Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Nat Cell Biol ; 24(1): 112-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35013558

RESUMEN

Nuclear pore complexes (NPCs) embedded within the nuclear envelope mediate rapid, selective and bidirectional traffic between the cytoplasm and the nucleoplasm. Deciphering the mechanism and dynamics of this process is challenged by the need for high spatial and temporal resolution. We report here a multicolour imaging approach that enables direct three-dimensional visualization of cargo transport trajectories relative to a super-resolved octagonal double-ring structure of the NPC scaffold. The success of this approach is enabled by the high positional stability of NPCs within permeabilized cells, as verified by a combined experimental and simulation analysis. Hourglass-shaped translocation conduits for two cargo complexes representing different nuclear transport receptor pathways indicate rapid migration through the permeability barrier on or near the NPC scaffold. Binding sites for cargo complexes extend more than 100 nm from the pore openings, which is consistent with a wide distribution of the phenylalanine-glycine polypeptides that bind nuclear transport receptors.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Imagenología Tridimensional/métodos , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Sitios de Unión/fisiología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Biología Computacional/métodos , Humanos , Imagen Individual de Molécula
2.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830069

RESUMEN

There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.


Asunto(s)
Transporte Activo de Núcleo Celular , Esclerosis Amiotrófica Lateral/metabolismo , Envejecimiento/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Encéfalo/metabolismo , Humanos , Poro Nuclear/química , Poro Nuclear/fisiología , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteína de Unión al GTP ran/fisiología
3.
Science ; 374(6573): eabd9776, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762489

RESUMEN

In eukaryotic cells, nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate nucleocytoplasmic exchange. They are made of 30 different nucleoporins and form a cylindrical architecture around an aqueous central channel. This architecture is highly dynamic in space and time. Variations in NPC diameter have been reported, but the physiological circumstances and the molecular details remain unknown. Here, we combined cryo­electron tomography with integrative structural modeling to capture a molecular movie of the respective large-scale conformational changes in cellulo. Although NPCs of exponentially growing cells adopted a dilated conformation, they reversibly constricted upon cellular energy depletion or conditions of hypertonic osmotic stress. Our data point to a model where the nuclear envelope membrane tension is linked to the conformation of the NPC.


Asunto(s)
Membrana Nuclear/fisiología , Poro Nuclear/fisiología , Poro Nuclear/ultraestructura , Transporte Activo de Núcleo Celular , Fenómenos Biomecánicos , Microscopía por Crioelectrón , Citoplasma/metabolismo , Metabolismo Energético , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Biológicos , Membrana Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/química , Presión Osmótica , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/química , Estrés Fisiológico
4.
Elife ; 102021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652272

RESUMEN

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.


Asunto(s)
Canales Iónicos Activados por Ligandos/fisiología , Poro Nuclear/fisiología , Protones , Animales , Cadenas de Markov , Xenopus laevis
5.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639238

RESUMEN

Specific macromolecules are rapidly transported across the nuclear envelope via the nuclear pore complex (NPC). The selective transport process is facilitated when nuclear transport receptors (NTRs) weakly and transiently bind to intrinsically disordered constituents of the NPC, FG Nups. These two types of proteins help maintain the selective NPC barrier. To interrogate their binding interactions in vitro, we deployed an NPC barrier mimic. We created the stationary phase by covalently attaching fragments of a yeast FG Nup called Nsp1 to glass coverslips. We used a tunable mobile phase containing NTR, nuclear transport factor 2 (NTF2). In the stationary phase, three main factors affected binding: the number of FG repeats, the charge of fragments, and the fragment density. We also identified three main factors affecting binding in the mobile phase: the avidity of the NTF2 variant for Nsp1, the presence of nonspecific proteins, and the presence of additional NTRs. We used both experimentally determined binding parameters and molecular dynamics simulations of Nsp1FG fragments to create an agent-based model. The results suggest that NTF2 binding is negatively cooperative and dependent on the density of Nsp1FG molecules. Our results demonstrate the strengths of combining experimental and physical modeling approaches to study NPC-mediated transport.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Biol Cell ; 32(21): ar31, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473567

