Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835411

RESUMEN

Heat stroke is a life-threatening illness caused by exposure to high ambient temperatures and relative humidity. The incidence of heat stroke is expected to increase due to climate change. Although pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in thermoregulation, the role of PACAP on heat stress remains unclear. PACAP knockout (KO) and wild-type ICR mice were subjected to heat exposure at an ambient temperature of 36 °C and relative humidity of 99% for 30-150 min. After heat exposure, the PACAP KO mice had a greater survival rate and maintained a lower body temperature than the wild-type mice. Moreover, the gene expression and immunoreaction of c-Fos in the ventromedially preoptic area of the hypothalamus, which is known to harbor temperature-sensitive neurons, were significantly lower in PACAP KO mice than those in wild-type mice. In addition, differences were observed in the brown adipose tissue, the primary site of heat production, between PACAP KO and wild-type mice. These results suggest that PACAP KO mice are resistant to heat exposure. The heat production mechanism differs between PACAP KO and wild-type mice.


Asunto(s)
Golpe de Calor , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ratones , Golpe de Calor/genética , Golpe de Calor/metabolismo , Hipotálamo/metabolismo , Ratones Endogámicos ICR , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología
2.
Front Endocrinol (Lausanne) ; 13: 982551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204113

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated as a hypothalamic peptide. It has a widespread distribution in the body and has a diverse spectrum of actions. Among other processes, PACAP has been shown to be involved in reproduction. In this review we summarize findings related to the entire spectrum of female reproduction. PACAP is a regulatory factor in gonadal hormone production, influences follicular development and plays a role in fertilization and embryonic/placental development. Furthermore, PACAP is involved in hormonal changes during and after birth and affects maternal behavior. Although most data come from cell cultures and animal experiments, increasing number of evidence suggests that similar effects of PACAP can be found in humans. Among other instances, PACAP levels show changes in the serum during pregnancy and birth. PACAP is also present in the human follicular and amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate with the number of retrieved oocytes in hyperstimulated women. Human milk contains very high levels of PACAP compared to plasma levels, with colostrum showing the highest concentration, remaining steady thereafter for the first 7 months of lactation. All these data imply that PACAP has important functions in reproduction both under physiological and pathological conditions.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Placenta , Animales , Femenino , Desarrollo Fetal , Líquido Folicular , Gónadas , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Embarazo
3.
Front Endocrinol (Lausanne) ; 12: 732456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759890

RESUMEN

Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) display psychomotor abnormalities, most of which are ameliorated by atypical antipsychotics with serotonin (5-HT) 2A receptor (5-HT2A) antagonism. Heterozygous Pacap mutant mice show a significantly higher hallucinogenic response than wild-type mice to a 5-HT2A agonist. Endogenous PACAP may, therefore, affect 5-HT2A signaling; however, the underlying neurobiological mechanism for this remains unclear. Here, we examined whether PACAP modulates 5-HT2A signaling by addressing cellular protein localization. PACAP induced an increase in internalization of 5-HT2A but not 5-HT1A, 5-HT2C, dopamine D2 receptors or metabotropic glutamate receptor 2 in HEK293T cells. This PACAP action was inhibited by protein kinase C inhibitors, ß-arrestin2 silencing, the PACAP receptor PAC1 antagonist PACAP6-38, and PAC1 silencing. In addition, the levels of endogenous 5-HT2A were decreased on the cell surface of primary cultured cortical neurons after PACAP stimulation and were increased in frontal cortex cell membranes of Pacap-/- mice. Finally, intracerebroventricular PACAP administration suppressed 5-HT2A agonist-induced head twitch responses in mice. These results suggest that PACAP-PAC1 signaling increases 5-HT2A internalization resulting in attenuation of 5-HT2A-mediated signaling, although further study is necessary to determine the relationship between behavioral abnormalities in Pacap-/- mice and PACAP-induced 5-HT2A internalization.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Transporte de Proteínas/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de Señal/fisiología
4.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32028278

RESUMEN

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Metabolismo Energético/fisiología , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Proopiomelanocortina , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Canales de Potencial de Receptor Transitorio/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Fenómenos Electrofisiológicos , Metabolismo Energético/efectos de los fármacos , Femenino , Cobayas , Homeostasis , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372152

RESUMEN

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Secuencia de Aminoácidos/genética , Animales , Antiinfecciosos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Simulación por Computador , Bases de Datos Genéticas , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Neuropéptidos/metabolismo , Filogenia , Transducción de Señal/fisiología
6.
Commun Biol ; 3(1): 557, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033338

RESUMEN

We previously showed that mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) exhibit attenuated light-induced phase shift. To explore the underlying mechanisms, we performed gene expression analysis of laser capture microdissected suprachiasmatic nuclei (SCNs) and found that lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is involved in the impaired response to light stimulation in the late subjective night in PACAP-deficient mice. L-PGDS-deficient mice also showed impaired light-induced phase advance, but normal phase delay and nonvisual light responses. Then, we examined the receptors involved in the response and observed that mice deficient for type 2 PGD2 receptor DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cells) show impaired light-induced phase advance. Concordant results were observed using the selective DP2/CRTH2 antagonist CAY10471. These results indicate that L-PGDS is involved in a mechanism of light-induced phase advance via DP2/CRTH2 signaling.


Asunto(s)
Ritmo Circadiano/fisiología , Oxidorreductasas Intramoleculares/fisiología , Lipocalinas/fisiología , Animales , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Genes/genética , Genes/fisiología , Hibridación in Situ , Oxidorreductasas Intramoleculares/metabolismo , Luz , Lipocalinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Núcleo Supraquiasmático/metabolismo
7.
Reprod Biol ; 20(4): 491-495, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32859528

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide acting as a hormone, a neuromodulator, a neurotransmitter, a trophic factor and is involved in a variety of developmental and regenerative processes. PACAP is present in several human tissues and biological fluids. In many pathological conditions, changes in PACAP levels have been described to reflect disease progression, therefore PACAP has diagnostic value as a potential biomarker. Since PACAP has been shown to play an important role in reproductive physiology and development, it was of interest to examine whether this neuropeptide occurs in the human amniotic fluid. Amniotic fluid samples were collected between the 15-19th weeks of gestation from volunteering pregnant women undergoing amniocentesis as a prenatal diagnostic tool due to maternal age. Pathological cases were excluded after prenatal karyotype analysis. PACAP-like immunoreactivity was measured by radioimmunoassay and could be detected in all samples. The present study provides evidence for the presence of PACAP in human amniotic fluid, but determination of the exact physiological or pathological significance awaits further investigation.


Asunto(s)
Líquido Amniótico/química , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/análisis , Adulto , Femenino , Edad Gestacional , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Embarazo , Reproducción/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-32765418

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Animales , Sistema Cardiovascular/fisiopatología , Sistema Digestivo/fisiopatología , Glándulas Exocrinas/fisiopatología , Hígado Graso/fisiopatología , Humanos , Inflamación/fisiopatología , Páncreas Exocrino/fisiopatología , Sistema Respiratorio/fisiopatología , Piel/fisiopatología , Sistema Urogenital/fisiopatología
9.
J Neurosci Res ; 98(8): 1549-1560, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32476165

RESUMEN

Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.


Asunto(s)
Condicionamiento Psicológico/fisiología , Nicotina/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Síndrome de Abstinencia a Sustancias/fisiopatología , Animales , Ansiedad , Depresión , Femenino , Masculino , Mecamilamina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Factores Sexuales , Síndrome de Abstinencia a Sustancias/genética , Tabaquismo/psicología
10.
Mol Cell Endocrinol ; 518: 110912, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561449

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Reproducción/genética , Animales , Células Cultivadas , Femenino , Humanos , Recién Nacido , Mamíferos/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Embarazo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Reproducción/fisiología , Ovinos , Transducción de Señal/fisiología
11.
Peptides ; 130: 170332, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445876

