Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros













Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731567

RESUMEN

A neutral Polygonatum cyrtonema polysaccharide (NPCP) was isolated and purified from Polygonatum cyrtonema by various chromatographic techniques, including DEAE-52 and Sephadex-G100 chromatography. The structure of NPCP was characterized by HPLC, HPGPC, GC-MS, FT-IR, NMR, and SEM. Results showed that NPCP is composed of glucose (55.4%) and galactose (44.6%) with a molecular weight of 3.2 kDa, and the sugar chain of NPCP was →1)-α-D-Glc-(4→1)-ß-D-Gal-(3→. In vitro bioactivity experiments demonstrated that NPCP significantly enhanced macrophages proliferation and phagocytosis while inhibiting the M1 polarization induced by LPS as well as the M2 polarization induced by IL-4 and IL-13 in macrophages. Additionally, NPCP suppressed the secretion of IL-6 and TNF-α in both M1 and M2 cells but promoted the secretion of IL-10. These results suggest that NPCP could serve as an immunomodulatory agent with potential applications in anti-inflammatory therapy.


Asunto(s)
Macrófagos , Fagocitosis , Polygonatum , Polisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Polygonatum/química , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Animales , Fagocitosis/efectos de los fármacos , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Células RAW 264.7 , Citocinas/metabolismo , Proliferación Celular/efectos de los fármacos , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/aislamiento & purificación , Peso Molecular
2.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792110

RESUMEN

Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.


Asunto(s)
Vías Biosintéticas , Flavonoides , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolómica , Polygonatum , Transcriptoma , Flavonoides/biosíntesis , Flavonoides/metabolismo , Flavonoides/genética , Polygonatum/genética , Polygonatum/metabolismo , Polygonatum/química , Metabolómica/métodos , Vías Biosintéticas/genética , Perfilación de la Expresión Génica/métodos , Metaboloma
3.
Nutrients ; 16(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674858

RESUMEN

Polygonati Rhizoma (PR) has certain neuroprotective effects as a homology of medicine and food. In this study, systematic pharmacology, molecular docking, and in vitro experiments were integrated to verify the antidepressant active ingredients in PR and their mechanisms. A total of seven compounds in PR were found to be associated with 45 targets of depression. Preliminarily, DFV docking with cyclooxygenase 2 (COX2) showed good affinity. In vitro, DFV inhibited lipopolysaccharide (LPS)-induced inflammation of BV-2 cells, reversed amoeba-like morphological changes, and increased mitochondrial membrane potential. DFV reversed the malondialdehyde (MDA) overexpression and superoxide dismutase (SOD) expression inhibition in LPS-induced BV-2 cells and decreased interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6 mRNA expression levels in a dose-dependent manner. DFV inhibited both mRNA and protein expression levels of COX2 induced by LPS, and the activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) and caspase1 was suppressed, thus exerting an antidepressant effect. This study proves that DFV may be an important component basis for PR to play an antidepressant role.


Asunto(s)
Antidepresivos , Ciclooxigenasa 2 , Depresión , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Polygonatum , Rizoma , Polygonatum/química , Animales , Antidepresivos/farmacología , Rizoma/química , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Ratones , Depresión/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
4.
Int J Biol Macromol ; 266(Pt 2): 131440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593898

RESUMEN

Polygonatum kingianum Coll & Hemsl is an important Chinese medicine used for enhancing physical function and anti-fatigue, and polysaccharides (PKPs) are considered as the main bioactive components. However, the mechanisms through which PKPs exert their anti-fatigue effects are not fully understood. This study aimed more comprehensively to explore the anti-fatigue mechanisms of PKPs, focusing on metabolism, protein expression, and gut flora, by using exhaustive swimming experiments in mice. Results showed a significant increase in the exhaustive swimming time of the mice treated with PKPs, especially in the high-dose group (200 mg/kg/day). Further studies showed that PKPs remarkably improves several fatigue-related physiological indices. Additionally, 16S rRNA sequence analysis showed that PKPs increased antioxidant bacteria (e.g., g_norank_f_Muribaculaceae) and the production of short-chain fatty acids (SCFAs), while reducing the abundance of harmful bacteria (e.g., g_Escherichia-Shigella and g_Helicobacter). PKPs also mitigated oxidative stress through activating the NRF2/HO-1 signaling pathway, and promoted energy metabolism by upregulating the expression of AMPK/PGC-1α/TFAM signaling pathway proteins. This research may offer theoretical support for incorporating PKPs as a novel dietary supplement in functional foods targeting anti-fatigue properties.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fatiga , Microbioma Gastrointestinal , Factor 2 Relacionado con NF-E2 , Polygonatum , Polisacáridos , Transducción de Señal , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Fatiga/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Polygonatum/química , Polisacáridos/farmacología , Polisacáridos/química , Transducción de Señal/efectos de los fármacos
5.
Phytomedicine ; 129: 155567, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579644

