing a mutated murine IFN-gamma cDNA. The ability of human IFN-gamma to induce gene expression in murine cells is shown to be due to the intracellular IFN-gamma rather than to clonal variation, induction of endogenous murine IFN, or alternative mediators of antiviral activity. We have used a murine cell line, Ltk-aprt-, which is resistant to both type I and II IFNs but responsive to combined treatment with both. Ltk-aprt- cells transfected with human IFN-gamma cDNA lacking a signal sequence support virus replication at the same level as control cells. However, unlike transfectants containing only the neoR selection gene, clones expressing the mutated human IFN-gamma gene show strong protection against viral infection and elevated levels of 2,5 A synthetase mRNA and MHC class I protein after treatment with IFN-beta alone. Reverse transcriptase-PCR rules out the induction of endogenous murine IFN expression as a mediator of these effects. Thus, expression of intracellular human IFN-gamma mimics treatment with extracellular murine IFN-gamma in permitting a synergistic response to IFN-beta. Given the inability of human IFN-gamma to bind to the murine cell-surface receptor our results show that intracellular IFN-gamma can activate certain responses independent of cell-surface binding.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Interferón gamma/fisiología , Replicación Viral , Animales , Secuencia de Bases , Citoplasma/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Antígenos H-2/genética , Humanos , Interferón beta/biosíntesis , Interferón beta/farmacología , Interferón gamma/biosíntesis , Interferón gamma/genética , Interferón gamma/farmacología , Células L/metabolismo , Células L/virología , Mengovirus/fisiología , Ratones , Datos de Secuencia Molecular , Polinucleótido Ligasas/genética , Señales de Clasificación de Proteína/genética , ARN Mensajero/biosíntesis , Eliminación de Secuencia , Especificidad de la Especie , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
20.
Proc Natl Acad Sci U S A ; 87(17): 6679-83, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2204063

RESUMEN

Human cDNA clones encoding the major DNA ligase activity in proliferating cells, DNA ligase I, were isolated by two independent methods. In one approach, a human cDNA library was screened by hybridization with oligonucleotides deduced from partial amino acid sequence of purified bovine DNA ligase I. In an alternative approach, a human cDNA library was screened for functional expression of a polypeptide able to complement a cdc9 temperature-sensitive DNA ligase mutant of Saccharomyces cerevisiae. The sequence of an apparently full-length cDNA encodes a 102-kDa protein, indistinguishable in size from authentic human DNA ligase I. The deduced amino acid sequence of the human DNA ligase I cDNA is 40% homologous to the smaller DNA ligases of S. cerevisiae and Schizosaccharomyces pombe, homology being confined to the carboxyl-terminal regions of the respective proteins. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is transcribed from a single-copy gene on chromosome 19.


Asunto(s)
ADN Ligasas/genética , Polinucleótido Ligasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Ligasa (ATP) , ADN Ligasas/biosíntesis , Prueba de Complementación Genética , Humanos , Células Híbridas/enzimología , Datos de Secuencia Molecular , Sondas de Oligonucleótidos , Proteínas Recombinantes/biosíntesis , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...