Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 753
Filtrar
1.
Nucleic Acids Res ; 52(15): 9161-9173, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38842944

RESUMEN

The ompD transcript, encoding an outer membrane porin in Salmonella, harbors a controlling element in its coding region that base-pairs imperfectly with a 'seed' region of the small regulatory RNA (sRNA) MicC. When tagged with the sRNA, the ompD mRNA is cleaved downstream of the pairing site by the conserved endoribonuclease RNase E, leading to transcript destruction. We observe that the sRNA-induced cleavage site is accessible to RNase E in vitro upon recruitment of ompD into the 30S translation pre-initiation complex (PIC) in the presence of the degradosome components. Evaluation of substrate accessibility suggests that the paused 30S PIC presents the mRNA for targeted recognition and degradation. Ribonuclease activity on PIC-bound ompD is critically dependent on the recruitment of RNase E into the multi-enzyme RNA degradosome, and our data suggest a process of substrate capture and handover to catalytic sites within the degradosome, in which sequential steps of seed matching and duplex remodelling contribute to cleavage efficiency. Our findings support a putative mechanism of surveillance at translation that potentially terminates gene expression efficiently and rapidly in response to signals provided by regulatory RNA.


Asunto(s)
Endorribonucleasas , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , Porinas , ARN Helicasas , Estabilidad del ARN , ARN Mensajero , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Estabilidad del ARN/genética , Porinas/metabolismo , Porinas/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , Regulación Bacteriana de la Expresión Génica
2.
Am J Physiol Cell Physiol ; 327(2): C221-C236, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826135

RESUMEN

Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that provide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import. Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial) and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees (CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knockout mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the mitochondrion.NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulating genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion. Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in targeting RNA therapeutics to the mitochondrion.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Humanos , Ratones , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Mitocondrias/genética , Mitocondrias/enzimología , Mitocondrias/metabolismo , Unión Proteica
3.
Mol Biol Cell ; 35(8): ar104, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865176

RESUMEN

RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.


Asunto(s)
Regiones no Traducidas 5' , Caulobacter crescentus , Endorribonucleasas , Homeostasis , Estabilidad del ARN , Caulobacter crescentus/metabolismo , Caulobacter crescentus/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Regiones no Traducidas 5'/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Complejos Multienzimáticos , ARN Helicasas
4.
RNA Biol ; 21(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38836544

RESUMEN

Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Humanos , Oligonucleótidos/metabolismo , Estabilidad del ARN
5.
Proc Natl Acad Sci U S A ; 121(23): e2316734121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805292

RESUMEN

The RNA tailing machinery adds nucleotides to the 3'-end of RNA molecules that are implicated in various biochemical functions, including protein synthesis and RNA stability. Here, we report a role for the RNA tailing machinery as enzymatic modifiers of intracellular amyloidogenesis. A targeted RNA interference screen identified Terminal Nucleotidyl-transferase 4b (TENT4b/Papd5) as an essential participant in the amyloidogenic phase transition of nucleoli into solid-like Amyloid bodies. Full-length-and-mRNA sequencing uncovered starRNA, a class of unusually long untemplated RNA molecules synthesized by TENT4b. StarRNA consists of short rRNA fragments linked to long, linear mixed tails that operate as polyanionic stimulators of amyloidogenesis in cells and in vitro. Ribosomal intergenic spacer noncoding RNA (rIGSRNA) recruit TENT4b in intranucleolar foci to coordinate starRNA synthesis driving their amyloidogenic phase transition. The exoribonuclease RNA Exosome degrades starRNA and functions as a general suppressor of cellular amyloidogenesis. We propose that amyloidogenic phase transition is under tight enzymatic control by the RNA tailing and exosome axis.


Asunto(s)
Amiloide , Transición de Fase , Humanos , Amiloide/metabolismo , Estabilidad del ARN , ARN/metabolismo , ARN/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética
6.
Hum Mol Genet ; 33(R1): R26-R33, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779774

RESUMEN

Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.


Asunto(s)
Mitocondrias , Polirribonucleótido Nucleotidiltransferasa , Estabilidad del ARN , ARN Mitocondrial , Humanos , Mitocondrias/metabolismo , Mitocondrias/genética , Estabilidad del ARN/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Helicasas/metabolismo , ARN Helicasas/genética , ARN/metabolismo , ARN/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Endorribonucleasas , Exorribonucleasas , Complejos Multienzimáticos
7.
Nucleic Acids Res ; 52(10): 5852-5865, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742638

RESUMEN

Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.


Asunto(s)
Cobamidas , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , ARN Mensajero , Riboswitch , Riboswitch/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Cobamidas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Helicasas/genética , ARN Helicasas/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteínas de la Membrana Bacteriana Externa , Polirribonucleótido Nucleotidiltransferasa , Proteínas de Transporte de Membrana
8.
Arch Biochem Biophys ; 754: 109917, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38395123

RESUMEN

As one of the oldest infectious diseases in the world, tuberculosis (TB) is the second most deadly infectious disease after COVID-19. Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), which can attack various organs of the human body. Up to now, drug-resistant TB continues to be a public health threat. Pyrazinamide (PZA) is regarded as a sterilizing drug in the treatment of TB due to its distinct ability to target Mtb persisters. Previously we demonstrated that a D67N mutation in Mycobacterium tuberculosis polynucleotide phosphorylase (MtbPNPase, Rv2783c) confers resistance to PZA and Rv2783c is a potential target for PZA, but the mechanism leading to PZA resistance remains unclear. To gain further insight into the MtbPNPase, we determined the cryo-EM structures of apo Rv2783c, its mutant form and its complex with RNA. Our studies revealed the Rv2783c structure at atomic resolution and identified its enzymatic functional groups essential for its phosphorylase activities. We also investigated the molecular mechanisms underlying the resistance to PZA conferred by the mutation. Our research findings provide structural and functional insights enabling the development of new anti-tuberculosis drugs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Polirribonucleótido Nucleotidiltransferasa/genética , Microscopía por Crioelectrón , Amidohidrolasas , Pruebas de Sensibilidad Microbiana , Antituberculosos/farmacología , Pirazinamida/química , Pirazinamida/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mutación , ARN
9.
Biochimie ; 216: 56-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37806617

RESUMEN

Ribonucleases are in charge of the processing, degradation and quality control of all cellular transcripts, which makes them crucial factors in RNA regulation. This post-transcriptional regulation allows bacteria to promptly react to different stress conditions and growth phase transitions, and also to produce the required virulence factors in pathogenic bacteria. Campylobacter jejuni is the main responsible for human gastroenteritis in the world. In this foodborne pathogen, exoribonuclease PNPase (CjPNP) is essential for low-temperature cell survival, affects the synthesis of proteins involved in virulence and has an important role in swimming, cell adhesion/invasion ability, and chick colonization. Here we report the crystallographic structure of CjPNP, complemented with SAXS, which confirms the characteristic doughnut-shaped trimeric arrangement and evaluates domain arrangement and flexibility. Mutations in highly conserved residues were constructed to access their role in RNA degradation and polymerization. Surprisingly, we found two mutations that altered CjPNP into a protein that is only capable of degrading RNA even in conditions that favour polymerization. These findings will be important to develop new strategies to combat C. jejuni infections.


Asunto(s)
Campylobacter jejuni , Polirribonucleótido Nucleotidiltransferasa , Humanos , Virulencia , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Endorribonucleasas , ARN , Exorribonucleasas/metabolismo , Ribonucleasa Pancreática
10.
Mol Microbiol ; 121(1): 40-52, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994189

RESUMEN

Here, we employ coelution experiments and far-western blotting to identify stable interactions between the main components of the B. subtilis degradosome and the small proteins SR1P and SR7P. Our data indicate that B. subtilis has a degradosome comprising at least RNases Y and PnpA, enolase, phosphofructokinase, glycerol-3-phosphate dehydrogenase GapA, and helicase CshA that can be co-purified without cross-linking. All interactions were corroborated by far-western blotting with proteins purified from E. coli. Previously, we discovered that stress-induced SR7P binds enolase to enhance its interaction with and activity of enolase-bound RNase Y (RnY), while SR1P transcribed under gluconeogenic conditions interacts with GapA to stimulate its interaction with and the activity of RnjA (RnjA). We show that SR1P can directly bind RnjA, RnY, and PnpA independently of GapA, whereas SR7P only interacts with enolase. Northern blotting suggests that the degradation of individual RNAs in B. subtilis under gluconeogenic or stress conditions depends on either RnjA or RnY alone or on RnjA-SR1P, RnY-SR1P, or RnY-Eno. In vitro degradation assays with RnY or RnjA substrates corroborate the in vivo role of SR1P. Currently, it is unknown which substrate property is decisive for the utilization of one of the complexes.


Asunto(s)
Bacillus subtilis , Escherichia coli , Complejos Multienzimáticos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endorribonucleasas/metabolismo , ARN Helicasas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo
11.
Adv Sci (Weinh) ; 10(33): e2301459, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845007

RESUMEN

Selective RNA processing and stabilization (SRPS) facilitates the differential expression of multiple genes in polycistronic operons. However, how the coordinated actions of SRPS-related enzymes affect stoichiometric regulation remains unclear. In the present study, the first genome-wide targetome analysis is reported of these enzymes in Escherichia coli, at a single-nucleotide resolution. A strictly linear relationship is observed between the RNA pyrophosphohydrolase processing ratio and scores assigned to the first three nucleotides of the primary transcript. Stem-loops associated with PNPase targetomes exhibit a folding free energy that is negatively correlated with the termination ratio of PNPase at the 3' end. More than one-tenth of the RNase E processing sites in the 5'-untranslated regions(UTR) form different stem-loops that affect ribosome-binding and translation efficiency. The effectiveness of the SRPS elements is validated using a dual-fluorescence reporter system. The findings highlight a multi-layer and quantitative regulatory method for optimizing the stoichiometric expression of genes in bacteria and promoting the application of SRPS in synthetic biology.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Procesamiento Postranscripcional del ARN/genética , Expresión Génica
12.
Nat Commun ; 14(1): 1223, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869030

RESUMEN

Renal tubular atrophy is a hallmark of chronic kidney disease. The cause of tubular atrophy, however, remains elusive. Here we report that reduction of renal tubular cell polynucleotide phosphorylase (PNPT1) causes renal tubular translation arrest and atrophy. Analysis of tubular atrophic tissues from renal dysfunction patients and male mice with ischemia-reperfusion injuries (IRI) or unilateral ureteral obstruction (UUO) treatment shows that renal tubular PNPT1 is markedly downregulated under atrophic conditions. PNPT1 reduction leads to leakage of mitochondrial double-stranded RNA (mt-dsRNA) into the cytoplasm where it activates protein kinase R (PKR), followed by phosphorylation of eukaryotic initiation factor 2α (eIF2α) and protein translational termination. Increasing renal PNPT1 expression or inhibiting PKR activity largely rescues IRI- or UUO-induced mouse renal tubular injury. Moreover, tubular-specific PNPT1-knockout mice display Fanconi syndrome-like phenotypes with impaired reabsorption and significant renal tubular injury. Our results reveal that PNPT1 protects renal tubules by blocking the mt-dsRNA-PKR-eIF2α axis.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa , ARN Bicatenario , Insuficiencia Renal Crónica , Animales , Masculino , Ratones , Atrofia , Factor 2 Eucariótico de Iniciación , Riñón , Ratones Noqueados , Proteínas Quinasas , Insuficiencia Renal Crónica/genética , Humanos
13.
Microbiol Spectr ; 11(1): e0154622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475972

RESUMEN

Despite the identification of many genes and pathways involved in the persistence phenomenon in bacteria, the mechanisms of persistence are not well understood. Here, using Escherichia coli, we identified polynucleotide phosphorylase (PNPase) as a key regulator of persister formation. We constructed the pnp knockout strain (Δpnp) and its complemented strain and exposed them to antibiotics and stress conditions. The results showed that, compared with the wild-type strain W3110, the Δpnp strain had significant defects in persistence to antibiotics and stresses, and the persistence phenotype was restored upon complementation with the pnp gene. Transcriptome sequencing (RNA-seq) analysis revealed that 242 (166 upregulated and 76 downregulated) genes were differentially expressed in the Δpnp strain compared with the W3110 strain. KEGG analysis of the upregulated genes showed that these genes were mostly mapped to metabolism and virulence pathways, of which most are positively regulated by the global regulator cyclic AMP receptor protein (CRP). Correspondingly, the transcription level of the crp gene in the Δpnp strain increased 3.22-fold in the early stationary phase. We further explored the indicators of cellular metabolism of the Δpnp strain, the phenotype of the pnp and crp double-deletion mutant, and the transcriptional activity of the crp gene. Our results indicate that PNPase controls cellular metabolism by negatively regulating the crp operon via targeting the 5'-untranslated region of the crp transcript. This study reveals a persister mechanism and provides novel targets for the development of drugs against persisters for more effective treatment. IMPORTANCE Persisters pose significant challenges for a more effective treatment of persistent infections. An improved understanding of mechanisms of persistence will provide therapeutic targets important for the development of better treatments. Since recent studies with the key tuberculosis persister drug pyrazinamide have implicated polynucleotide phosphorylase (PNPase) as a drug target, in this study, we addressed the possibility that PNPase might be involved in persistence in Escherichia coli. Our study demonstrates PNPase indeed being involved in persistence, provides a mechanism by which PNPase controls persister formation, and suggests a new therapeutic target for treating persistent bacterial infections.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Operón , Antibacterianos/farmacología , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica
14.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232701

RESUMEN

The Polyribonucleotide nucleotidyltransferase 1 gene (PNPT1) encodes polynucleotide phosphorylase (PNPase), a 3'-5' exoribonuclease involved in mitochondrial RNA degradation and surveillance and RNA import into the mitochondrion. Here, we have characterized the PNPT1 promoter by in silico analysis, luciferase reporter assays, electrophoretic mobility shift assays (EMSA), chromatin immunoprecipitation (ChIP), siRNA-based mRNA silencing and RT-qPCR. We show that the Specificity protein 1 (SP1) transcription factor and Nuclear transcription factor Y (NFY) bind the PNPT1 promoter, and have a relevant role regulating the promoter activity, PNPT1 expression, and mitochondrial activity. We also found in Kaplan-Meier survival curves that a high expression of either PNPase, SP1 or NFY subunit A (NFYA) is associated with a poor prognosis in liver cancer. In summary, our results show the relevance of SP1 and NFY in PNPT1 expression, and point to SP1/NFY and PNPase as possible targets in anti-cancer therapy.


Asunto(s)
Factor de Unión a CCAAT , Exorribonucleasas , Neoplasias Hepáticas , Proteínas Mitocondriales , Polirribonucleótido Nucleotidiltransferasa , Factor de Transcripción Sp1 , Sitios de Unión , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Luciferasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN Interferente Pequeño , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo
15.
Mol Microbiol ; 118(6): 698-715, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36268779

RESUMEN

The alaW alaX operon encodes the Ala2 tRNAs, one of the two alanine tRNA isotypes in Escherichia coli. Our previous RNA-seq study showed that alaW alaX dicistronic RNA levels increased significantly in the absence of both RNase P and poly(A) polymerase I (PAP I), suggesting a role of polyadenylation in its stability. In this report, we show that RNase E initiates the processing of the primary alaW alaX precursor RNA by removing the Rho-independent transcription terminator, which appears to be the rate limiting step in the separation and maturation of the Ala2 pre-tRNAs by RNase P. Failure to separate the alaW and alaX pre-tRNAs by RNase P leads to poly(A)-mediated degradation of the dicistronic RNAs by polynucleotide phosphorylase (PNPase) and RNase R. Surprisingly, the thermosensitive RNase E encoded by the rne-1 allele is highly efficient in removing the terminator (>99%) at the nonpermissive temperature suggesting a significant caveat in experiments using this allele. Together, our data present a comprehensive picture of the Ala2 tRNA processing pathway and demonstrate that unprocessed RNase P substrates are degraded via a poly(A) mediated decay pathway.


Asunto(s)
Proteínas de Escherichia coli , Ribonucleasa P , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Poliadenilación , Operón/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Bacteriano/metabolismo
16.
Microbiol Spectr ; 10(4): e0214022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856907

RESUMEN

8-Oxo-7,8-dihydroguanine (8-oxoG) is a major RNA modification caused by oxidative stresses and has been implicated in carcinogenesis, neurodegeneration, and aging. Several RNA-binding proteins have been shown to have a binding preference for 8-oxoG-modified RNA in eukaryotes and protect cells from oxidative stress. To date, polynucleotide phosphorylase (PNPase) is one of the most well-characterized proteins in bacteria that recognize 8-oxoG-modified RNA, but how PNPase cooperates with other proteins to process oxidized RNA is still unclear. Here, we use RNA affinity chromatography and mass spectrometry to search for proteins that preferably bind 8-oxoG-modified RNA in Deinococcus radiodurans, an extremophilic bacterium with extraordinary resistance to oxidative stresses. We identified four proteins that preferably bind to oxidized RNA: PNPase (DR_2063), DEAD box RNA helicase (DR_0335/RhlB), ribosomal protein S1 (DR_1983/RpsA), and transcriptional termination factor (DR_1338/Rho). Among these proteins, PNPase and RhlB exhibit high-affinity binding to 8-oxoG-modified RNA in a dose-independent manner. Deletions of PNPase and RhlB caused increased sensitivity of D. radiodurans to oxidative stress. We further showed that PNPase and RhlB specifically reduce the cellular availability of 8-oxoG-modified RNA but have no effect on oxidized DNA. Importantly, PNPase directly interacts with RhlB in D. radiodurans; however, no additional phenotypic effect was observed for the double deletion of pnp and rhlB compared to the single deletions. Overall, our findings suggest the roles of PNPase and RhlB in targeting 8-oxoG-modified RNAs and thereby constitute an important component of D. radiodurans resistance to oxidative stress. IMPORTANCE Oxidative RNA damage can be caused by oxidative stress, such as hydrogen peroxide, ionizing radiation, and antibiotic treatment. 8-oxo-7,8-dihydroguanine (8-oxoG), a major type of oxidized RNA, is highly mutagenic and participates in a variety of disease occurrences and development. Although several proteins have been identified to recognize 8-oxoG-modified RNA, the knowledge of how RNA oxidative damage is controlled largely remains unclear, especially in nonmodel organisms. In this study, we identified four RNA binding proteins that show higher binding affinity to 8-oxoG-modified RNA compared to unmodified RNA in the extremophilic bacterium Deinococcus radiodurans, which can endure high levels of oxidative stress. Two of the proteins, polynucleotide phosphorylase (PNPase) and DEAD-box RNA helicase (RhlB), interact with each other and reduce the cellular availability of 8-oxoG-modified RNA under oxidative stress. As such, this work contributes to our understanding of how RNA oxidation is influenced by RNA binding proteins in bacteria.


Asunto(s)
Deinococcus , Polirribonucleótido Nucleotidiltransferasa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN/metabolismo , ARN Helicasas/metabolismo
17.
Annu Rev Microbiol ; 76: 533-552, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671533

RESUMEN

RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E-based degradosomes are widespread in Proteobacteria. The Escherichia coli RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In Caulobacter crescentus, RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication.Membrane attachment of the E. coli RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to C. crescentus BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation.


Asunto(s)
Caulobacter crescentus , Endorribonucleasas , Escherichia coli , Complejos Multienzimáticos , Nucleótidos , Polirribonucleótido Nucleotidiltransferasa , ARN Helicasas , Estabilidad del ARN , ARN Mensajero , Caulobacter crescentus/enzimología , Caulobacter crescentus/genética , Endorribonucleasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleótidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo
18.
Gene ; 833: 146610, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35609794

RESUMEN

Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.


Asunto(s)
Enterococcus faecalis , Infecciones Urinarias , Adhesión Bacteriana/genética , Pared Celular/genética , Pared Celular/metabolismo , Reparación del ADN , Enterococcus faecalis/genética , Humanos , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo
19.
Protein Sci ; 31(5): e4312, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481630

RESUMEN

Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA-DNA, DNA-RNA, and RNA-RNA duplexes with a long 3' overhang (≥10 nucleotides). The C-terminal tail (CTT)-truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo-form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase-Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell-shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Estabilidad del ARN , ARN , Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Endorribonucleasas , Humanos , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , ARN/química , ARN Helicasas , ARN Mitocondrial , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
PLoS Pathog ; 18(2): e1010287, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108335

RESUMEN

The unconventional mRNA capping enzyme (GDP polyribonucleotidyltransferase, PRNTase) domain of the vesicular stomatitis virus (VSV) L protein possesses a dual-functional "priming-capping loop" that governs terminal de novo initiation for leader RNA synthesis and capping of monocistronic mRNAs during the unique stop-start transcription cycle. Here, we investigated the roles of basic amino acid residues on a helix structure directly connected to the priming-capping loop in viral RNA synthesis and identified single point mutations that cause previously unreported defective phenotypes at different steps of stop-start transcription. Mutations of residue R1183 (R1183A and R1183K) dramatically reduced the leader RNA synthesis activity by hampering early elongation, but not terminal de novo initiation or productive elongation, suggesting that the mutations negatively affect escape from the leader promoter. On the other hand, mutations of residue R1178 (R1178A and R1178K) decreased the efficiency of polyadenylation-coupled termination of mRNA synthesis at the gene junctions, but not termination of leader RNA synthesis at the leader-to-N-gene junction, resulting in the generation of larger amounts of aberrant polycistronic mRNAs. In contrast, both the R1183 and R1178 residues are not essential for cap-forming activities. The R1183K mutation was lethal to VSV, whereas the R1178K mutation attenuated VSV and triggered the production of the polycistronic mRNAs in infected cells. These observations suggest that the PRNTase domain plays multiple roles in conducting accurate stop-start transcription beyond its known role in pre-mRNA capping.


Asunto(s)
Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Mutación , Nucleotidiltransferasas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Conformación Proteica , Dominios Proteicos , Precursores del ARN/metabolismo , Transcripción Genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...