RESUMEN

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Asunto(s)
Envejecimiento , Calcio , Homeostasis , Músculo Esquelético , Polygonatum , Polisacáridos , Especies Reactivas de Oxígeno , Animales , Polisacáridos/farmacología , Polygonatum/química , Ratones , Homeostasis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Envejecimiento/efectos de los fármacos , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/tratamiento farmacológico , Membranas Mitocondriales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Antioxidantes/farmacología , Membranas Asociadas a Mitocondrias
6.
Int J Biol Macromol ; 266(Pt 1): 131121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522692

RESUMEN

In our aging society, dysphagia and malnutrition are growing concerns, necessitating intervention. Liquid nutrition support offers a practical solution for traditional dietary issues, but it raises a key issue: the potential for post-meal glucose spikes impacting efficacy. This study examined the effects of supplementation of Polygonatum cyrtonema Hua polysaccharide (PCP), konjac glucomannan (KGM) and their combination on acute phase postprandial glycemic response and long-term glucose metabolism in T2DM mice on a complete nutritional liquid diet. KGM was more effective in reducing postprandial glucose response, while PCP was more prominent in ameliorating long-term glucose metabolism. The KGM-PCP combination demonstrated superior outcomes in fasting blood glucose, insulin, and glucose homeostasis. PCP and KGM also influenced the composition and abundance of the gut microbiome, with the H-PCP group showing optimal performance. Moreover, the KGM-PCP combination improved body weight, lipid homeostasis, and liver health the most. PCP potentially regulates glycemia through metabolic pathways, while KGM improves glycemic metabolism by reducing postprandial glucose levels in response to viscous intestinal contents. This research identifies the structure, viscosity properties, and hypoglycemic effects of KGM and PCP in complete nutritional liquid diet fed T2DM mice, enabling their strategic utilization as hypoglycemic components in nutritional administration and glycemic regulation.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Mananos , Polygonatum , Polisacáridos , Animales , Mananos/farmacología , Mananos/química , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/administración & dosificación , Glucemia/metabolismo , Polygonatum/química , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Insulina/sangre , Insulina/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/dietoterapia
7.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474549

RESUMEN

In this study, three homogeneous fractions, PSP-N-b-1, PSP-N-b-2, and PSP-N-c-1, were obtained from an aqueous extract of Polygonatum using DEAE cellulose column chromatography, CL-6B agarose gel chromatography, and Sephadex G100 chromatography. Their monosaccharide compositions and molecular weights were analyzed. The results revealed that PSP-N-b-1, PSP-N-b-2, and PSP-N-c-1 are primarily composed of six monosaccharides: Man (mannose), GlcA (glucuronic acid), Rha (rhamnose), GalA (galacturonic acid), Glc (glucose), and Ara (arabinose), with molecular weights of 6.3 KDa, 5.78 KDa, and 3.45 KDa, respectively. Furthermore, we observed that Polygonatum polysaccharides exhibited protective effects against CCL4-induced liver damage in HepG2 cells in vitro, operating through both anti-oxidant and anti-inflammatory mechanisms. Our research findings suggest that Polygonatum polysaccharides may emerge as a promising option in the development of hepatoprotective drugs or functional foods with anti-inflammatory and antioxidant properties.