RESUMEN

Nucleocytoplasmic traffic of nucleic acids and proteins across the nuclear envelop via the nuclear pore complexes (NPCs) is vital for eukaryotic cells. NPCs screen transported macromolecules based on their morphology and surface chemistry. This selective nature of the NPC-mediated traffic is essential for regulating the fundamental functions of the nucleus, such as gene regulation, protein synthesis, and mechanotransduction. Despite the fundamental role of the NPC in cell and nuclear biology, the detailed mechanisms underlying how the NPC works have remained largely unknown. The critical components of NPCs enabling their selective barrier function are the natively unfolded phenylalanine- and glycine-rich proteins called "FG-nucleoporins" (FG Nups). These intrinsically disordered proteins are tethered to the inner wall of the NPC, and together form a highly dynamic polymeric meshwork whose physicochemical conformation has been the subject of intense debate. We observed that specific sequence features (called largest positive like-charge regions, or lpLCRs), characterized by extended subsequences that only possess positively charged amino acids, significantly affect the conformation of FG Nups inside the NPC. Here we investigate how the presence of lpLCRs affects the interactions between FG Nups and their interactions with the cargo complex. We combine coarse-grained molecular dynamics simulations with time-resolved force distribution analysis to disordered proteins to explore the behavior of the system. Our results suggest that the number of charged residues in the lpLCR domain directly governs the average distance between Phe residues and the intensity of interaction between them. As a result, the number of charged residues within lpLCR determines the balance between the hydrophobic interaction and the electrostatic repulsion and governs how dense and disordered the hydrophobic network formed by FG Nups is. Moreover, changing the number of charged residues in an lpLCR domain can interfere with ultrafast and transient interactions between FG Nups and the cargo complex.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteínas de Complejo Poro Nuclear/genética , Poro Nuclear/fisiología , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos/genética , Fenómenos Biofísicos , Núcleo Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Dominios Proteicos/genética , Electricidad Estática
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504007

RESUMEN

The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates. Finally, the three-dimensional (3D) nuclear export routes of these mRNA substrates through native NPCs in the absence of specific BSK proteins were obtained and further validated via postlocalization computational simulations. We found that these BSK proteins possess the stoichiometric ratio of 1:1:1 and play distinct roles in the nuclear export of mRNAs within live cells. The absence of Tpr from the NPC predominantly reduces the probability of nuclear mRNAs entering the NPC for export. Complete depletion of Nup153 and Nup50 results in an mRNA nuclear export efficiency decrease of approximately four folds. mRNAs can gain their maximum successful export efficiency as the copy number of Nup153 increased from zero to only half the full complement natively within the NPC. Lastly, the absence of Tpr or Nup153 seems to alter the 3D export routes of mRNAs as they pass through the NPC. However, the removal of Nup50 alone has almost no impact upon mRNA export route and kinetics.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas Nucleares/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Humanos , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , ARN Mensajero/genética
8.
Viruses ; 13(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34452291

RESUMEN

HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Núcleo Celular/virología , Infecciones por VIH/virología , VIH-1/fisiología , Desencapsidación Viral , Animales , Núcleo Celular/metabolismo , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Membrana Nuclear/fisiología , Membrana Nuclear/virología , Poro Nuclear/fisiología , Poro Nuclear/virología , Retroviridae/fisiología , Transcripción Reversa
9.
Mol Biol Cell ; 32(17): 1523-1533, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34191541

RESUMEN

Nuclear pore complexes (NPCs) are large macromolecular machines that mediate the traffic between the nucleus and the cytoplasm. In vertebrates, each NPC consists of ∼1000 proteins, termed nucleoporins, and has a mass of more than 100 MDa. While a pseudo-atomic static model of the central scaffold of the NPC has recently been assembled by integrating data from isolated proteins and complexes, many structural components still remain elusive due to the enormous size and flexibility of the NPC. Here, we explored the power of three-dimensional (3D) superresolution microscopy combined with computational classification and averaging to explore the 3D structure of the NPC in single human cells. We show that this approach can build the first integrated 3D structural map containing both central as well as peripheral NPC subunits with molecular specificity and nanoscale resolution. Our unbiased classification of more than 10,000 individual NPCs indicates that the nuclear ring and the nuclear basket can adopt different conformations. Our approach opens up the exciting possibility to relate different structural states of the NPC to function in situ.


Asunto(s)
Microscopía Fluorescente/métodos , Proteínas de Complejo Poro Nuclear/ultraestructura , Poro Nuclear/ultraestructura , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo
10.
Methods Mol Biol ; 2175: 33-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32681482

RESUMEN

The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and control transport of macromolecules between the two compartments. Recently, it has been shown that the axial distance between the inner nuclear membrane and the cytoplasmic side of the NPC can be measured using dual-color metal-induced energy transfer (MIET). This chapter focuses on experimental aspects of this method and discusses the details of data analysis.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Membrana Nuclear/fisiología , Poro Nuclear/fisiología , Núcleo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Células HeLa , Humanos , Proteínas de la Membrana/fisiología , Chaperonas Moleculares/fisiología , Proteínas de Complejo Poro Nuclear/fisiología
11.
Autophagy ; 16(10): 1735-1736, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32713250

RESUMEN

Selective autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. This process is a specific degradation pathway for a wide variety of substrates including unwanted cytosolic components, such as protein aggregates, damaged and/or superfluous organelles, and pathogens. However, it has been less clear as to whether a protein complex or substructure of an organelle can be targeted for removal by selective autophagy. One example of such a substrate is the nuclear pore complex (NPC), a large macromolecular assembly that is present throughout the nuclear envelope. Here, we highlight two recent studies that demonstrate for the first time that NPCs are targeted for vacuolar degradation through selective autophagy. ABBREVIATIONS: AIM: Atg8-interacting motif; NE: nuclear envelope; NPC: nuclear pore complex; Nup: nucleoporin; PMN/micronucleophagy: piecemeal microautophagy of the nucleus.


Asunto(s)
Autofagia/fisiología , Citosol/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Macroautofagia , Orgánulos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
12.
Curr Biol ; 30(16): 3212-3222.e2, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32502403

RESUMEN

An important question in cell biology is how cellular organelles partition during cell division. In organisms undergoing closed mitosis, the elongation of an intranuclear spindle drives nuclear division, generating two identically sized nuclei [1, 2]. However, how the site of nuclear division is determined and the underlying mechanism driving nuclear envelope (NE) fission remain largely unknown. Here, using the fission yeast, we show that the microtubule bundler Ase1/PRC1 at the spindle midzone is required for the local concentration of nuclear pore complexes (NPCs) in the region of the NE in contact with the central spindle. As the spindle elongates during anaphase B, components of these NPCs are sequentially eliminated, and this is accompanied by the local remodeling of the NE. These two events lead to the eventual removal of NPCs and nuclear division. In the absence of importin α, NPCs remain stable in this region and no event of NE remodeling is observed. Consequently, cells fail to undergo nuclear division. Thus, our results highlight a new role of the central spindle as a spatial cue that determines the site of nuclear division and point to NPC removal as the triggering event.


Asunto(s)
División del Núcleo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Membrana Nuclear/fisiología , Poro Nuclear/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
13.
Curr Opin Cell Biol ; 63: 204-211, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32361559

RESUMEN

Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.


Asunto(s)
Núcleo Celular/fisiología , Mecanotransducción Celular/fisiología , Animales , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Microtúbulos/fisiología , Lámina Nuclear/fisiología , Poro Nuclear/metabolismo , Poro Nuclear/fisiología
14.
Cell ; 177(6): 1384-1403, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150619

RESUMEN

Integrative structure determination is a powerful approach to modeling the structures of biological systems based on data produced by multiple experimental and theoretical methods, with implications for our understanding of cellular biology and drug discovery. This Primer introduces the theory and methods of integrative approaches, emphasizing the kinds of data that can be effectively included in developing models and using the nuclear pore complex as an example to illustrate the practice and challenges involved. These guidelines are intended to aid the researcher in understanding and applying integrative structural methods to systems of their interest and thus take advantage of this rapidly evolving field.


Asunto(s)
Biología Computacional/métodos , Biología de Sistemas/métodos , Algoritmos , Animales , Humanos , Modelos Moleculares , Biología Molecular , Poro Nuclear/fisiología , Programas Informáticos , Análisis de Sistemas , Integración de Sistemas
15.
PLoS Pathog ; 14(11): e1007408, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30496303

RESUMEN

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced post-entry inhibitor of human immunodeficiency virus type-1 (HIV-1) infection. While the precise mechanism of viral inhibition remains unclear, MX2 is localized to the nuclear envelope, and blocks the nuclear import of viral cDNAs. The amino-terminus of MX2 (N-MX2) is essential for anti-viral function, and mutation of a triple arginine motif at residues 11 to 13 abrogates anti-HIV-1 activity. In this study, we sought to investigate the role of N-MX2 in anti-viral activity by identifying functionally relevant host-encoded interaction partners through yeast-two-hybrid screening. Remarkably, five out of seven primary candidate interactors were nucleoporins or nucleoporin-like proteins, though none of these candidates were identified when screening with a mutant RRR11-13A N-MX2 fragment. Interactions were confirmed by co-immunoprecipitation, and RNA silencing experiments in cell lines and primary CD4+ T cells demonstrated that multiple components of the nuclear pore complex and nuclear import machinery can impact MX2 anti-viral activity. In particular, the phenylalanine-glycine (FG) repeat containing cytoplasmic filament nucleoporin NUP214, and transport receptor transportin-1 (TNPO1) were consistently required for full MX2, and interferon-mediated, anti-viral function. Both proteins were shown to interact with the triple arginine motif, and confocal fluorescence microscopy revealed that their simultaneous depletion resulted in diminished MX2 accumulation at the nuclear envelope. We therefore propose a model whereby multiple components of the nuclear import machinery and nuclear pore complex help position MX2 at the nuclear envelope to promote MX2-mediated restriction of HIV-1.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Proteínas de Resistencia a Mixovirus/metabolismo , Transporte Activo de Núcleo Celular , Antivirales/metabolismo , Células HEK293 , Infecciones por VIH/virología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Proteínas de Resistencia a Mixovirus/genética , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Replicación Viral , beta Carioferinas/metabolismo
16.
Genes Dev ; 32(19-20): 1321-1331, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30228202

RESUMEN

The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.


Asunto(s)
Proteínas de Complejo Poro Nuclear/fisiología , Poro Nuclear/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Interfase , Ratones , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
17.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100187

RESUMEN

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/fisiología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Carcinogénesis , Núcleo Celular/metabolismo , Proliferación Celular , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Membrana Nuclear , Proteínas de Complejo Poro Nuclear , Transducción de Señal
18.
Elife ; 72018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29809148

RESUMEN

Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.


Asunto(s)
Carioferinas/metabolismo , Centro Organizador de los Microtúbulos/fisiología , Microtúbulos/metabolismo , Poro Nuclear/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Schizosaccharomyces/fisiología , Transporte Activo de Núcleo Celular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Carioferinas/química , Carioferinas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Membrana Nuclear , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático , Proteína Exportina 1
19.
J Biol Chem ; 293(12): 4564-4565, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572326

RESUMEN

Exchange of macromolecules between the cytoplasm and the nucleus of all eukaryotic cells is controlled by nuclear pore complexes, which form a selective permeability barrier. The requirement for rapid but selective transport leads to a "transport paradox." A new experimental study now provides a thermodynamic explanation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Complejo Poro Nuclear/química , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
20.
J Biol Chem ; 293(12): 4555-4563, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29374059

RESUMEN

Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe-Gly nucleoporins (FG Nups) that contain multiple phenylalanine-glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy-entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG-TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of "fuzzy" interactions involving IDPs.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Termodinámica , Transporte Activo de Núcleo Celular , Cristalografía por Rayos X , Glicina/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Complejo Poro Nuclear/química , Fenilalanina/química , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA