Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.130
Filtrar
1.
AAPS PharmSciTech ; 25(6): 163, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997614

RESUMEN

Some glycoside drugs can be transported through intestinal glucose transporters (IGTs). The surfactants used in oral drug preparations can affect the function of transporter proteins. This study aimed to investigate the effect of commonly used surfactants, Poloxamer 188 and Tween 80, on the drug transport capacity of IGTs. Previous studies have shown that gastrodin is the optimal drug substrate for IGTs. Gastrodin was used as a probe drug to evaluate the effect of these two surfactants on intestinal absorption in SD rats through pharmacokinetic and in situ single-pass intestinal perfusion. Then, the effects of the two surfactants on the expression of glucose transporters and tight-junction proteins were examined using RT-PCR and western blotting. Additionally, the effect of surfactants on intestinal permeability was evaluated through hematoxylin-eosin staining. The results found that all experimental for Poloxamer 188 (0.5%, 2.0% and 8.0%) and Tween 80 (0.1% and 2.0%) were not significantly different from those of the blank group. However, the AUC(0-∞) of gastrodin increased by approximately 32% when 0.5% Tween 80 was used. The changes in IGT expression correlated with the intestinal absorption of gastrodin. A significant increase in the expression of IGTs was observed at 0.5% Tween 80. In conclusion, Poloxamer 188 had minimal effect on the drug transport capacity of IGTs within the recommended limits of use. However, the expression of IGTs increased in response to 0.5% Tween 80, which significantly enhanced the drug transport capacity of IGTs. However, 0.1% and 2.0% Tween 80 had no significant effect.


Asunto(s)
Absorción Intestinal , Mucosa Intestinal , Poloxámero , Polisorbatos , Ratas Sprague-Dawley , Tensoactivos , Animales , Poloxámero/farmacología , Polisorbatos/farmacología , Ratas , Absorción Intestinal/efectos de los fármacos , Masculino , Tensoactivos/farmacología , Transporte Biológico/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucósidos/farmacología
2.
Colloids Surf B Biointerfaces ; 241: 114066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954938

RESUMEN

Octacosanol has various biological effects such as antioxidant, hypolipidemic and anti-fatigue. However, poor solubility has limited the application of octacosanol in food. The aim of this study was to prepare octacosanol nanoemulsions with better solubility, stability and safety and to investigate in vivo anti-fatigue effect. The food-grade formulation of the octacosanol nanoemulsions consisted of octacosanol, olive oil, Tween 80, glycerol and water with 0.1 %, 1.67 %, 23.75 %, 7.92 % and 66.65 % (w/w), respectively. The nanoemulsions had an average particle size of 12.26 ± 0.76 nm and polydispersity index of 0.164 ± 0.12, and showed good stability under different pH, cold, heat, ionic stress and long-term storage conditions. The results of animal experiments showed that the octacosanol nanoemulsions significantly prolonged the fatigue tolerance time, alleviated the fatigue-related biochemical indicators, and weakened the oxidative stress. Meanwhile, octacosanol nanoemulsions upregulated hepatic glycogen levels. Taken together, these findings suggested that octacosanol nanoemulsions have promising applications as anti-fatigue functional foods.


Asunto(s)
Emulsiones , Fatiga , Alcoholes Grasos , Emulsiones/química , Animales , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Fatiga/tratamiento farmacológico , Tamaño de la Partícula , Masculino , Agua/química , Estrés Oxidativo/efectos de los fármacos , Ratas , Antioxidantes/farmacología , Antioxidantes/química , Ratas Sprague-Dawley , Solubilidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Glucógeno/metabolismo , Glucógeno/química , Polisorbatos/química , Polisorbatos/farmacología , Nanopartículas/química
3.
Acta Biochim Pol ; 71: 13014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027262

RESUMEN

Fatty acid profiles are crucial for the functionality and viability of lactobacilli used in food applications. Tween 80™, a common culture media additive, is known to influence bacterial growth and composition. This study investigated how Tween 80™ supplementation impacts the fatty acid profiles of six mesophilic lactobacilli strains (Lacticaseibacillus spp., Limosilactobacillus spp., Lactiplantibacillus plantarum). Analysis of eleven strains revealed 29 distinct fatty acids. Tween 80™ supplementation significantly altered their fatty acid composition. Notably, there was a shift towards saturated fatty acids and changes within the unsaturated fatty acid profile. While some unsaturated fatty acids decreased, there was a concurrent rise in cyclic derivatives like lactobacillic acid (derived from vaccenic acid) and dihydrosterculic acid (derived from oleic acid). This suggests that despite the presence of Tween 80™ as an oleic acid source, lactobacilli prioritize the synthesis of these cyclic derivatives from precursor unsaturated fatty acids. Myristic acid and dihydrosterculic acid levels varied across strains. Interestingly, palmitic acid content increased, potentially reflecting enhanced incorporation of oleic acid from Tween 80™ into membranes. Conversely, cis-vaccenic acid levels consistently decreased across all strains. The observed fatty acid profiles differed from previous studies, likely due to a combination of factors including strain-specific variations and growth condition differences (media type, temperature, harvesting point). However, this study highlights the consistent impact of Tween 80™ on the fatty acid composition of lactobacilli, regardless of these variations. In conclusion, Tween 80™ significantly alters fatty acid profiles, influencing saturation levels and specific fatty acid proportions. This work reveals key factors, including stimulated synthesis of lactobacillic acid, competition for oleic acid incorporation, and strain-specific responses to myristic and dihydrosterculic acids. The consistent reduction in cis-vaccenic acid and the presence of cyclic derivatives warrant further investigation to elucidate their roles in response to Tween 80™ supplementation.


Asunto(s)
Ácidos Grasos , Lactobacillus , Polisorbatos , Polisorbatos/farmacología , Ácidos Grasos/metabolismo , Lactobacillus/metabolismo , Ácidos Oléicos/metabolismo , Ácido Mirístico/metabolismo , Ácido Oléico/metabolismo , Medios de Cultivo/química , Ácido Palmítico/metabolismo , Ácidos Grasos Insaturados/metabolismo
4.
Biol Pharm Bull ; 47(5): 997-999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38777759

RESUMEN

Patch tests are often used in safety evaluations to identify the substance causing skin irritation, but the same substance can sometimes give positive or negative results depending on the test conditions. Here, we investigated differences in the skin penetration of two test compounds under different application conditions. We studied the effects of the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant polysorbate 80 (PS) on skin penetration of the preservatives methylisothiazolinone (MT) and methylchloroisothiazolinone (MCT), which are used in cosmetics such as shampoos. The skin permeation of MT was enhanced by SDS but was unchanged by PS. Skin impedance decreased in the presence of SDS whereas PS had the same effect as the control aqueous solution, suggesting that SDS reduction of the barrier function of skin affects the permeation of MT, a hydrophilic drug. Application of a mixture of MCT and MT in the presence of SDS did not affect the skin permeation of MCT whereas the permeation of MT was enhanced by SDS, indicating that the skin permeation of MCT is less affected by SDS than is MT. Thus, attention should be paid to the possible effect of co-solutes, especially hydrophilic drugs.


Asunto(s)
Polisorbatos , Absorción Cutánea , Piel , Dodecil Sulfato de Sodio , Tensoactivos , Tiazoles , Tiazoles/farmacocinética , Tensoactivos/farmacología , Absorción Cutánea/efectos de los fármacos , Polisorbatos/farmacología , Piel/metabolismo , Piel/efectos de los fármacos , Animales , Conservadores Farmacéuticos , Porcinos , Cosméticos/farmacocinética , Impedancia Eléctrica , Permeabilidad/efectos de los fármacos
5.
Int J Pharm ; 656: 124120, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621613

RESUMEN

While various non-ionic surfactants at low concentrations have been shown to increase the transport of P-gp substrates in vitro, in vivo studies in rats have shown that a higher surfactant concentration is needed to increase the oral absorption of e.g. the P-gp substrates digoxin and etoposide. The aim of the present study was to investigate if intestinal digestion of surfactants could be the reason for this deviation between in vitro and in vivo data. Therefore, Kolliphor EL, Brij-L23, Labrasol and polysorbate 20 were investigated for their ability to inhibit P-gp and increase digoxin absorption in vitro. Transport studies were performed in Caco-2 cells, while P-gp inhibition and cell viability assays were performed in MDCKII-MDR1 cells. Polysorbate 20, Kolliphor EL and Brij-L23 increased absorptive transport and decreased secretory digoxin transport in Caco-2 cells, whereas only polysorbate 20 and Brij-L23 showed P-gp inhibiting properties in the MDCKII-MDR1 cells. Polysorbate 20 and Brij-L23 were chosen for in vitro digestion prior to transport- or P-gp inhibiting assays. Brij-L23 was not digestible, whereas polysorbate 20 reached a degree of digestion around 40%. Neither of the two surfactants showed any significant difference in their ability to affect absorptive or secretory transport of digoxin after pre-digestion. Furthermore, the P-gp inhibiting effects of polysorbate 20 were not decreased significantly. In conclusion, the mechanism behind the non-ionic surfactant mediated in vitro P-gp inhibition seemed independent of the intestinal digestion and the results presented here did not suggest it to be the cause of the observed discrepancy between in vitro and in vivo.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Digoxina , Polisorbatos , Tensoactivos , Animales , Perros , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Digestión/efectos de los fármacos , Digoxina/farmacocinética , Glicéridos/metabolismo , Absorción Intestinal/efectos de los fármacos , Células de Riñón Canino Madin Darby , Polisorbatos/farmacología , Tensoactivos/farmacología
6.
Brain Behav Immun ; 119: 171-187, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38565398

RESUMEN

Gut microbial homeostasis is crucial for the health of cognition in elderly. Previous study revealed that polysorbate 80 (P80) as a widely used emulsifier in food industries and pharmaceutical formulations could directly alter the human gut microbiota compositions. However, whether long-term exposure to P80 could accelerate age-related cognitive decline via gut-brain axis is still unknown. Accordingly, in this study, we used the senescence accelerated mouse prone 8 (SAMP8) mouse model to investigate the effects of the emulsifier P80 intake (1 % P80 in drinking water for 12 weeks) on gut microbiota and cognitive function. Our results indicated that P80 intake significantly exacerbated cognitive decline in SAMP8 mice, along with increased brain pathological proteins deposition, disruption of the blood-brain barrier and activation of microglia and neurotoxic astrocytes. Besides, P80 intake could also induce gut microbiota dysbiosis, especially the increased abundance of secondary bile acids producing bacteria, such as Ruminococcaceae, Lachnospiraceae, and Clostridium scindens. Moreover, fecal microbiota transplantation from P80 mice into 16-week-old SAMP8 mice could also exacerbated cognitive decline, microglia activation and intestinal barrier impairment. Intriguingly, the alterations of gut microbial composition significantly affected bile acid metabolism profiles after P80 exposure, with markedly elevated levels of deoxycholic acid (DCA) in serum and brain tissue. Mechanically, DCA could activate microglial and promote senescence-associated secretory phenotype production through adenosine triphosphate-binding cassette transporter A1 (ABCA1) importing lysosomal cholesterol. Altogether, the emulsifier P80 accelerated cognitive decline of aging mice by inducing gut dysbiosis, bile acid metabolism alteration, intestinal barrier and blood brain barrier disruption as well as neuroinflammation. This study provides strong evidence that dietary-induced gut microbiota dysbiosis may be a risk factor for age-related cognitive decline.


Asunto(s)
Barrera Hematoencefálica , Disfunción Cognitiva , Disbiosis , Emulsionantes , Microbioma Gastrointestinal , Polisorbatos , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Polisorbatos/farmacología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Emulsionantes/metabolismo , Emulsionantes/farmacología , Disbiosis/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Envejecimiento/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Microglía/metabolismo , Microglía/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Cognición/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo
7.
Curr Pharm Des ; 30(14): 1075-1084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532602

RESUMEN

BACKGROUND: Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE: This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS: The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS: The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION: The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.


Asunto(s)
Antineoplásicos , Proliferación Celular , Glioblastoma , Monoterpenos , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proliferación Celular/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sistemas de Liberación de Medicamentos , Polisorbatos/química , Polisorbatos/farmacología , Composición de Medicamentos , Tamaño de la Partícula , Relación Dosis-Respuesta a Droga , Aceites de Plantas/farmacología , Aceites de Plantas/química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Células Tumorales Cultivadas
8.
J Appl Biomater Funct Mater ; 22: 22808000241235442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497242

RESUMEN

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.


Asunto(s)
Berberina , Carcinoma , Curcumina , Neoplasias Pulmonares , Humanos , Apoptosis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Carcinoma/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Quimioterapia Combinada , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanomedicina , Polisorbatos/farmacología
9.
ACS Appl Bio Mater ; 7(3): 1501-1512, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38418375

RESUMEN

The aim of this study was to explore the suitability of Tween-80 or DNase I adsorbed onto the surface of gentamicin-loaded solid lipid nanoparticles (SLNs) to disrupt Staphylococcus aureus biofilms in vitro. We hypothesized that surface-adsorbed DNase I or Tween-80 of SLNs will degrade the biofilm component, extracellular DNA (e-DNA), and extracellular matrix (ECM) of S. aureus biofilms. The SLNs loaded with drug (core) and surface-adsorbed disruptors (Tween-80 or DNase I) to deliver biofilm disruptors first at the site of action, which will help to break down the biofilm, and further drug release from the core will easily penetrate the biofilm and facilitate the killing of bacteria residing in S. aureus biofilms. The SLNs were synthesized by the double emulsion method; the size was 287.3 ± 7.4 nm for blank SLNs and 292.4 ± 2.36 nm for drug-loaded SLNs. The ζ-potential of blank SLNs was -25.6 ± 0.26 mV and that of drug-loaded SLNs was -13.16 ± 0.51 mV, respectively. The successful adsorption of DNase I or Tween-80 was confirmed by the activity of DNase I in blank surface-adsorbed SLNs and the change in the ζ-potential of SLNs after adsorbing DNase I or Tween-80. The surface morphology and size of the SLNs were further characterized using scanning electron microscopy. The encapsulation efficiency of the drug was 16.85 ± 0.84%. The compatibility of the drug with the excipient was confirmed by Fourier transform infrared spectroscopy and the degree of crystallinity was confirmed by X-ray diffraction (XRD) analysis. SLNs showed a sustained release of the drug up to 360 h. SLNs were easily taken up by A549 cells with minimal or no toxicity. The present study showed that Tween-80- or DNase I-adsorbed SLNs efficiently disrupt S. aureus biofilms and possess no or minimal toxicity against cells and red blood cells (RBCs).


Asunto(s)
Desoxirribonucleasas , Liposomas , Nanopartículas , Staphylococcus aureus , Polisorbatos/farmacología , Desoxirribonucleasa I , Biopelículas , ADN
10.
Int J Pharm ; 653: 123903, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38350500

RESUMEN

Phospholipids are versatile formulation compounds with high biocompatibility. However, no data on their effect on skin in combination with UVA radiation exist. Thus, it was the aim of this work to (i) develop o/w nanoemulsions (NEs) differing in surfactant type and to investigate their physicochemical stability at different storage temperatures, (ii) establish a standardized protocol for in vitro phototoxicity testing using primary human skin cells and (iii) investigate the phototoxicity of amphoteric phospholipids (S45, S75, E80, S100, LPC80), sodium lauryl ether sulfate (SLES) and polysorbate 80 (PS80). Satisfying systems were developed with all surfactants except S100 due to low zeta potential (-21.4 mV ± 4.69). SLES and PS80-type NEs showed the highest stability after eight weeks; temperature-dependent variations in storage stability were most noticeable for phospholipid surfactants. For phospholipid-based NEs, higher phosphatidylcholine content led to unstable formulations. Phototoxicity assays with primary skin fibroblasts confirmed the lack of UVA-related phototoxicity but revealed cytotoxic effects of LPC80 and SLES, resulting in cell viability as low as 2.7 % ±0.78 and 1.9 % ±1.57 compared to the control. Our findings suggest that surfactants S45, S75 and PS80 are the most promising candidates for skin-friendly emulsifiers in sensitive applications involving exposure to UV light.


Asunto(s)
Dermatitis Fototóxica , Tensoactivos , Humanos , Tensoactivos/química , Polisorbatos/farmacología , Rayos Ultravioleta , Fosfolípidos , Emulsiones/farmacología , Piel
11.
Braz J Biol ; 84: e278013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422288

RESUMEN

Colloidal systems have been used to encapsulate, protect and release essential oils in mouthwashes. In this study, we investigated the effect of cetylpyridinium chloride (CPC) on the physicochemical properties and antimicrobial activity of oil-in-water colloidal systems containing tea tree oil (TTO) and the nonionic surfactant polysorbate 80. Our main aim was to evaluate whether CPC could improve the antimicrobial activity of TTO, since this activity is impaired when this essential oil is encapsulated with polysorbate 80. These systems were prepared with different amounts of TTO (0-0.5% w/w) and CPC (0-0.5% w/w), at a final concentration of 2% (w/w) polysorbate 80. Dynamic light scattering (DLS) results revealed the formation of oil-swollen micelles and oil droplets as a function of TTO concentration. Increases in CPC concentrations led to a reduction of around 88% in the mean diameter of oil-swollen micelles. Although this variation was of only 20% for the oil droplets, the samples appearance changed from turbid to transparent. The surface charge of colloidal structures was also markedly affected by the CPC as demonstrated by the transition in zeta potential from slightly negative to highly positive values. Electron paramagnetic resonance (EPR) studies showed that this transition is followed by significant increases in the fluidity of surfactant monolayer of both colloidal structures. The antimicrobial activity of colloidal systems was tested against a Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureaus) bacteria. Our results revealed that the inhibition of bacterial growth is observed for the same CPC concentration (0.05% w/w for E. coli and 0.3% w/w for S. aureus) regardless of TTO content. These findings suggest that TTO may not act as an active ingredient in polysorbate 80 containing mouthwashes.


Asunto(s)
Aceites Volátiles , Aceite de Árbol de Té , Emulsiones/química , Emulsiones/farmacología , Polisorbatos/farmacología , Polisorbatos/química , Micelas , Staphylococcus aureus , Escherichia coli , Antisépticos Bucales/farmacología , Tensoactivos/farmacología , Tensoactivos/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Aceite de Árbol de Té/farmacología
12.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 680-690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38223976

RESUMEN

Emulsifiers are essential for achieving a homogenous distribution of lipophilic supplements in in vitro rumen fluid incubations. Since emulsifiers can alter rumen fermentation, it is crucial to select one that minimally impacts fermentation parameters to reduce potential biases. This study aimed to evaluate seven emulsifiers' impact on in vitro ruminal fermentation using the Hohenheim Gas Test in order to identify the most inert emulsifier. Rumen fluids were collected from three non-lactating Original Brown-Swiss cannulated cows before morning feeding and incubated for 24 h with a basal diet in triplicates. The emulsifiers tested were ethanol, ethyl acetate, propylene glycol, glycerol, ethylene glycol, soy lecithin, and Tween® 80, each in two dosages (0.5% or 1% v/v). The untreated basal diet served as control. Compared to control, in vitro organic matter digestibility was enhanced by ethyl acetate (by 36.9 and 48.2%), ethylene glycol (by 20.6 and 20.1%), glycerol (by 46.9 and 56.8%) and soy lecithin (by 19.7 and 26.8%) at 0.5 and 1% dosage, respectively. Additionally, the 24-h methane production increased for ethanol (by 41.9 and 46.2%), ethylene glycol (by 50.5 and 51.5%), and glycerol (by 63.1 and 65.4%) for the 0.5 and 1% dosage, respectively, and 0.5% dosage for ethyl acetate (by 31.6%). The acetate molar proportion was 17.2%pt higher for ethyl acetate, and 25.5%pt lower for glycerol at 1% dosage, compared to the control. The propionate concentration was 22.1%pt higher 1% glycerol, and 15.2%pt and 15.1%pt higher for 0.5 and 1% propylene glycol, respectively, compared to the control. In summary, Tween® 80 did not significantly affect in vitro rumen fermentation parameters, making it the most suitable choice for in vitro incubations involving lipophilic substances in rumen fluid. Ethanol may be considered as an alternative emulsifier if methane production is not the variable of interest.


Asunto(s)
Emulsionantes , Fermentación , Polisorbatos , Rumen , Animales , Rumen/metabolismo , Bovinos , Polisorbatos/farmacología , Polisorbatos/química , Emulsionantes/química , Emulsionantes/farmacología , Femenino , Alimentación Animal/análisis
13.
Sci Rep ; 14(1): 1699, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242960

RESUMEN

In recent times, the methods used to evaluate gastric ulcer healing worldwide have been based on visual examinations and estimating ulcer dimensions in experimental animals. In this study, the protective effect of rhodanine and 2,4-thiazolidinediones scaffolds compared to esomeprazole was investigated in an ethanol model of stomach ulcers in rats. Pretreatment with experimental treatments or esomeprazole prevented the development of ethanol-induced gastric ulcers. The severity of the lesions and injuries was significantly lower than that of vehicle (10% Tween 80) treated rats. Significant and excellent results were obtained with the compound 6 group, with inhibition percentage and ulcer area values of 97.8% and 12.8 ± 1.1 mm2, respectively. Synthesized compounds 2, 7 and 8 exhibited inhibition percentages and ulcer areas of 94.3% and 31.2 ± 1.1 mm2, 91. 3% and 48.1 ± 0. 8 mm2, 89. 5% and 57. 6 ± 1. 2 mm2, and 89. 1% and 60.3 ± 0. 8 mm2, respectively. These biological outcomes are consistent with the docking studies in which Compounds 7 and 8 showed remarkable binding site affinities toward human H+/K+-ATPase α protein (ID: P20648), rat H+/K+-ATPase α protein (ID: P09626), and Na+/K+-ATPase crystal structure (PDB ID:2ZXE) with binding site energies of - 10.7, - 9.0, and - 10.4 (kcal/mol) and - 8.7, - 8.5, and - 8.0 (kcal/mol), respectively. These results indicate that these test samples were as effective as esomeprazole. Likewise, immunohistochemical staining of antiapoptotic (BCL2) and tumor suppressor (P53) proteins showed strong positive marks in the10% Tween 80- treated group, opposing the mild staining results for the esomeprazole-treated group. Similarly, the staining intensity of the group treated with Compounds 2-8 was variable for both proteins.


Asunto(s)
Antiulcerosos , Rodanina , Úlcera Gástrica , Tiazolidinedionas , Humanos , Ratas , Animales , Esomeprazol/uso terapéutico , Rodanina/metabolismo , Rodanina/farmacología , Rodanina/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Mucosa Gástrica/metabolismo , Antiulcerosos/uso terapéutico , Úlcera/patología , Polisorbatos/farmacología , Tiazolidinedionas/uso terapéutico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Extractos Vegetales/farmacología , Etanol/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfatasas/metabolismo
14.
J Food Sci ; 89(2): 1211-1224, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224194

RESUMEN

Salmonella has been associated with numerous outbreaks from contaminated food products, including emulsions. Emulsions are influenced by emulsifier type and oil presence, which can have varying degrees of stress or protection on bacteria. Although our previous research has shown that emulsifier solutions, rather than emulsions, provide a protective effect on Salmonella typhimurium after thermal treatment, the underlying mechanism remains unclear. This study selected S. typhimurium as the model microorganism and utilized the same emulsifiers (Tween 20, Tween 80, Triton X-100) to create emulsifier solutions and emulsions with the same oil fraction (60% (v/v)) to examine their effect on the expression of nine selected genes (rpoE, rpoH, otsB, proV, fadA, fabA, dnaK, ibpA, ompC) associated with stress response. Specifically, the study observed variations in gene expression under normal and thermal stress at 55°C. After 20-h incubation, Triton X-100 emulsion caused an upregulation of stress-related genes, rpoE, otsB, and fabA, suggesting stressful environment. After thermal treatment, S. typhimurium in Triton X-100 solution showed a longer 5-log reduction time with increased proV and decreased fabA and ompC expression, suggesting enhanced thermal protection compared to its emulsion. Conversely, Tween 80 solution increased fabA and ompC expression, indicating greater membrane fluidity and passive diffusion, potentially reducing thermal resistance. However, according to the upregulation of ibpA, this effect was likely mitigated by the overproduction of heat shock proteins. Notably, Triton X-100 environments exhibited the most significant gene expression changes after heat treatment, whereas Tween 80 without oil was the most inhospitable for bacterial survival. These findings inform bacterial responses under various conditions, aiding food safety strategies.


Asunto(s)
Polisorbatos , Salmonella typhimurium , Emulsiones , Polisorbatos/farmacología , Salmonella typhimurium/genética , Octoxinol/farmacología , Emulsionantes , Agua , Expresión Génica
15.
Vet Parasitol ; 327: 110112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38246120

RESUMEN

The present study evaluated, in laboratory and field, the efficacy and safety of formulations of Pelargonium graveolens (geranium - G), Origanum majorana (oregano - O) commercial essential oils (EO) and thymol (T) to control of Rhipicephalus sanguineus sensu lato. In the laboratory, three formulas (A: 2% tween 80%, B: powder and C: nanoemulsion) by a mixture of these components (GOT) were prepared and evaluated, and the best one was used to assess its safety and field application against R. sanguineus s. l. on naturally infested dogs. Besides the major compounds of the EO used were identified. The results of the lab study showed that formula A (2.5 g of each G + O + T + 2% tween 80 to complete 100 mL) was significantly more effective than the other two formulas tested and exhibited highly effective adulticidal, larvicidal, and ovicidal activity against R. sanguineus s.l. Significant LC50 and LC90 values of GOT were evaluated (13.4 and 21.5 mg/mL, respectively) for the adulticidal activity, (2.81 and 4.46 mg/mL, respectively) for ovicidal activity and (2.44 and 4.45 mg/mL, respectively) for larvicidal activity. The safety of formula A has been proven by the absence of its cytotoxicity on a cell line of human epidermoid carcinoma. Citronella and carvacrol were the major compounds identified in the commercial essential oils of P. graveolens and O. majorana, respectively. Formula A was used in a field control trial for almost 8 months, during the tick infestation season (April to November, 2022). Fourteen naturally infested dogs were divided into two groups, each with seven dogs. One group received formula A spraying five times during an experiment that continued for 8 months, while the other group received treatment with commercially available malathion acaricide. The animals were sprayed on five occasions throughout the experiment (April, June, July, August, and September). The results showed a substantial percentage of effectiveness after the first application of formula A with a 99.3% reduction in tick count at day 28 post-application (PA). In the case of severe infestation 60 days after the first application of formula A (more than 180 ticks per dog), the second application was done, achieving an efficacy of 54.9% at day 3 PA, so an emergency spray was done at day 5 PA to combat the rest of the tick infestation, achieving efficacy of 99% after 3 days. Consequently, a regular spray (third, fourth, and fifth application) was done every 35 days. This regular spray revealed 100% effectiveness at 14 days PA. Biochemical parameters of treated dogs were evaluated to confirm the safety of formula A. Creatinine, ALT, and albumin of the dogs treated with formula A were within the normal range of dogs, while urea and AST were higher than the normal range. In conclusion, formula A can safely treat R. sanguineus s.l. infestations in dogs with regular application every 5 weeks.


Asunto(s)
Enfermedades de los Perros , Geranium , Aceites Volátiles , Origanum , Rhipicephalus sanguineus , Infestaciones por Garrapatas , Perros , Humanos , Animales , Timol/farmacología , Infestaciones por Garrapatas/tratamiento farmacológico , Infestaciones por Garrapatas/prevención & control , Infestaciones por Garrapatas/veterinaria , Polisorbatos/farmacología , Aceites Volátiles/farmacología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/prevención & control
16.
Appl Biochem Biotechnol ; 196(3): 1558-1569, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37432640

RESUMEN

This study is aimed to evaluating the potential of tween-80 and artificial lung surfactant (ALS) to destabilize S. aureus biofilm. The biofilm destabilization was studied by crystal violet staining, bright field microscopy, and scanning electron microscopy (SEM). During the study, S. aureus biofilm was exposed with tween-80 along various concentrations (1%, 0.1%, and 0.05%) or LS (lung surfactant) at (2.5%, 5%, and 15%) for 2 hrs. It was observed that 0.1% of tween-80 destabilized 63.83 ± 4.35% and 15% ALS 77 ± 1.7% biofilm in comparison to without treatment. The combination of tween-80 and ALS was used and showed a synergistic effect to destabilize 83.4 ± 1.46% biofilm. These results showed the potential of tween-80 and ALS as biofilm disruptors, which further needs to explore in an in-vivo animal model to access the actual potential of biofilm disruption in natural conditions. This study could play a pivotal role to overcome the problem of antibiotic resistance imposed due to biofilm formation to combat antibiotic resistance imposed by bacteria.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Polisorbatos/farmacología , Biopelículas , Infecciones Estafilocócicas/microbiología , Tensoactivos/farmacología , Resistencia a Medicamentos , Pulmón
17.
Clin Oral Investig ; 27(12): 7247-7259, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999802

RESUMEN

OBJECTIVES: To comparatively evaluate the nisin-incorporated ethylenediamine tetraacetic acid (N-EDTA) and MTAD on cytotoxicity, endodontic biofilm eradication potential, smear layer removal ability, and sealer penetration depth. MATERIALS AND METHODS: N-EDTA was prepared and characterized using high-performance liquid chromatography (HPLC). Minimum inhibitory, minimum bactericidal, and minimum biofilm inhibitory concentration (MBC, MIC, and MBIC) were determined on Enterococcus faecalis (E. faecalis) strain. The cytocompatibility of N-EDTA and MTAD was evaluated using 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colorimetric assay. Dentin specimens (n = 88 for antibacterial analysis, n = 170 for sealer penetration depth) were prepared and subjected to the classical irrigating strategy and obturation, respectively. The scanning electron microscopic evaluation (SEM) was done for the evaluation of biofilm disruption and smear layer removal. Confocal laser scanning microscopy (CLSM) evaluation was done for determining percentage of bacterial viability and sealer penetration depth. Statistical analysis of one-way ANOVA and Tukey's HSD post hoc tests for bacterial viability and Kruskal-Wallis test and Mann-Whitney test for smear layer removal and depth of penetration were done with the significance level set at p < 0.05. RESULTS: MTAD and N-EDTA showed cytocompatibility without any statistical differences from each other. For N-EDTA, the MIC and MBC values were 12.5 µg/ml (1:8), and MBIC values were 36 µg/ml. Biofilm disruption and killed bacterial percentage of N-EDTA was statistically higher than MTAD, whereas both the materials showed similar efficacy in the removal of the smear layer and sealer penetration depth. CONCLUSION: N-EDTA had negligible cytotoxicity with similar smear layer removal ability, sealer penetration, and better antibiofilm potential than MTAD. CLINICAL RELEVANCE: N-EDTA can serve as a viable alternative endodontic irrigant.


Asunto(s)
Nisina , Capa de Barro Dentinario , Humanos , Ácido Edético/farmacología , Ácido Edético/química , Doxiciclina , Nisina/farmacología , Polisorbatos/farmacología , Antibacterianos/farmacología , Biopelículas , Irrigantes del Conducto Radicular/farmacología
18.
Sci Rep ; 13(1): 19942, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968340

RESUMEN

The present study hypothesises that the selective brain ß2 receptor activation through ß2-adrenoreceptor agonist (ß2ARA), Formoterol (FMT), suppresses SNCA gene expression, a pathological hallmark of Parkinson's disease (PD) in brain. Further, it is also hypothesized that brain targeted delivery of Formoterol via polysorbate-80 surface modified solid lipid nanoparticles of Formoterol (FMT-SLNs-PS80) can improve its stability, therapeutic efficacy and avoid/reduce peripheral off-target side effects. FMT-SLNs-PS80 was prepared by solvent injection method, the formulation was optimized by using Box-Behnken design and characterized by measuring drug content, entrapment efficacy, particle size, zeta potentials and poly dispersibility. The FMT-SLNs-PS80, significantly decreases the SNCA expression, mitochondrial membrane damage and rotenone induced changes in oxidative (SOD, CAT, GSH and ROS) stress markers in SH-SY5Y cell lines. The ex vivo permeation study of the formulation using everted chicken ileum exhibited a steady state flux. The pharmacokinetic and tissue distribution studies of the formulation in rats showed a significant improvement in the kinetic parameters when compared to naïve FMT, further the formulation also improved the brain bioavailability of FMT. The anti-Parkinson's efficacy studies of the formulation in mice showed a significant neuroprotection against rotenone-induced changes in behavioural and biochemical parameters. Further, the histopathological analysis of mice brain confirms a significant neuroprotective benefit. The present study successfully establishes the brain targeted delivery and anti-Parkinson's therapeutic efficacy of FMT-SLNs-PS80.


Asunto(s)
Nanopartículas , Neuroblastoma , Enfermedad de Parkinson , Ratas , Ratones , Humanos , Animales , Polisorbatos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Rotenona/farmacología , Lípidos/química , alfa-Sinucleína/farmacología , Nanopartículas/química , Estrés Oxidativo , Expresión Génica , Tamaño de la Partícula , Portadores de Fármacos/química
19.
J Food Sci ; 88(11): 4664-4676, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37830876

RESUMEN

High water activity oil-in-water emulsions can promote survival and growth of Salmonella Typhimurium. Nevertheless, the precise effect of emulsifier type and oil content on bacterial growth and inactivation is not fully understood. Here, emulsions were prepared using different emulsifiers (Tween 20, Tween 80, and Triton X-100) and different oil fractions (20%, 40%, and 60% (v/v)). TSB (control), emulsifier solutions, and emulsions were inoculated with S. Typhimurium. Bacterial growth rate was measured at 7, 22, and 37°C, whereas thermal inactivation was performed at 55°C. Growth and inactivation data was fitted into Logistic and Weibull models, respectively. At an incubation temperature of 37°C, the presence of high amount of oil (60%) in Tween 20 and Triton X stabilized emulsions extended the lag phase (5.83 ± 2.20 and 9.43 ± 1.07 h, respectively, compared to 2.28 ± 1.54 h for TSB, p < 0.05), whereas individual emulsifiers had no effect on growth behavior compared to TSB. This effect was also prevalent but attenuated at 22°C, whereas no growth was observed at 7°C. In thermal inactivation, we observed protective effect in Tween 80 and Triton X-100 solutions, where time required for five-log reduction was 1914.70 ± 706.35 min and 795.34 ± 420.09 min, respectively, compared to 203.89 ± 10.18 min for TSB (p < 0.05). Interestingly, the presence of high amount of oil did not offer protective effect during thermal inactivation. We hypothesize that oleic acid in Tween 80 and lower hydrophobicity value of Triton X-100 help maintain membrane integrity and improve the resistance of bacteria to heat inactivation.


Asunto(s)
Polisorbatos , Salmonella typhimurium , Emulsiones , Polisorbatos/farmacología , Octoxinol , Emulsionantes/farmacología , Agua
20.
PLoS Biol ; 21(9): e3002289, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37725584

RESUMEN

Dietary emulsifiers, including carboxymethylcellulose (CMC) and polysorbate 80 (P80), perturb gut microbiota composition and gene expression, resulting in a microbiota with enhanced capacity to activate host pro-inflammatory gene expression and invade the intestine's inner mucus layer. Such microbiota alterations promote intestinal inflammation, which can have a variety of phenotypic consequences including increased adiposity. Bacterial flagellin is a key mediator of emulsifiers' impact in that this molecule enables motility and is itself a pro-inflammatory agonist. Hence, we reasoned that training the adaptive mucosal immune system to exclude microbes that express flagellin might protect against emulsifiers. Investigating this notion found that immunizing mice with flagellin elicited an increase in mucosal anti-flagellin IgA and IgA-coated microbiota that would have otherwise developed in response to CMC and P80 consumption. Yet, eliciting these responses in advance via flagellin immunization prevented CMC/P80-induced increases in microbiota expression of pro-inflammatory agonists including LPS and flagellin. Furthermore, such immunization prevented CMC/P80-induced microbiota encroachment and deleterious pro-inflammatory consequences associated therewith, including colon shortening and increased adiposity. Hence, eliciting mucosal immune responses to pathobiont surface components, including flagellin, may be a means of combatting the array of inflammatory diseases that are promoted by emulsifiers and perhaps other modern microbiota stressors.


Asunto(s)
Microbiota , Vacunación , Animales , Ratones , Inmunización , Dieta , Obesidad , Flagelina , Polisorbatos/farmacología , Inmunoglobulina A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...