Asunto(s)
Polygonatum , Humanos , Polygonatum/química , Monosacáridos , Antioxidantes/química , Polisacáridos/química , Antiinflamatorios
8.
Food Chem ; 448: 138959, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552464

RESUMEN

This study aimed to investigate the interaction between L.casei and L.bulgaricus with Polygonatum sibiricum saponins (PSS) and to explore the co-microencapsulation to reduce their loss rate during storage and consumption. 1% PSS was added to the culture broth, and it was found that the growth and metabolism of the strains were accelerated, especially in the compound probiotic group, indicating that PSS has potential for prebiotics. LC-MS observed significant differences in the composition and content of saponins in PSS. The metabolomics results suggest that the addition of PSS resulted in significant changes in the metabolites of probiotics. In addition, it was found that the combination of probiotics and PSS may have stronger hypoglycemic ability (ɑ-glucosidase, HepG2). Finally, a co-microencapsulated delivery system was constructed using zein and isomaltooligosaccharide. This system can achieve more excellent resistance of probiotics and PSS in gastrointestinal fluids, effectively transporting both to the small intestine.


Asunto(s)
Composición de Medicamentos , Polygonatum , Probióticos , Saponinas , Saponinas/química , Saponinas/metabolismo , Saponinas/farmacología , Humanos , Probióticos/metabolismo , Probióticos/química , Polygonatum/química , Polygonatum/metabolismo , Prebióticos/análisis , Lactobacillus/metabolismo , Lactobacillus/química , Lactobacillus/crecimiento & desarrollo , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Lactobacillales/química
9.
Int J Biol Macromol ; 261(Pt 2): 129863, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307425

RESUMEN

This study aimed to provide scientific evidence that Polygonatum polysaccharide can be developed as a dietary supplement and medication for treating liver injuries. A water-soluble polysaccharide (PSP-N-c-1), with an average molecular weight of 3.45 kDa, was isolated and purified from the water extract of Polygonatum using DEAE cellulose column chromatography, CL-6B agarose gel chromatography, and Sephadex G100 chromatography. High-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy analyses revealed that PSP-N-c-1 might be linear α-(1 â†’ 4)-glucans with α-Glcp residues linked to the backbone at C-6. In vitro experiments revealed that PSP-N-c-1 exhibited protective effects against CCl4-induced damage in HepG2 cells. In vivo experiments demonstrated that PSP-N-c-1 exhibited a hepatoprotective effect by enhancing antioxidant enzyme activity, inhibiting lipid peroxidation, and reducing the activity of pro-inflammatory mediators. Besides, PSP-N-c-1 could attenuate oxidative stress and inflammatory responses by activating the Nrf2-mediated signaling pathways and regulating the TLR4-mediated NF-κB signaling pathways. These findings demonstrated that PSP-N-c-1 may serve as a supplement for alleviating chemical liver damage.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Polygonatum , FN-kappa B/metabolismo , Polygonatum/química , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Transducción de Señal , Antioxidantes , Hígado , Polisacáridos/química , Agua/metabolismo
10.
J Hazard Mater ; 466: 133639, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309169

RESUMEN

The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.


Asunto(s)
Antibacterianos , Polygonatum , Antibacterianos/toxicidad , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Polygonatum/química , Sulfadiazina , Tetraciclina , Transcriptoma
11.
Carbohydr Polym ; 330: 121829, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368108

RESUMEN

The herbal medicine Polygonatum cyrtonema is highly regarded in China for its medicinal and dietary properties. However, further research is needed to elucidate the structure of its polysaccharide and understand how it promotes human health by modulating the gut microbiota. This study aims to investigate a homogeneous polysaccharide (PCP95-1-1) from Polygonatum cyrtonema and assess its susceptibility to digestion as well as its utilization by intestinal microbiota. The results confirmed that PCP95-1-1 is an agavin-type fructan, which possesses two fructose chains, namely ß-(2 â†’ 6) and ß-(2 â†’ 1) fructosyl-fructose, attached to the sucrose core, and has branches of ß-D-Fruf residues. Moreover, PCP95-1-1 demonstrated resistance to digestion and maintained its reducing sugar content throughout the digestive system, indicating it could reach the gut without being digested. In vitro fermentation of PCP95-1-1 significantly decreased the pH value (p < 0.05) while notably increasing the production of short-chain fatty acids (SCFAs), confirming its utilization by human gut microbiota. Additionally, PCP95-1-1 exhibited a significant ability (p < 0.05) to beneficial bacteria such as Megamonas and Bifidobacterium, while reducing the presence of facultative or conditional pathogens such as Escherichia-Shigella and Klebsiella at the genus level. Consequently, PCP95-1-1 has the potential to positively influence physical well-being by modulating the gut microbiota environment and can be developed as a functional food.


Asunto(s)
Microbioma Gastrointestinal , Polygonatum , Humanos , Fructanos/farmacología , Polygonatum/química , Polisacáridos , Fructosa
12.
Int J Biol Macromol ; 261(Pt 2): 129760, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286375

RESUMEN

The specific structure of Polygonatum kingianum Coll. et Hemsl polysaccharide (PKP) has been rarely reported. In this study, an inulin-type fructan PKP-1, was extracted and purified from Polygonatum kingianum Coll. et Hemsl, and its structural characteristics and antioxidants activity were evaluated. The molecular weights of PKP-1 was determined to be 4.802 kDa. Monosaccharide composition analysis evidenced that PKP-1 was composed of galactose, glucose and fructose in a molar ratio of 0.8 %:7.2 %:92.0 %. Glycosidic linkage and Nuclear Magnetic Resonance (NMR) analysis revealed that PKP-1 exhibited a primary sugar residue linkage of →1-ß-d-Fruf-2→2,6-ß-d-Fruf-1→, where ß-d-Fruf-2→ acts as the side chain and links to the C-6 position of →2,6-ß-d-Fruf-1→. In vitro antioxidant activity assays demonstrated that PKP-1 enhanced the mitigation of hepatic oxidative stress in HepG2 cells induced by free fatty acids. This effect was marked by increased enzymatic activities of superoxidase dismutase (SOD) and catalase (CAT), along with elevated glutathione (GSH) levels. These findings indicate that PKP-1 could be used as a potential natural antioxidant.


Asunto(s)
Polygonatum , Polygonatum/química , Polisacáridos/química , Antioxidantes/farmacología , Fructanos/química , Estrés Oxidativo , Glutatión
13.
Int J Biol Macromol ; 260(Pt 2): 129511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242391

RESUMEN

Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.


Asunto(s)
Asparagaceae , Polygonatum , Saponinas , Polygonatum/química , Lignina , Polisacáridos/química , Saponinas/química
14.
J Pharm Sci ; 113(6): 1572-1579, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38237668

RESUMEN

Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.


Asunto(s)
Liposomas , Fagocitosis , Polygonatum , Polisacáridos , Animales , Ratones , Polisacáridos/química , Polisacáridos/farmacología , Polygonatum/química , Células RAW 264.7 , Fagocitosis/efectos de los fármacos , Tamaño de la Partícula , Bazo/efectos de los fármacos , Bazo/inmunología , Óxido Nítrico/metabolismo , Timo/efectos de los fármacos , Timo/inmunología , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Masculino
15.
J Pharm Biomed Anal ; 239: 115911, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091818

RESUMEN

Polygonatum odoratum (Yu-Zhu) can be utilized to treat the digestive and respiratory illness. Previous studies have revealed that the underlying therapeutic mechanism of P. odoratum polysaccharides (POPs) is associated with remodeling the gut microbiota. However, POPs in terms of the chemical composition and fermentation activities have been understudied. Here we developed the three-level fingerprinting approaches to characterize the structures of POPs and probed into the beneficial effects on promoting the growth and fermentation of Lactobacillus johnsonii. POPs were prepared by water decoction followed by alcohol sedimentation, while trifluoroacetic acid under different conditions to prepare the hydrolyzed oligosaccharides and monosaccharides. POPs exhibited three main molecular distribution of 601-620 kDa, 4.12-6.09 kDa, and 3.57-6.02 kDa. Hydrolyzed oligosaccharides with degree of polymerization (DP) 2-13 got primarily characterized by analyzing the rich fragmentation information obtained by hydrophilic interaction chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (HILIC/IM-QTOF-MS). Amongst them, the DP5 oligosaccharide was characterized as 1,6,6-kestopentaose. The molecular ratio of Fru: Ara: Glc: Gal: Xyl was 87.72: 0.30: 11.56: 0.19: 0.23. In vitro fermentation demonstrated that 4.5 mg/mL of POPs could significantly promote the growth of L. johnsonii. Co-cultivated with 4.5 mg/mL of POPs, L. johnsonii exhibited stronger antimicrobial activity against Klebsiella pneumoniae. The concentrations of short-chain fatty acids in the POPs-lactobacilli fermented products, including acetic acid, isobutyric acid, and isovaleric acid, were increased. Conclusively, POPs represent the promising prebiotic candidate to facilitate lactobacilli, which is associated with exerting the health benefits.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus johnsonii , Polygonatum , Polygonatum/química , Polisacáridos/farmacología , Polisacáridos/química , Oligosacáridos , Lactobacillus
16.
J Sci Food Agric ; 104(5): 3123-3138, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072675