RESUMEN

Evidence shows that pituitary adenylate cyclase-activating polypeptide (PACAP) improves stroke outcomes and dementia. The blood-brain barrier (BBB) controls the peptide and regulatory protein exchange between the central nervous system and the blood; the transport of these regulatory substances across the BBB has been altered in animal models of stroke and Alzheimer's disease (AD). PACAP is a powerful neurotrophin that can cross the BBB, which may aid in the therapy of neurodegenerative diseases, including stroke and AD. PACAP may function as a potential drug in the treatment, prevention, or management of stroke and AD and other neurodegenerative conditions. Here, we review the effects of PACAP in studies on stroke and dementias.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Accidente Cerebrovascular/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Demencia/metabolismo , Demencia/fisiopatología , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
12.
Neuropharmacology ; 171: 108109, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325064

RESUMEN

Pituitary adenylyl cyclase activating polypeptide (PACAP) was originally isolated from the hypothalamus and found to stimulate adenylyl cyclase in the pituitary. Later studies showed that this peptide and its receptors (PAC1, VPAC1, and VPAC2) are widely expressed in the central nervous system (CNS). Consistent with its distribution in the CNS, the PACAP/PAC1 receptor system is involved in several physiological responses, such as mediation of the stress response, modulation of nociception, regulation of prolactin release, food intake, etc. This system is also implicated in different pathological states, e.g., affective component of nociceptive processing, anxiety, depression, schizophrenia, and post-traumatic stress disorders. A review of the literature on PubMed revealed that PACAP and its receptors also play a significant role in the actions of addictive drugs. The goal of this review is to discuss the literature regarding the involvements of PACAP and its receptors in the motivational effects of addictive drugs. We particularly focus on the role of this peptide in the motivational effects of morphine, alcohol, nicotine, amphetamine, methamphetamine, and cocaine. This article is part of the special issue on Neuropeptides.


Asunto(s)
Motivación/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Hipófisis/fisiopatología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Trastornos Relacionados con Sustancias/psicología , Animales , Humanos
13.
Invest Ophthalmol Vis Sci ; 60(2): 770-778, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30795011

RESUMEN

Purpose: PACAP1-38, a member of the secretin/glucagon superfamily, is expressed in the developing retina with documented neuroprotective effects. However, its function in retinal cell differentiation has yet to be elucidated. Our goals, therefore, were to identify PAC1 expressing cells morphologically, investigate the PACAP1-38 action functionally, and establish PACAP1-38 regulated events developmentally during the first postnatal week in rat retina. Methods: P1 retinal sections or whole mounts of Wistar rats were used to reveal PAC1 and calbindin immunoreactive structures. P1, P3, or P7 pups were injected intravitreally with 100 pmol PACAP1-38. Tissues were harvested 24 hours post-treatment, then processed for calbindin immunohistochemistry to determine horizontal cell number, or 6, 12, 24 hours post-treatment for real-time PCR and immunoblots to detect PCNA expression. To localize proliferating cells, anti-PCNA antibody was applied. Results: We showed various PAC1 expressing cells in RPE, NBL, and GCL in P1 retina including calbindin positive horizontal cells. We found that PACAP1-38 induced a marked cell number increase at P3 and P7 and showed upregulated cell proliferation as its mechanism; however, it was ineffective at P1. PACAP1-38 induced proliferative cells localized in the NBL, and double-marker studies demonstrated that the induced proliferative cells were horizontal cells. Conclusions: PACAP1-38 appears to act in retinal differentiation by inducing mitosis selectively in a time and cell specific manner through PAC1. The control of horizontal cell proliferation raises the novel possibilities that (1) PACAP1-38 may be a major player in retinal patterning and (2) PACAP signaling may be critical in retinoblastoma.


Asunto(s)
Sustancias de Crecimiento/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Retina/crecimiento & desarrollo , Células Horizontales de la Retina/citología , Animales , Western Blotting , Calbindinas/metabolismo , Recuento de Células , Diferenciación Celular , Proliferación Celular , Femenino , Expresión Génica , Masculino , Microscopía Confocal , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Retina/metabolismo , Células Horizontales de la Retina/metabolismo
14.
J Cereb Blood Flow Metab ; 39(4): 573-594, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-28948863

RESUMEN

Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.


Asunto(s)
Cefalalgia Histamínica/fisiopatología , Trastornos Migrañosos/fisiopatología , Acoplamiento Neurovascular/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/fisiología , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Núcleos del Trigémino
15.
Cephalalgia ; 39(13): 1606-1622, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29929378

RESUMEN

BACKGROUND: The exact mechanisms underlying the onset of a migraine attack are not completely understood. It is, however, now well accepted that the onset of the excruciating throbbing headache of migraine is mediated by the activation and increased mechanosensitivity (i.e. sensitization) of trigeminal nociceptive afferents that innervate the cranial meninges and their related large blood vessels. OBJECTIVES: To provide a critical summary of current understanding of the role that the cranial meninges, their associated vasculature, and immune cells play in meningeal nociception and the ensuing migraine headache. METHODS: We discuss the anatomy of the cranial meninges, their associated vasculature, innervation and immune cell population. We then debate the meningeal neurogenic inflammation hypothesis of migraine and its putative contribution to migraine pain. Finally, we provide insights into potential sources of meningeal inflammation and nociception beyond neurogenic inflammation, and their potential contribution to migraine headache.


Asunto(s)
Meninges/fisiopatología , Trastornos Migrañosos/fisiopatología , Nervio Trigémino/fisiopatología , Vías Aferentes/fisiopatología , Animales , Fibras Autónomas Posganglionares/fisiología , Permeabilidad Capilar , Humanos , Inflamación/fisiopatología , Macrófagos/fisiología , Mastocitos/fisiología , Meninges/irrigación sanguínea , Meninges/patología , Ratones , Modelos Biológicos , Nocicepción/fisiología , Nociceptores/fisiología , Nervio Oftálmico/fisiopatología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Ratas , Linfocitos T/inmunología , Vasodilatación
16.
PLoS One ; 13(6): e0198180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856797

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP-38) is a common neuropeptide exerting a wide spectrum of functions in many fields, including immunology. In the present study, 5-day post-fertilization (dpf) zebrafish larvae of three diverse genetic lines [transgenic lines Tg(MPX:GFP) with GFP-labelled neutrophils and Tg(pou4f3:GAP-GFP) with GFP-labelled hair cells and the wild-type Tuebingen] were used to investigate an inhibitory role of PACAP-38 in inflammation associated with damaged hair cells of the lateral line. Individuals of each genetic line were assigned to four groups: (1) control, and those consisting of larvae exposed to (2) 10 µM CuSO4, (3) 10 µM CuSO4+100 nM PACAP-38 and (4) 100 nM PACAP-38, respectively. Forty-minute exposure to CuSO4 solution was applied to evoke necrosis of hair cells and consequent inflammation. The inhibitory role of PACAP-38 was investigated in vivo under a confocal microscope by counting neutrophils migrating towards damaged hair cells in Tg(MPX:GFP) larvae. In CuSO4-treated individuals, the number of neutrophils associated with hair cells was dramatically increased, while PACAP-38 co-treatment resulted in its over 2-fold decrease. However, co-treatment with PACAP-38 did not prevent hair cells from extensive necrosis, which was found in Tg(pou4f3:GAP-GFP) individuals. Real-Time PCR analysis performed in wild-type larvae demonstrated differential expression pattern of stress and inflammation inducible markers. The most significant findings showed that CuSO4 exposure up-regulated the expression of IL-8, IL-1ß, IL-6 and ATF3, while after PACAP-38 co-treatment expression levels of these genes were significantly decreased. The presence of transcripts for all PACAP receptors in neutrophils was also revealed. Adcyap1r1a and vipr1b appeared to be predominant forms. The present results suggest that PACAP-38 should be considered as a factor playing an important regulatory role in inflammatory response associated with pathological processes affecting zebrafish hair cells and it cannot be excluded that this interesting property has more universal significance.


Asunto(s)
Sistema de la Línea Lateral/metabolismo , Mecanorreceptores/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Pez Cebra/metabolismo , Factor de Transcripción Activador 3/biosíntesis , Factor de Transcripción Activador 3/genética , Animales , Animales Modificados Genéticamente , Antiinflamatorios/farmacología , Sulfato de Cobre/toxicidad , Citocinas/biosíntesis , Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación , Larva , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/efectos de los fármacos , Mecanorreceptores/metabolismo , Necrosis , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Citocinas/biosíntesis , Receptores de Citocinas/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/biosíntesis , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo
17.
J Headache Pain ; 19(1): 28, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29619773

RESUMEN

Pituitary adenylate-cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide (VIP)/glucagon/secretin family. PACAP shows particularly high homology (~ 68%) to VIP. Because of the high homology of the amino acid sequences of PACAP and VIP, these peptides share three class B-G-protein coupled receptors: the PAC1-Receptor (PAC1-R), the VPAC1-Receptor (VPAC1-R) and VPAC2-Receptor (VPAC2-R). These receptors have high homology to each other, and their high homology is utilized for these discoveries. This review provides mainly an overview of the history of the discovery of PACAP and its three receptors.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/fisiología , Animales , Humanos
18.
Exp Eye Res ; 169: 134-140, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428294

RESUMEN

The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Presión Intraocular/fisiología , Luz , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Receptores de Tipo II del Péptido Intestinal Vasoactivo/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/fisiología , Tonometría Ocular
19.
Reproduction ; 155(2): 129-139, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29101268

RESUMEN

PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.


Asunto(s)
Biomarcadores/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Túbulos Seminíferos/patología , Motilidad Espermática/fisiología , Espermatogénesis , Espermatozoides/patología , Animales , Masculino , Ratones , Ratones Noqueados , Proteína Fosfatasa 2/metabolismo , Reproducción , Túbulos Seminíferos/metabolismo , Espermatozoides/metabolismo
20.
Neuropeptides ; 65: 106-113, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28698051

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide having a widespread distribution both in the nervous system and peripheral organs including the gastrointestinal tract. It has been shown to exert actions on intestinal functions, mainly affecting glandular secretion and motility. PACAP has several different effects on cell survival depending on the cell type and the applied stimulus. Its influences on small intestinal epithelial cells are not yet elucidated, therefore the aim of the present study was to investigate the effects of PACAP on intestinal epithelial cells having high turnover (INT 407) against different harmful stimuli, such as oxidative stress, in vitro hypoxia and gamma radiation. We tested the effect of PACAP on proliferation and cell survival using MTT assay. Moreover, various cancer-related factors were evaluated by oncology array. PACAP did not influence the proliferation rate of INT 407 cells. Its cell survival-enhancing effect could be detected against oxidative stress, but not against in vitro hypoxia or gamma irradiation. Clonogenic survival assay was performed to analyze the effect of PACAP on clonogenic potential of cells exposed to gamma radiation. Surprisingly, PACAP enhanced the clone-forming ability decrease induced by irradiation. Western blot analysis of ERK1/2 phosphorylation was performed in order to obtain further information on the molecular background. Our data showed phospho-ERK1/2 suppression of PACAP in irradiated cells. Furthermore, the role of endogenous PACAP against oxidative stress was also investigated performing ADCYAP1 small interfering RNA transfection. We found significant difference in the cell vulnerability between cells undergoing silencing and cells without transfection suggesting the protective role of the endogenously present PACAP against oxidative stress in INT 407 cells. In summary, PACAP seems to be able to exert contradictory effects in INT 407 cells depending on the applied stressor, suggesting its regulatory role in the cellular household.


Asunto(s)
Células Epiteliales/fisiología , Intestino Delgado/citología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Rayos gamma/efectos adversos , Humanos , Estrés Oxidativo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...