RESUMEN

BACKGROUND: Polygonatum kingianum Coll. & Hemsl (PK), a prominent medicine and food homology plant, has been consumed as a decoction from boiling water for thousands of years. 'Nine Steaming Nine Sun-drying' processing has been considered an effective method for enriching tonic properties, but studies investigating such impacts on PK and underlying mechanisms are extremely rare. RESULTS: We first demonstrated substantial improvements in the anti-oxidative, anti-inflammatory and anti-hyperglycemia effects of the Nine Steaming Nine Sun-drying processed PK water extracts compared with crude PK in cell models (i.e., HepG2 and Raw 264.7 cells). We then integrated foodomics and network pharmacology analysis to uncover the key compounds responsible for the improved benefits. A total of 551 metabolites of PK extracts were identified, including polyphenols, flavonoids, alkaloids, and organic acids. During processing, 204 metabolites were enhanced, and 32 metabolites were recognized as key constituents of processed PK responsible for the improved health-promoting activities, which may affect PI3K-Akt-, MAPK-, and HIF-1 pathways. We further confirmed the high affinity between identified key constituents of processed PK and their predicted acting targets using molecular docking. CONCLUSION: Our results provide novel insights into bioactive compounds of processed PK, elaborating the rationality of processing from the perspective of tonic effects. Consuming processed PK could be an efficacious strategy to combat the high prevalence of metabolic diseases that currently affect millions of people worldwide. © 2023 Society of Chemical Industry.


Asunto(s)
Hiperglucemia , Polygonatum , Humanos , Polygonatum/química , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Hiperglucemia/prevención & control , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Estrés Oxidativo , Agua/metabolismo
17.
Int J Biol Macromol ; 256(Pt 1): 128030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981289

RESUMEN

Polygonatum sibiricum is an edible plant species in China known for its abundant polysaccharides. However, correlations between its analytical methods and fine structure have not been established. This is usually due to incomplete cleavage of the glycosidic linkages and instability of hydrolysis. In this study, a new optimal acid hydrolysis method for monosaccharide composition (2 M H2SO4 for 1 h) and methylation analysis (2 mol TFA hydrolysis at 100 °C for 1 h) was developed for characterization of inulin-type fructans, resulting in significantly improved monosaccharide recovery and providing more reliable methylation data. The effectiveness of this method was demonstrated through its application to the study of polysaccharide from P. sibiricum (IPS-70S). The results showed that IPS-70S with a molecular weight of 3.6 kDa is an inulin-type fructans consisting of fructose and glucose in a molar ratio of 27:1. Methylation and NMR analysis indicated that IPS-70S contains →2)-Fruf-(6 â†’ or →2)-Fruf-(1 â†’ with branching →1,6)-Fruf-(2 â†’ and terminates in Glcp-(1 â†’ or Fruf-(2→. In conclusion, optimal acid hydrolysis applicable to the specific polysaccharides contribute to its structurally characterized. The newly optimized acid hydrolysis method for monosaccharide composition and methylation analysis offers a reliable and effective approach to the structural characterization of inulin-type fructans from P. sibiricum. Providing reliable basis for the overall work of NMR analysis and structural analysis, which have potential significance in the field of polysaccharides structural characterization.


Asunto(s)
Fructanos , Polygonatum , Fructanos/química , Inulina/química , Polygonatum/química , Hidrólisis , Polisacáridos/química , Glucosa , Ácidos
18.
Int J Biol Macromol ; 258(Pt 1): 128877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134995

RESUMEN

Polysaccharides, the major active ingredient and quality control indicator of Polygomatum cyrtonema are in need of elucidation for its in vitro fermentation characteristics. This study aimed to investigate the structural characteristics of the homogeneous Polygomatum cyrtonema polysaccharide (PCP-80 %) and its effects on human intestinal bacteria and short chain fatty acids (SCFAs) production during the in vitro fermentation. The results revealed that PCP-80 % was yielded in 10.44 % and the molecular weight was identified to be 4.1 kDa. PCP-80 % exhibited a smooth, porous, irregular sheet structure and provided good thermal stability. The analysis of Gas chromatograph-mass spectrometer (GC-MS) suggested that PCP-80 % contained six glycosidic bonds, with 2,1-linked-Fruf residues accounted for a largest proportion. Nuclear magnetic resonance (NMR) provided additional evidence that the partial structure of PCP-80 % probably consists of →1)-ß-D-Fruf-(2 â†’ as the main chain, accompanied by side chains dominated by →6)-ß-D-Fruf-(2→. Besides, PCP-80 % promoted the production of SCFAs and increased the relative abundance of beneficial bacteria such as Megamonas, Bifidobacterium and Phascolarctobacterium during in vitro colonic fermentation, which changed the composition of the intestinal microbiota. These findings indicated that Polygomatum cyrtonema polysaccharides were able to modulate the structure and composition of the intestinal bacteria flora and had potential probiotic properties.


Asunto(s)
Microbioma Gastrointestinal , Polygonatum , Humanos , Polygonatum/química , Fermentación , Polisacáridos/química , Bacterias , Ácidos Grasos Volátiles
19.
Molecules ; 28(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37836822

RESUMEN

Deep eutectic solvent (DES) and hot-water extraction (HWE) methods were utilized to extract polysaccharides from Polygonatum sibiricum, referred to as DPsP and WPsP, respectively. The extracted polysaccharides were purified using the Superdex-200 dextran gel purification system, resulting in three components for each type of polysaccharide. The structures of these components were characterized. The molecular weight analysis revealed that DPsP components had slightly larger molecular weights compared with WPsP, with DPsP-A showing a slightly higher dispersity index and broader molecular weight distribution. The main monosaccharide components of both DPsP and WPsP were mannose and glucose, while DPsP exhibited a slightly greater variety of sugar components compared with WPsP. FTIR analysis demonstrated characteristic polysaccharide absorption peaks in all six PSP components, with a predominance of acidic pyranose sugars. NMR analysis revealed the presence of pyranose sugars, including rhamnose and sugar aldehyde acids, in both DPsP-B and WPsP-A. DPsP-B primarily exhibited ß-type glycosidic linkages, while WPsP-A predominantly displayed α-type glycosidic linkages, with a smaller fraction being ß-type. These findings indicated differences in monosaccharide composition and structure between PSPs extracted using different methods. Overall, this study provided experimental evidence for future research on the structure-function relationship of PSPs.


Asunto(s)
Polygonatum , Polygonatum/química , Disolventes Eutécticos Profundos , Solventes , Polisacáridos/química , Agua , Glucosa
20.
Molecules ; 28(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513370

RESUMEN

Polygonati Rhizoma is a widely used traditional Chinese medicine (TCM) with complex pre-processing steps. Fermentation is a common method for processing TCM to reduce herb toxicity and enhance their properties and/or produce new effects. Here, in this study, using Bacillus subtilis and Saccharomyces cerevisiae, we aimed to evaluate the potential application of solid fermentation in isolating different functional polysaccharides from Polygonatum cyrtonema Hua. With hot water extraction, ethanol precipitation, DEAE anion exchange chromatography and gel filtration, multiple neutral and acidic polysaccharides were obtained, showing different yields, content, compositions and functional groups after fermentation. Combining in vitro experiments and in vivo aging and immunosuppressed mouse models, we further compared the antioxidant and immunomodulating bioactivities of these polysaccharides and found a prominent role of a natural polysaccharide (BNP) from fermented P. cyrtonema via Bacillus subtilis in regulating intestinal antioxidant defense and immune function, which may be a consequence of the ability of BNP to modulate the homeostasis of gut microbiota. Thus, this work provides evidence for the further development and utilization of P. cyrtonema with fermentation, and reveals the potential values of BNP in the treatment of intestinal disorders.


Asunto(s)
Polygonatum , Animales , Ratones , Polygonatum/química , Antioxidantes/química , Fermentación , Medicina Tradicional China , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA